首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bcmfs1, a novel major facilitator superfamily gene from Botrytis cinerea, was cloned, and replacement and overexpression mutants were constructed to study its function. Replacement mutants showed increased sensitivity to the natural toxic compounds camptothecin and cercosporin, produced by the plant Camptotheca acuminata and the plant pathogenic fungus Cercospora kikuchii, respectively. Overexpression mutants displayed decreased sensitivity to these compounds and to structurally unrelated fungicides, such as sterol demethylation inhibitors (DMIs). A double-replacement mutant of Bcmfs1 and the ATP-binding cassette (ABC) transporter gene BcatrD was more sensitive to DMI fungicides than a single-replacement mutant of BcatrD, known to encode an important ABC transporter of DMIs. The sensitivity of the wild-type strain and mutants to DMI fungicides correlated with Bcmfs1 expression levels and with the initial accumulation of oxpoconazole by germlings of these isolates. The results indicate that Bcmfs1 is a major facilitator superfamily multidrug transporter involved in protection against natural toxins and fungicides and has a substrate specificity that overlaps with the ABC transporter BcatrD. Bcmfs1 may be involved in protection of B. cinerea against plant defense compounds during the pathogenic phase of growth on host plants and against fungitoxic antimicrobial metabolites during its saprophytic phase of growth.  相似文献   

2.
During pathogenesis, fungal pathogens are exposed to a variety of fungitoxic compounds. This may be particularly relevant to Botrytis cinerea, a plant pathogen that has a broad host range and, consequently, is subjected to exposure to many plant defense compounds. In practice, the pathogen is controlled with fungicides belonging to different chemical groups. ATP-binding cassette (ABC) transporters might provide protection against plant defense compounds and fungicides by ATP-driven efflux mechanisms. To test this hypothesis, we cloned BcatrB, an ABC transporter-encoding gene from B. cinerea. This gene encodes a 1,439 amino acid protein with nucleotide binding fold (NBF) and transmembrane (TM) domains in a [NBF-TM6]2 topology. The amino acid sequence has 31 to 67% identity with ABC transporters from various fungi. The expression of BcatrB is up regulated by treatment of B. cinerea germlings with the grapevine phytoalexin resveratrol and the fungicide fenpiclonil. BcatrB replacement mutants are not affected in saprophytic growth on different media but are more sensitive to resveratrol and fenpiclonil than the parental isolate. Furthermore, virulence of deltaBcatrB mutants on grapevine leaves was slightly reduced. These results indicate that BcatrB is a determinant in sensitivity of B. cinerea to plant defense compounds and fungicides.  相似文献   

3.
We have studied the role of five ABC transporter genes (MgAtr to MgAtr5) from the wheat pathogen Mycosphaerella graminicola in multidrug resistance (MDR). Complementation of Saccharomyces cerevisiae mutants with the ABC transporter genes from M. graminicola showed that all the genes tested encode proteins that provide protection against chemically unrelated compounds, indicating that their products function as multidrug transporters with distinct but overlapping substrate specificities. Their substrate range in yeast includes fungicides, plant metabolites, antibiotics, and a mycotoxin derived from Fusarium graminearum (diacetoxyscirpenol). Transformants of M. graminicola in which individual ABC transporter genes were deleted or disrupted did not exhibit clear-cut phenotypes, probably due to the functional redundancy of transporters with overlapping substrate specificity. Independently generated MgAtr5 deletion mutants of M. graminicola showed an increase in sensitivity to the putative wheat defence compound resorcinol and to the grape phytoalexin resveratrol, suggesting a role for this transporter in protecting the fungus against plant defence compounds. Bioassays with antagonistic bacteria indicated that MgAtr2 provides protection against metabolites produced by Pseudomonas fluorescens and Burkholderia cepacia. In summary, our results show that ABC transporters from M. graminicola play a role in protection against toxic compounds of natural and artificial origin.  相似文献   

4.
5.
6.
In natural environments, microorganisms are exposed to a wide variety of antibiotic compounds produced by competing organisms. Target organisms have evolved various mechanisms of natural resistance to these metabolites. In this study, the role of ATP-binding cassette (ABC) transporters in interactions between the plant-pathogenic fungus Botrytis cinerea and antibiotic-producing Pseudomonas bacteria was investigated in detail. We discovered that 2,4-diacetylphloroglucinol, phenazine-1-carboxylic acid and phenazine-1-carboxamide (PCN), broad-spectrum antibiotics produced by Pseudomonas spp., induced expression of several ABC transporter genes in B. cinerea. Phenazines strongly induced expression of BcatrB, and deltaBcatrB mutants were significantly more sensitive to these antibiotics than their parental strain. Treatment of B. cinerea germlings with PCN strongly affected the accumulation of [14C]fludioxonil, a phenylpyrrole fungicide known to be transported by BcatrB, indicating that phenazines also are transported by BcatrB. Pseudomonas strains producing phenazines displayed a stronger antagonistic activity in vitro toward ABcatrB mutants than to the parental B. cinerea strain. On tomato leaves, phenazine-producing Pseudomonas strains were significantly more effective in reducing gray mold symptoms incited by a ABcatrB mutant than by the parental strain. We conclude that the ABC transporter BcatrB provides protection to B. cinerea in phenazine-mediated interactions with Pseudomonas spp. Collectively, these results indicate that fungal ABC transporters can play an important role in antibiotic-mediated interactions between bacteria and fungi in plant-associated environments. The implications of these findings for the implementation and sustainability of crop protection by antagonistic microorganisms are discussed.  相似文献   

