首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Carrot (Daucus carota) somatic embryogenesis has been extensively used as an experimental system for studying embryogenesis. In maturing zygotic embryos, abscisic acid (ABA) is involved in acquisition of desiccation tolerance and dormancy. On the other hand, somatic embryos contain low levels of endogenous ABA and show desiccation intolerance and lack dormancy, but tolerance and dormancy can be induced by exogenous application of ABA. In ABA-treated carrot embryos, some ABA-inducible genes are expressed. We isolated the Daucus carota bZIP1 (DcBZ1) gene encoding a G-box binding factor-type basic region/leucine zipper (GBF-type bZIP) factor from carrot somatic embryos. The expression of DcBZ1 was detected in embryogenic cells, non-embryogenic cells, somatic embryos, developing seeds, seedlings, and true leaves. Notably, higher expression was detected in embryogenic cells, true leaves, and seedlings. The expression of DcBZ1 increased in seedlings and true leaves after ABA treatment, whereas expression was not affected by differences in light conditions. During the development of zygotic and somatic embryos, increased expression of DcBZ1 was commonly detected in the later phase of development. The recombinant DcBZ1 protein showed specific binding activity to the two ABA-responsive element-like motifs (motif X and motif Y) in the promoter region of the carrot ABA-inducible gene according to results from an electrophoretic mobility shift assay. Our findings suggest that the carrot GBF-type bZIP factor, DcBZ1, is involved in ABA signal transduction in embryogenesis and other vegetative tissues.  相似文献   

3.
The morphology of somatic embryos of Norway spruce ( Picea abies ) varies among different cell lines, from less developed somatic embryos with small embryonic regions (group B) to well developed embryos with large embryonic regions (group A). Only well developed somatic embryos will undergo a maturation process after a treatment with ABA and develop into mature somatic embryos, which is required for plant regeneration. We have previously shown that the presence of specific extracellular proteins can be correlated with the morphology of the somatic embryos. In the present study we show that extracellular proteins concentrated from group A cell lines can stimulate group B embryos to develop further and that seed extract can stably convert B embryos into A embryos. The arabinogalactan protein (AGP) fraction of the extracellular proteins and of the seed extract was shown to be an active component for stimulating B embryos to develop further. Furthermore, the amount and type of extracellular AGPs, as detected with β-glucosyl Yariv reagent and monoclonal antibodies, varied among different types of tissues and cell lines. The data show that development of somatic embryos in Norway spruce is associated with particular extracellular AGPs, which have a regulatory function.  相似文献   

4.
A full-length Picea abies cDNA clone Pa18, encoding a protein with the characteristics of plant lipid transfer proteins, has been isolated and characterized. The size of the deduced 173 amino acid (aa) long protein is around 18 kDa. The first 100–120 aa show similarity to angiosperm lipid transfer proteins in amino acid sequence as well as in predicted secondary structure. The Pa18 gene is constitutively expressed in embryogenic cultures of Picea abies representing different stages of development as well as in non-embryogenic callus and seedlings. The Pa18 gene product has an antimicrobial activity. In situ hybridization showed that the Pa18 gene is equally expressed in all embryonic cells of proliferating embryogenic cultures but during embryo maturation the expression of the gene in maturing and mature somatic as well as in mature zygotic embryos is stronger in the outer cell layer than in other tissues. Southern blot analysis at different stringencies was consistent with a single gene with one or two copies rather than a gene family. Twenty independent transgenic sublines over- and under-expressing the Pa18 gene under the Zea mays ubiquitin promoter were established. There was a high yield of mature somatic embryos with a smooth surface only in untransformed, control cultures. Irrespective of the expression level of Pa18, the somatic embryos started to mature when given a maturation treatment. However, in the transgenic sublines, the outer cells in the maturing embryos frequently became elongated and vacuolated instead of remaining small and uniform. One explanation for this was that the expression of Pa18 was not restricted to the outer cell layer in transformed sublines. Angiosperms and gymnosperms separated about 300 million years ago and the embryo genesis is different in the two groups. The outer cell layer (protoderm), the first tissue to differentiate, is less clearly delineated in gymnosperms. For normal embryo development in angiosperms, expression of the LTP gene must be restricted to the protodermal cells. In this work we show that the expression of the Pa18 gene must be restricted to the putative protodermal cells of the gymnosperm.  相似文献   

