首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
杂交水稻育种的实质是配合力育种, 筛选高特殊配合力的杂交水稻组合才能选育出在生产上有实用价值的强优势组合。文章利用SSR标记检测了9个三系杂交稻亲本(5个不育系和4个恢复系)之间的遗传距离, 结合20个杂交稻组合(5×4 NCII)的产量表现, 分析了杂交水稻特殊配合力(Special combining ability, SCA)效应与产量杂种优势、亲本间遗传距离的相关性。结果表明, 特殊配合力效应与对照优势(相关系数r1=0.5609)、平均优势(相关系数r2=0.541)之间均呈显著正相关, 而与亲本遗传距离之间相关不显著, 相关系数(r=0.2143)较小。说明本研究所配组合的特殊配合力效应能充分反映杂种优势, 选用的杂交亲本能组配出强优势组合; 而杂交亲本遗传距离的大小并不能反映特殊配合力效应, 分子标记遗传距离与特殊配合力的相关性还有待于进一步的探讨。  相似文献   

2.
采用Genomic-SSR和EST—SSR标记技术,对来自我国北方冬麦区的18份普通小麦品种(系)的遗传多样性进行了探讨,并与系谱遗传距离进行了比较分析。研究发现,平均每个Genomic—SSR检测到的等位基因数为3.34个,明显高于EST-SSR的2.31个。遗传距离(GD)计算结果显示,18个小麦基因型之间的EST—SSR平均遗传距离较小,仅为0.3996,低于Genomic—SSR的GD平均值0.5458。尽管EST-SSR揭示出的多态性明显低于Genomic-SSR,但系谱分析和聚类结果均表明,与Genomic—SSR相比,EST—SSR标记能更准确地反映出不同小麦基因型之间的遗传和亲缘关系。据此可以认为,EST—SSR是评价小麦遗传多样性的一种理想标记形式。研究还证实,一个骨干亲本与由其衍生出来的品种(系)之间的遗传差异一般较小,并对拓宽普通小麦遗传基础的策略和方法进行了讨论。  相似文献   

3.
采用SSR技术对黄淮麦区以1B/1R类品种为抗源育成的38个小麦品种进行聚类分析。39个SSR引物共扩增出186条谱带,其中143务为多态性条带,占76.9%。每个引物可扩增出1~9条多态性条带,平均3.7条。位点多态性信息含量PIC变幅为0.320-0.857,平均为0.634。聚类分析表明,在遗传距离GD值0.32水平上38个小麦品种可聚成六大类。品种间遗传距离GD变幅为0.10769~0.48571。SSR标记揭示出这38个具有黑麦血缘的小麦品种遗传变异较小,遗传基础比较狭窄。  相似文献   

4.
本研究选择特高含油量资源7份,与中国各油菜主产区具有代表性的主栽品种16份,利用SSR多引物组合法开展指纹图谱构建研究。选择多态丰富、图谱清晰稳定且来自不同连锁群的引物28对,对所有材料进行指纹图谱分析,共获SSR指纹条带302条,其中多态性条带为279条,每引物所获条带6-16条,平均10.79条,平均多态率92. 38%,通过指纹图谱将所有材料有效地区别开来。用非加权类平均法(UPGAM)聚类分析显示:高油材料之间以及高油材料与主栽品种之间遗传距离均有较大差异,在遗传距离0.171处可将23份材料分成9个类群,其中7份高油材料分处4个类群,遗传距离差异显著;而其他8份主栽品种被分别聚类在另外5个类群中;所有材料间皆具有丰富的遗传多样性,其中高油材料与主栽品种间遗传差异更大。  相似文献   