7.
8.
MgMfs1, a major facilitator superfamily (MFS) gene from the wheat pathogenic fungus Mycosphaerella graminicola, was identified in expressed sequence tag (EST) libraries. The encoded protein has high homology to members of the drug:H(+) antiporter efflux family of MFS transporters with 14 predicted transmembrane spanners (DHA14), implicated in mycotoxin secretion and multidrug resistance. Heterologous expression of MgMfs1 in a hypersensitive Saccharomyces cerevisiae strain resulted in a strong decrease in sensitivity of this organism to a broad range of unrelated synthetic and natural toxic compounds. The sensitivity of MgMfs1 disruption mutants of M. graminicola to most of these compounds was similar when compared to the wild-type but the sensitivity to strobilurin fungicides and the mycotoxin cercosporin was increased. Virulence of the disruption mutants on wheat seedlings was not affected. The results indicate that MgMfs1 is a true multidrug transporter that can function as a determinant of pathogen sensitivity and resistance to fungal toxins and fungicides.  相似文献   

9.
10.
Analysis of the genome sequence of Fusarium graminearum revealed three paralogous cyp51 genes (designated cyp51A, -B, and -C) encoding 14-α demethylases in this fungus. Targeted gene disruption showed that the cyp51A, -B or -C disruption mutants were morphologically indistinguishable from the parent isolate on potato dextrose agar medium, which indicates that none of these genes is essential for mycelial growth. The sensitivity of cyp51A deletion mutants to seven sterol demethylation inhibitor (DMI) fungicides increased significantly compared to the parent strain, while sensitivity of cyp51C deletion mutants increased to some but not all DMIs. No change in DMI sensitivity was observed for cyp51B deletion mutants. The parental phenotypes of cyp51A and cyp51C deletion mutants were completely restored by genetic complementation with the wild-type cyp51A and cyp51C genes, respectively. The sensitivity of F. graminearum isolates increased significantly when subjected in vitro to a mixture of DMI fungicides triadimefon and tebuconazole as compared to the individual components. These results indicate that different DMI fungicides target different CYP51 proteins in F. graminearum and that a mixture of DMI fungicides can result in synergistic effects. Our findings have directly implications on chemical management strategies of plant diseases caused by Fusarium species.  相似文献   

11.
Survival of microorganisms in natural environments is favored by the capacity to produce compounds toxic to competing organisms and the ability to resist the effects of such toxic compounds. Both factors contribute to a competitive advantage of organisms in ecosystems. All organisms have evolved active transport mechanisms by which endogenous and exogenous toxicants can be secreted. Two major classes of transporter proteins are the ATP-binding cassette (ABC) and the major facilitator superfamily (MFS) transporters. Members of both classes can have broad and overlapping substrate specificities for natural toxic compounds and can be regarded as a "first-line defense barrier" in survival mechanisms. In plant pathogens, these transporters can play an essential role in protection against plant defense compounds during pathogenesis. Also, some transporters actively secrete host-specific and non-host-specific toxins. Remarkably, ABC and MFS transporters can also play a major role in fungicide sensitivity and resistance. Their role in multidrug resistance of Aspergillus nidulans, Candida albicans, and Saccharomyces cerevisiae to azoles and other fungitoxic compounds is well established. Knowledge of ABC and MFS transporters opens possibilities of developing novel strategies for controlling plant diseases, either by modulation of transporter activity or by transgenic expression of transporter genes in plants.  相似文献   

12.
13.
14.
Alpen B  Güre AO  Scanlan MJ  Old LJ  Chen YT 《Gene》2002,289(1-2):141-149
Three single copy ATP-binding cassette (ABC) transporter encoding genes, designated MgAtr3, MgAtr4, and MgAtr5, were cloned and sequenced from the plant pathogenic fungus Mycosphaerella graminicola. The encoded ABC proteins all exhibit the [NBD-TMS(6)](2) configuration and can be classified as novel members of the pleiotropic drug resistance (PDR) class of ABC transporters. The three proteins are highly homologous to other fungal and yeast, ABC proteins involved in multidrug resistance or plant pathogenesis. MgAtr4 and MgAtr5 possess a conserved ABC motif at both the N- and C-terminal domain of the protein. In contrast, the Walker A motif in the N-terminal and the ABC signature in the C-terminal domain of MgAtr3, deviate significantly from the consensus sequence found in other members of the PDR class of ABC transporters. Expression of MgAtr3 could not be detected under any of the conditions tested. However, MgAtr4 and MgAtr5 displayed distinct expression profiles when treated with a range of compounds known to be either substrates or inducers of ABC transporters. These included synthetic fungitoxic compounds, such as imazalil and cyproconazole, natural toxic compounds, such as the plant defence compounds eugenol and psoralen, and the antibiotics cycloheximide and neomycin. The expression pattern of the genes was also dependent on the morphological state of the fungus. The findings suggest a role for MgAtr4 and MgAtr5 during plant pathogenesis and in protection against toxic compounds.  相似文献   