5.
Changes in cellular protein accumulation and in in vivo andin vitro protein synthesis, in somatic embryo tissues of whitespruce during a 42 d maturation period were followed by two-dimensionalsodium dodecyl sulphate-polyacrylamide gel electrophoresis (2-DSDS-PAGE). These investigations were complemented by an analysisof uptake and fate of fed abscisic acid (ABA) in somatic embryotissues grown on maturation medium. When Stage 1 somatic embryoswere cultured on ABA-containing maturation medium, many changeswere observed in patterns of gene expression and in proteinsynthesis and accumulation which could be associated with embryodevelopment. The polypeptides observed could be categorizedas constitutive, embryo-abundant, embryo maturation-relatedand embryo stage-related, as well as those with non-specificchanges. Accumulation of label from fed 3H-(+)-ABA in embryotissues reached a plateau 3 d after Stage 1 somatic embryoswere placed on maturation medium. ABA taken into tissues wasrapidly metabolized, and 40% of radioactivity in tissues after1 d of culture resulted from ABA metabolites. This value increasedto 90% after 3 weeks culture. Conjugated ABA and oxidized ABA(phaseic acid and dihydrophaseic acid) were major forms of ABAmetabolites in spruce embryo tissues. Using a single 42 d cultureperiod following transfer to medium with ABA, the conditionsthat stimulate the sequence of developmental changes of somaticembryo maturation during the first 21 d do not reoccur duringthe second 21 d. Unless greater synchronization of Stage 1 culturescan be achieved, it is therefore unlikely that yields of maturesomatic embryos will be increased by this method. Key words: Abscisic acid, gene expression, Picea glauca (Moench) Voss, protein synthesis, somatic embryo maturation  相似文献   

6.
Summary Somatic embryogenesis was obtained from hypocotyls and cotyledons of one month old plantlets of Picea abies. Embryogenic yield was higher with expiants from somatic embryo-derived plantlets (80 %) than with plantlets issued from zygotic embryos (10 %). This report also describes production of embryogenic calli from needles of 14 month old somatic embryo-derived plants cultivated in greenhouse. The influence of the physiological status and genotype of the mother plant on somatic embryogenic potential is discussed.Abbreviations ABA abscisic acid - (±) ABA racemic ABA - BAP 6-benzylaminopurine - CI callus inducing culture medium - NAA 1-naphtaleneacetic acid  相似文献   

7.
Total protein was extracted from zygotic embryos and from somatic embryos of Picea abies (L.) Karst. (Norway spruce) cultured in vitro at different times during their development. An analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 2-dimensional gel electrophoresis of the protein extracts showed that protein composition and the temporal changes in protein abundance were very similar in the two embryo types. Both zygotic and somatic embryos accumulated storage proteins in abundance during their maturation phase of growth; the somatic embryos when cultured on medium containing 90 m M sucrose and 7.6 μ M ABA. The major storage proteins are composed of polypeptides with molecular masses of about 22, 28, 33 and 42 kDa and they are identical in both embryo types according to their molecular mass and average isoelectric points. These proteins are also the most abundant proteins in the female gametophytic tissue of the mature seed.  相似文献   

8.
9.
The effect of abscisic acid (ABA), non-permeating osmoticumand desiccation treatment on storage protein synthesis duringmaturation of somatic embryos of Picea glauca (Moench) Voss.was examined. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis(SDS-PAGE) and Western blot analysis demonstrated that someof the major crystalloid and matrix polypeptides were absentfrom somatic embryos maturing on medium containing ABA and lowosmoticum. However, treatment with polyethylene glycol-4000(PEG) in combination with ABA resulted in the synthesis of aspectrum of storage polypeptides resembling that of mature zygoticembryos. These storage proteins accumulated throughout an 8-weekculture period, resulting in a threefold higher protein contentthan somatic embryos maturing for the same time in the absenceof PEG. The structure and distribution of protein bodies incells of these osmotically treated somatic embryos was similarto that in cells of mature zygotic embryos. Treatment with 5·0-7·5%PEG prevented catabolism of the accumulated storage polypeptidesduring desiccation. The optimal culture conditions for somaticembryo maturation and storage protein deposition was 16 µMABA and 7·5% PEG for 8 weeks followed by desiccation.Analysis of mRNAs by in vitro translation and immunoprecipitationof translated products showed that the crystalloid protein mRNAprofiles of zygotic and those of somatic embryos maturing on16 µM ABA in the absence of PEG were similar. The differencesobserved in the pattern of accumulated polypeptides in thesesomatic embryos and those of mature zygotic embryos, therefore,indicates that storage-protein synthesis in response to osmoticumis in part regulated at the translational level. During regenerationof somatic embryos to plantlets the storage polypeptides wererapidly utilized in a manner similar to that in zygotic seedlings.Copyright1993, 1999 Academic Press Desiccation, osmotic stress, storage proteins, Picea, embryogenesis—somatic, mRNA (crystalloid protein)  相似文献   