5.
303份甘薯地方种SSR遗传多样性与群体结构分析   总被引:2,自引:0,他引:2  
利用SSR分子标记,对我国303份甘薯地方种进行了遗传多样性和群体结构分析。进一步明确了甘薯地方种间的遗传多样性和亲缘关系,为优异资源挖掘和品种改良提供了参考。利用SSR建立研究材料的0~1数据库,通过NTSYS-pc2.10软件计算Nei72遗传距离矩阵,将遗传距离矩阵导入MEGA 6.06,计算平均遗传距离和聚类分析;并利用STRUCTURE2.3.4对303份地方种进行群体结构分析。结果表明:30对SSR引物共检测出203条多态性位点,每对引物检测到1~14条多态性条带,平均每对引物获得6.77条。303份材料的平均遗传距离为0.564,聚类分析在遗传距离为0.477处可以把303份材料分成11个类群,其中第Ⅺ类群在遗传距离为0.452处可分为3个亚群。群体结构分析将303份材料划分成了5个稳定的群体,群体结构划分与聚类有相似的结果,其中70份材料Q值小于0.6,属于混合亚群。  相似文献   

6.
中国甘薯登记品种SSR标记遗传多样性分析   总被引:1,自引:0,他引:1  
该研究基于TP-M13-SSR分子标记荧光毛细管检测技术,以中国已入库登记的99份甘薯品种为材料,利用SSR标记建立登记品种的“01”数据库,导入DPS软件计算不同品种之间的遗传距离,采用MEGA的邻接法进行聚类分析,并利用Structure混合模型对材料进行遗传结构分析,以探讨各品种的遗传构成以及品种间的亲缘关系,揭示中国甘薯登记品种在DNA水平的相似度,为甘薯品种鉴定、亲本选配和品种改良等提供参考。结果显示:(1)28对引物共扩增出162条谱带,多态率为96.30%,每对引物平均获得5.57条多态性谱带。(2)构建了99份甘薯登记品种的遗传进化树,99份品种的遗传距离在0~0.4646之间,平均遗传距离为0.3077;在遗传距离为0.2670处将99份品种分为3个类群,且同一生态薯区的品种或具有同一亲本的品种首先被聚在一起,但不同生态薯区的品种在各类群中相对分散分布。(3)品种间的遗传基础较窄,部分生态薯区的品种相似性较高;群体结构分析将材料分为3个亚群,与聚类分析分群结果基本一致,其中31份材料拥有混合来源,遗传背景较为复杂。  相似文献   

7.
现有主流猕猴桃品种的遗传背景相对单一,亲本来源地理分布狭窄,亲缘关系不清晰。为充分利用杂种优势,该研究以广西植物研究所猕猴桃种质资源圃收集的53个猕猴桃品种(品系)叶片为材料,使用SCoT分子标记进行遗传多样性分析。结果表明:(1)10条引物在53份猕猴桃供试材料中共扩增出110条条带,各引物扩增的条带在8~15条之间,引物平均扩增条带数为11条;其中多态性条带101条,引物平均扩增多态性条带数为10.1条,多态性比例为91.81%。(2)聚类分析显示猕猴桃品种(品系)没有按类型、倍性或选育地等形成明显有规律的聚类关系。但相对来说,同一杂交后代个体之间的亲缘关系比亲本与后代个体之间的亲缘关系更近;芽变品种与原品种并没有表现出特别近的遗传距离,说明芽变材料的突变可能在基因组或染色体层面发生了较大范围的重组、复制或丢失;‘楚红’‘桂红’‘湘吉红’和‘龙藏红’4个红肉品种与‘红阳’亲缘关系明显较远,说明其可能由不同亲本衍生而来;初步验证了‘桂海四号’可能为‘Hort16A’亲本之一的推测。  相似文献   