15.
16.
Dicarboximides and phenylpyrroles are commonly used fungicides against plant pathogenic ascomycetes. Although their effect on fungal osmosensing systems has been shown in many studies, their modes-of-action still remain unclear. Laboratory- or field-mutants of fungi resistant to either or both fungicide categories generally harbour point mutations in the sensor histidine kinase of the osmotic signal transduction cascade.In the present study we compared the mechanisms of resistance to the dicarboximide iprodione and to pyrrolnitrin, a structural analogue of phenylpyrrole fungicides, in Botrytis cinerea. Pyrrolnitrin-induced mutants and iprodione-induced mutants of B. cinerea were produced in vitro. For the pyrrolnitrin-induced mutants, a high level of resistance to pyrrolnitrin was associated with a high level of resistance to iprodione. For the iprodione-induced mutants, the high level of resistance to iprodione generated variable levels of resistance to pyrrolnitrin and phenylpyrroles. All selected mutants showed hypersensitivity to high osmolarity and regardless of their resistance levels to phenylpyrroles, they showed strongly reduced fitness parameters (sporulation, mycelial growth, aggressiveness on plants) compared to the parental phenotypes. Most of the mutants presented modifications in the osmosensing class III histidine kinase affecting the HAMP domains. Site directed mutagenesis of the bos1 gene was applied to validate eight of the identified mutations. Structure modelling of the HAMP domains revealed that the replacements of hydrophobic residues within the HAMP domains generally affected their helical structure, probably abolishing signal transduction. Comparing mutant phenotypes to the HAMP structures, our study suggests that mutations perturbing helical structures of HAMP2-4 abolish signal-transduction leading to loss-of-function phenotype. The mutation of residues E529, M427, and T581, without consequences on HAMP structure, highlighted their involvement in signal transduction. E529 and M427 seem to be principally involved in osmotic signal transduction.  相似文献   

17.
18.
Arabidopsis thaliana is known to produce the phytoalexin camalexin in response to abiotic and biotic stress. Here we studied the mechanisms of tolerance to camalexin in the fungus Botrytis cinerea , a necrotrophic pathogen of A. thaliana . Exposure of B. cinerea to camalexin induces expression of BcatrB , an ABC transporter that functions in the efflux of fungitoxic compounds. B. cinerea inoculated on wild-type A. thaliana plants yields smaller lesions than on camalexin-deficient A. thaliana mutants. A B. cinerea strain lacking functional BcatrB is more sensitive to camalexin in vitro and less virulent on wild-type plants, but is still fully virulent on camalexin-deficient mutants. Pre-treatment of A. thaliana with UV-C leads to increased camalexin accumulation and substantial resistance to B. cinerea. UV-C-induced resistance was not seen in the camalexin-deficient mutants cyp79B2/B3 , cyp71A13 , pad3 or pad2 , and was strongly reduced in ups1 . Here we demonstrate that an ABC transporter is a virulence factor that increases tolerance of the pathogen towards a phytoalexin, and the complete restoration of virulence on host plants lacking this phytoalexin.  相似文献   

19.
The soil-borne bacterial pathogen Ralstonia solanacearum invades a broad range of plants through their roots, resulting in wilting of the plant, but no effective protection against this disease has been developed. Two bacterial wilt disease-inhibiting compounds were biochemically isolated from tobacco and identified as sclareol and cis-abienol, labdane-type diterpenes. When exogenously applied to their roots, sclareol and cis-abienol inhibited wilt disease in tobacco, tomato and Arabidopsis plants without exhibiting any antibacterial activity. Microarray analysis identified many sclareol-responsive genes in Arabidopsis roots, including genes encoding or with a role in ATP-binding cassette (ABC) transporters, and biosynthesis and signaling of defense-related molecules and mitogen-activated protein kinase (MAPK) cascade components. Inhibition of wilt disease by sclareol was attenuated in Arabidopsis mutants defective in the ABC transporter AtPDR12, the MAPK MPK3, and ethylene and abscisic acid signaling pathways, and also in transgenic tobacco plants with reduced expression of NtPDR1, a tobacco homolog of AtPDR12. These results suggest that multiple host factors are involved in the inhibition of bacterial wilt disease by sclareol-related compounds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号