10.
Detailed expression analysis of the Norway spruce (Picea abies [L.] Karst) Viviparous 1 (Pavp1) and p34cdc2 (cdc2Pa) genes was carried out during somatic embryogenesis. Pavp1, a gene associated with embryo development, was expressed in proliferating embryogenic suspension cultures in the absence of exogenous ABA. When somatic embryo formation was promoting by blocking proliferation, Pavp1 expression was reduced. During maturation, exogenous ABA induced increased Pavp1 expression, which peaked at the early cotyledonary stage of somatic embryogenesis. Following partial desiccation of mature somatic embryos at high relative humidity, Pavp1 expression persisted under germination conditions. Pavp1 expression was also detected in non-dormant immature male strobili and dormant terminal buds. These data confirm the functional conservation of Pavp1 during the evolution of seed plants and extend its function beyond the embryo. Cdc2Pa, a gene associated with the cell cycle, was up-regulated when the proliferation of embryogenic cells was blocked. Expression was again up-regulated in early embryogeny and again during germination. The implications of this up-regulation of cdc2Pa are discussed.  相似文献   

11.
Isolation and characterization of a soybean hsp70 gene   总被引:7,自引:0,他引:7  
  相似文献   

12.
13.
14.
15.
16.
Embryogenic cultures were initiated from mature zygotic embryos of Picea abies. The somatic embryos in the embryogenic cultures were first stimulated to mature and then either to develop further into plantlets or to differentiate new embryogenic cultures. The procedure was repeated three times during two years. The ability to give rise to new embryogenic cultures or to develop into plantlets was similar for all somatic embryos irrespective of how long they had been cultured in vitro. The nuclear DNA content, measured in a flow cytometer, was estimated at 32 pg/G1 nuclei in seedings developed from zygotic embryos. Nuclei isolated from embryogenic cultures and from plantlets regenerated from somatic embryos had the same DNA content as those isolated from seedlings.Abbreviations N6-benzyladenine BA - 2,4-dichlorophenoxyacetic acid 2,4-D - abscisic acid ABA  相似文献   

17.
18.
The combination of abscisic acid (ABA) and activated carbon increased Norway spruce (Picea abies L., Karst.) cotyledonary somatic embryo yields, increased the number of genotypes forming cotyledonary embryos, caused embryos to form that exhibited improved maturation characteristics, and reduced embryo production costs. Somatic embryos increased in size, showed larger apical regions, became more zygotic-like in shape, and showed higher percentages of epicotyl development upon germination. Analyses of medium for free ABA in the presence of activated charcoal showed a rapid decrease within a few hours followed by a gradual decline over the next few days with little change from 2 to 6 weeks. Gelling agents strongly affected ABA adsorption, with agar decreasing the adsorption of ABA compared to gellan gum (Gelrite, Phytagel). Over 4,000 somatic seedlings from 20 clones were produced and established in a greenhouse using the methods discussed, and approximately 1,250 seedlings representing seven clones were established in a field setting.  相似文献   

19.
20.
Several coniferous species can be propagated via somatic embryogenesis. This is a useful method for clonal propagation, but it can also be used for studying how embryo development is regulated in conifers. However, in conifers it is not known to what extent somatic and zygotic embryos develop similarly, because there has been little research on the origin and development of somatic embryos. A time-lapse tracking technique has been set up, and the development of more than 2000 single cells and few-celled aggregates isolated from embryogenic suspension cultures of Norway spruce (Picea abies L. Karst.) and embedded in thin layers of agarose has been traced. Experiments have shown that somatic embryos develop from proembryogenic masses which pass through a series of three characteristic stages distinguished by cellular organization and cell number (stages I, II and III) to transdifferentiate to somatic embryos. Microscopic inspection of different types of structures has revealed that proembryogenic masses are characterized by high interclonal variation of shape and cellular constitution. In contrast, somatic embryos are morphologically conservative structures, possessing a distinct protoderm-like cell layer as well as embryonal tube cells and suspensor. The lack of staining of the arabinogalactan protein epitope recognized by the monoclonal antibody JIM13 was shown to be an efficient marker for distinguishing proembryogenic masses from somatic embryos. The vast majority of cells in proembryogenic masses expressed this epitope and none of cells in the early somatic embryos. The conditions that promote cell proliferation (i.e. the presence of exogenous auxin and cytokinin), inhibit somatic embryo formation; instead, continuous multiplication of stage I proembryogenic masses by unequal division of embryogenic cells with dense cytoplasm is the prevailing process. Once somatic embryos have formed, their further development to mature forms requires abscisic acid and shares a common histodifferentiation pattern with zygotic embryos. Although the earliest stages of somatic embryo development comparable to proembryogeny could not be characterized, the subsequent developmental processes correspond closely to what occurs in the course of early and late zygotic embryogeny. A model for somatic embryogenesis pathways in Picea abies is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号