8.
青藏高原早熟甘蓝型春油菜遗传资源研究   总被引:1,自引:0,他引:1  
利用SSR和SRAP 2种分子标记研究了69份试验材料的遗传差异及其亲缘关系.29对SSR标记共扩增出118条多态性带,多态性位点占总扩增位点的97.5%,27对SRAP引物扩增出123条多态性带,多态性比率为70.3%.两种标记聚类结果表明.在相似系数0.566处所有材料可以分为A、B 2个大类群;B类在相似系数0.620处又可分为7个亚类,10个天然双低早熟甘蓝型品系、2个甘蓝型亲本和4个新型品系聚在第1亚类中,其余的51个新型甘蓝型油菜品系分别聚在其他6个亚类中.对55份新型品系进行遗传成分分析,结果表明,每个品系都合有4种带型,各品系所舍不同带所占比率不同.对各品系中含有白菜型亲本带所占比率分别与其对应的两亲本之间的遗传距离进行相关分析,结果表明新型甘蓝型油菜品系中白菜型亲本带所占比率与白菜型素本间的遗传距离为负相关(-0.52),且达到极显著水平;与甘蓝型亲本间的遗传距离为正相关(0.31),且达到显著水平.对试验材料之间的遗传距离及其来源进行分析(除与2个白菜型亲本间),遗传距离排名前20位的都来自新型品系之间或天然品系与新型之间,最大为0.544.  相似文献   

9.
利用SRAP和SSR各23对引物对20个中国主要黑芝麻品种进行了遗传多样性分析。结果显示,23对SRAP引物共扩增出DNA带672条,其中多态性带152条,比率为22.62%,平均每对引物扩增总带数和多态性条带分别为29.22条和6.61条。23对SSR多态性引物共扩增出DNA带92条,每对引物扩增出3~6条,平均4.00条;每对引物扩增出多态性带1~5条,平均3.09条,多态性带比率平均为77.17%。20个黑芝麻品种间的遗传相似系数为0.8547~0.9804,遗传距离为0.0159~0.0921,遗传多样性匮乏,遗传基础狭窄。聚类结果表明,来自主产区江西的11个品种明显聚在一起,且江西黑芝麻品种的遗传相似系数高于其他省份品种,遗传距离低于其他省份品种,与其他省份品种的差异均达到极显著水平。加强资源引进和利用是拓宽中国黑芝麻品种遗传基础的迫切要求。  相似文献   

10.
辣椒优良自交系间遗传差异的分子分析   总被引:8,自引:0,他引:8  
作物自交系间遗传差异的分析与评价是杂种优势育种和杂交育种成功的基础。鲜食尖椒类(Capsicum an-nuumvar.longum)品种是我国辣椒生产的主要品种类型之一。针对我国鲜食尖椒的育种目标,以国内外10份尖椒优良自交系为材料,利用相关序列扩增多态性(SRAP)和简单序列重复(SSR)标记技术对其进行了遗传差异分析。结果显示:SRAP技术具有较高的位点和多态性检测能力,平均每次检测的位点数和多态性位点数分别为34个和10个,是SSR的10倍和5倍;辣椒自交系间基于SRAP标记的遗传距离和基于SSR标记的遗传距离之间的相关程度较低(r=0.144);基于SRAP标记和SSR标记联合数据计算的遗传距离,10个尖椒自交系被分为3大类,这种分类结果与辣椒杂种优势育种实践相一致。本研究结果表明,SRAP具有较高的遗传分析效力;基于不同分子标记遗传分析结果的差异与标记间共享位点的多少有关;10个尖椒自交系的分类结果可用于指导育种实践。  相似文献   

11.
Chinese semi-winter rapeseed is genetically diverse from Canadian and European spring rapeseed. This study was conducted to evaluate the potential of semi-winter rapeseed for spring rapeseed hybrid breeding, to assess the genetic effects involved, and to estimate the correlation of parental genetic distance (GD) with hybrid performance, heterosis, general combining ability (GCA) and specific combining ability (SCA) in crosses between spring and semi-winter rapeseed lines. Four spring male sterile lines from Germany and Canada as testers were crossed with 13 Chinese semi-winter rapeseed lines to develop 52 hybrids, which were evaluated together with their parents and commercial hybrids for seed yield and oil content in three sets of field trials with 8 environments in Canada and Europe. The Chinese parental lines were not adapted to local environmental conditions as demonstrated by poor seed yields per se. However, the hybrids between the Chinese parents and the adapted spring rapeseed lines exhibited high heterosis for seed yield. The average mid-parent heterosis was 15% and ca. 50% of the hybrids were superior to the respective hybrid control across three sets of field trials. Additive gene effects mainly contributed to hybrid performance since the mean squares of GCA were higher as compared to SCA. The correlation between parental GD and hybrid performance and heterosis was found to be low whereas the correlation between GCA(f + m) and hybrid performance was high and significant in each set of field trials, with an average of r = 0.87 for seed yield and r = 0.89 for oil content, indicating that hybrid performance can be predicted by GCA(f + m). These results demonstrate that Chinese semi-winter rapeseed germplasm has a great potential to increase seed yield in spring rapeseed hybrid breeding programs in Canada and Europe.  相似文献   

12.
Xu SX  Liu J  Liu GS 《Hereditas》2004,141(3):207-215
A challenge to maize breeders is to predict and identify inbred lines that can produce highly heterotic hybrids precisely. In the present study we surveyed the genetic diversity among 15 elite inbred lines of maize in China with SSR markers and assessed the relationship between SSR marker and hybrid yield/yield heterosis in a diallel set of 105 crosses. Forty-three SSR primers selected from all sixty-three primers gave stable profiles amplified in the sample of 15 inbred lines, which could clearly resolve on 4% metaphor agarose gel. The average number of alleles per SSR locus was 4.44 with a range from 2 to 9. The polymorphism information content (PIC) for the SSR loci varied from 0.28 to 0.81 with a mean of 0.6281. Genetic similarity (GS) among 15 lines was estimated with 191 alleles identified as raw data, the Nei's coefficient of GS ranged from 0.492 for 478 vs HZ4 up to 0.745 for E28 to ZH64 with a mean of 0.619. The cluster diagram based upon the SSR data grouped the 15 lines into families consistent with the yield heterotic response of these. Genetic distance (GD) based on SSR data was significantly correlated with hybrid yield/yield heterosis, the correlation coefficient (r) being 0.5432 and 0.4271 in 1999 and 0.4305 and 0.3614 in 1998 field test, respectively, whereas the determination coefficient (r2) was lower. The correlation between GD based on SSR data and hybrid yield/yield heterosis changed alone with the difference of number and pedigree relationship among parents that were used in this study. SSR makers showed high polymorphism and could be used to assess the relationship between inbred lines of maize, but it was difficult to predict the yield heterosis of maize.  相似文献   

13.
Knowledge of genetic diversity (GD) and relationships among maize inbred lines is indispensable in a breeding program. Our objectives were to (1) investigate the level of genetic diversity among maize inbred lines and (2) assess their genetic structures by applying simple sequence repeat (SSR) markers. Fifty-six highland and mid-altitude maize inbred lines obtained from CIMMYT programs in Ethiopia and Zimbabwe were genotyped using 27 SSR loci. All of the genotypes studied could unequivocally be distinguished with the combination of the SSRs used. In total, 104 SSR alleles were identified, with a mean of 3.85 alleles per locus. The average polymorphism information content (PIC) was 0.58. GD expressed as Euclidean distance, varied from 0.28 to 0.73 with an average of 0.59. Cluster analysis using unweighted pair group method with arithmetic average (UPGMA) suggested five groups among the inbred lines. Most of the inbred lines adapted to the highlands and the mid-altitudes were positioned in different clusters with a few discrepancies. The pattern of groupings of the inbred lines was mostly consistent with available pedigree information. The variability detected using SSR markers could potentially contribute towards effective utilization of the inbred lines for the exploitation of heterosis and formation of genetically diverse source populations in Ethiopian maize improvement programs.  相似文献   

14.
The most important concerns of hybrid rice breeders are selection of donors to improve parental lines and prediction of hybrid performance. In this study, SSR molecular marker technology and a half-diallel method were used to address these related hybrid production issues. The results show that genetic diversity among the parental lines is certainly related to heterosis. The heterozygosity of each parental pair is significantly associated with the general combining ability, not with the specific combining ability. However, neither genetic diversity nor heterozygosity is a good indicator for predicting heterosis. From these results, it is suggested that donors for improving parents of hybrids be selected from the improved inbred lines by conventional breeding programs. In this investigation, we also discovered that four favorable alleles and six favorable heterogenic patterns on the parental lines significantly contribute to the heterosis of their hybrids in grain yield, whereas six unfavorable alleles and six unfavorable heterogenic patterns significantly reduce heterosis. These noticeable findings could be, in practice, useful for hybrid rice breeding programs with SSR marker-assisted selection. It is suggested that the optimal combinations with the superior grain yield could be bred out by assembling those favorable alleles into their parental lines and by removing the unfavorable alleles from the parental lines. This study also indicates that there is still a great heterosis potential to be exploited in indica/indica hybrids by the same strategy. In indica/japonica hybrid breeding programs, it may also be important to remove unfavorable alleles rather than broaden genetic diversity or heterozygosity of the parents.  相似文献   

15.
Parental selection is crucial for hybrid breeding, but the methods available for such a selection are not very effective. In this study, a 6×6 incomplete diallel cross was designed using 12 rapeseed germplasms, and a total of 36 hybrids together with their parental lines were planted in 4 environments. Four yield-related traits and seed oil content (OC) were evaluated. Genetic distance (GD) was estimated with 359 simple sequence repeats (SSRs) markers. Heterosis levels, general combining ability (GCA) and specific combining ability (SCA) were evaluated. GD was found to have a significant correlation with better-parent heterosis (BPH) of thousand seed weight (TSW), SCA of seeds per silique (SS), TSW, and seed yield per plant (SY), while SCA showed a statistically significant correlation with heterosis levels of all traits at 1% significance level. Statistically significant correlations were also observed between GCA of maternal or paternal parents and heterosis levels of different traits except for SS. Interestingly, maternal (TSW, SS, and OC) and paternal (siliques per plant (SP) and SY) inheritance of traits was detected using contribution ratio of maternal and paternal GCA variance as well as correlations between GCA and heterosis levels. Phenotype and heterosis levels of all the traits except TSW of hybrids were significantly correlated with the average performance of parents. The correlations between SS and SP, SP and OC, and SY and OC were statistically significant in hybrids but not in parents. Potential applications of parental selection in hybrid breeding were discussed.  相似文献   

16.
The objective of the present study was to correlate the genetic distances (GD) of single cross hybrids with yield, heterosis and specific combining ability (SCA) in the double cross hybrid synthesis. For this, 10 single cross commercial hybrids were used from different companies, and all the possible double hybrids were synthesized by a complete dialell. The hybrids were assessed in 15 locations in the 2005/2006 agricultural season, using the randomized complete block design with three repetitions. DNA was extracted from the single cross hybrids and 20 simple sequence repeat primers were used, nine of which were linked to the quantitative trait loci. It was ascertained that the single hybrids were superior in general to the double cross hybrids and that yield was highly correlated with heterosis and SCA (r = 0.75 and 0.82, respectively). There was no significant correlation between yield and GD (r = 0.25), but this index was at the limit of significance. There was a medium correlation between GD and heterosis (r = 0.40) and GD and SCA (r = 0.38). The intergroup hybrids placed by genetic grouping were generally more productive than intragroup hybrids, and the hybrids with GD greater than 0.84 had the maximum heterosis and SCA. It was concluded that the markers were efficient in placing hybrids in different heterosis groups and were also useful in eliminating the most negative heterosis and SCA.  相似文献   

17.
The genetic distance analysis for selection of suitable parents has been established and effectively used in many crops; however, there is dearth of conclusive report of relationship of genetic distance analysis with heterosis in sesame. In the present study, an attempt was made to estimate the associations of genetic distances using SSR (GDSSR), seed-storage protein profiling (GDSDS) and agro-morphological traits (GDMOR) with hybrid performance. Seven parents were selected from 60 exotic and Indian genotypes based on genetic distance from clustering pattern based on SSR, seed-storage protein, morphological traits and per se performance. For combining ability analysis, 7 parents and 21 crosses generated from 7 × 7 half diallel evaluated at two environments in a replicated field trial during pre-kharif season of 2013. Compared with the average parents yield (12.57 g plant?1), eight hybrids had a significant (P < 0.01) yield advantage across environments, with averages of 26.94 and 29.99% for better-parent heterosis (BPH) and mid-parent heterosis (MPH), respectively, across environments. Highly significant positive correlation was observed between specific combining ability (SCA) and per se performance (0.97), while positive non-significant correlation of BPH with GDSSR (0.048), and non-significant negative correlations with GDMOR (? 0.01) and GDSDS (? 0.256) were observed. The linear regressions of SCA on MPH, BPH and per se performance of F1s were significant with R2 value of 0.88, 0.84 and 0.95 respectively. The present findings revealed a weak association of GDSSR with F1’s performance; however, SCA has appeared as an important factor in the determination of heterosis and per se performance of the hybrids. The present findings also indicated that parental divergence in the intermediate group would likely produce high heterotic crosses in sesame.  相似文献   

18.
We assessed genetic and phenotypic variation in 105 maize germplasm accessions from RDA-Genebank of Korea and performed association analyses for 11 agronomical traits and 100 simple sequence repeats (SSR). Genetic diversity (GD) analysis revealed a total of 1104 alleles at the 100 SSR loci. The average number of alleles per locus was 11.0. The average GD and polymorphic information content values were 0.73 and 0.70, respectively. The average major allele frequency was 0.41. Population structure analysis indicated that these maize accessions comprised two major groups and one admixed group based on a membership probability threshold of 0.80. The two major groups contained 35 and 46 maize accessions. A mixed linear model of association analysis revealed five marker-trait associations with a significance level of P?≤?0.01 involving five SSR markers. A general linear model showed 72 marker-trait associations involving 42 SSR markers. We confirmed the presence in the general linear model associations of the five significant marker-trait associations (SMTAs) identified in the mixed linear model. For these SMTAs, two loci were associated with stem diameter and one locus each was associated with ear row number, leaf width, and leaf length. These results should prove useful for breeding new inbred lines by selecting parental lines using molecular markers and will help to preserve maize genetic resources in Korea.  相似文献   

19.
Summary The aim of the experiment was to determine if the estimated genetic distance between two populations could be used to predict the amount of heterosis that would occur when they were crossed. Eight lines of known relatedness to each other were produced by eight generations of sib mating and sub-lining. This produced lines that varied in coefficient of coancestry from zero to 0.78. Fourteen reciprocal crosses of these lines were used to measure heterosis for larval viability and adult fecundity. Gene frequencies at six polymorphic enzyme loci were used to estimate the genetic distances between lines, which were then compared with the known degrees of coancestry. The estimated genetic differences were poorly correlated with the known coancestry coefficients (r=0.4), possibly due to the small number of loci typed. Also genetic distances were only about 1/3 of what was expected. Selection acting on blocks of genes linked to the enzyme loci probably prevented the expected increase in homozygosity. Coancestry coefficient was correlated with heterosis (r=0.44–0.71). This level of correlation implied differences in heterosis among parent lines with the same level of coancestry. This variability is expected if a small number of loci explain most of the heterosis. The average level of heterosis was less than expected after eight generations of sib mating. This is most likely due to selection opposing the increase in homozygosity caused by inbreeding. The combination of these two imperfect correlations resulted in no significant correlation between genetic distance estimated from markers and heterosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号