首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Currently there is an intense effort being made to elucidate the factors that control stem and progenitor cell fate. Developments in our understanding of the FGF/FGFR pathway and its role as an effector of stem cell pluripotency have heightened expectations that a therapeutic use for stem cells will move from a possibility to a probability. Mounting evidence is revealing the molecular mechanisms by which fibroblast growth factor (FGF) signaling, together with a large number of other growth and adhesive factors, is controlled by the extracellular sugar, heparan sulfate (HS). What has resulted is a novel means of augmenting and thus regulating the growth factor control of stem and progenitor cell fate. Here, we review the numerous bioactivities of HS, and the development of strategies to implement HS-induced control of cell fate decisions.  相似文献   

2.
3.
Summary Bombyxin stimulated proliferation of cultured midgut stem cells that were derived from two noctuiid moth larvae, Heliothis virescens and Mamestra brassicae. Bombyxin exhibited the highest activity at 10−12 M. The number of cells increased for 3 d after the addition of bombyxin. Although a single addition of bombyxin did not maintain proliferation, a second addition, made 3 d after the first treatment, retained the effect. Results suggest that the decline of effect after the first addition was not due to the loss of sensitivity of the cultured cells but to the loss of effect of the growth factor added. Addition of bombyxin at more than 10−10 M was less effective. Bombyxin did not affect the number of cultured midgut cells without pupal fat body extract (FBX). The data suggest that FBX contains the factors that maintain sensitivity of midgut cells to proliferate in the presence of bombyxin. Bombyxin must be a unique growth factor that stimulates proliferation of midgut stem cells in vitro from lepidopteran larvae. Materials listed here are not endorsed by the U.S. Department of Agriculture.  相似文献   

4.
Microcarriers have been widely used for various biotechnology applications because of their high scale‐up potential, high reproducibility in regulating cellular behavior, and well‐documented compliance with current Good Manufacturing Practices (cGMP). Recently, microcarriers have been emerging as a novel approach for stem cell expansion and differentiation, enabling potential scale‐up of stem cell‐derived products in large bioreactors. This review summarizes recent advances of using microcarriers in mesenchymal stem cell (MSC) and pluripotent stem cell (PSC) cultures. From the reported data, efficient expansion and differentiation of stem cells on microcarriers rely on their ability to modulate cell shape (i.e. round or spreading) and cell organization (i.e. aggregate size). Nonetheless, current screening of microcarriers remains empirical, and accurate understanding of how stem cells interact with microcarriers still remains unknown. This review suggests that accurate characterization of biochemical and biomechanical properties of microcarriers is required to fully exploit their potential in regulating stem cell fate decision. Due to the variety of microcarriers, such detailed analyses should lead to the rational design of application‐specific microcarriers, enabling the exploitation of reproducible effects for large scale biomedical applications. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1354–1366, 2013  相似文献   

5.
Isolated stem cells of Heliothis virescens, cultured in vitro, were induced to differentiate by Midgut Differentiation Factors 3 and 4. These were peptides identified from a chymotrypsin digest of hemolymph taken from newly pupated Lymantria dispar. Partial purification was obtained by filtration through size exclusion filters. The most active preparation was subsequently subjected to a series of 3 Reverse Phase-HPLC procedures. Partial sequences of the peptides were identified via automated Edman degradation as the nanomers EEVVKNAIA-OH (MDF 3) and ITPTSSLAT-OH (MDF 4). These sequences were commercially synthesized. The synthetic compounds proved active in a dose-dependent manner. Stem cells responded to synthetic MDF 3 and MDF 4 as they did to previously identified peptides MDF 1 and 2, which have quite different amino acid sequences. All of the 4 MDFs administered singly induced statistically similar differentiation responses at 2 x 10(-8), 2 x 10(-9), and 2 x 10(-10) M. However, pairs of the 4 MDFs produced even more differentiation, the same response as one alone, no response, or were inhibitory, dependent on the MDF pair and its concentration. The data suggests complicated receptor interactions.  相似文献   

6.
The specification of retinal cell fate is a multistep process that begins during early development and results from the spatio‐temporal coordination of cell cycle, cell differentiation, and morphogenesis. This review focuses on recent advances in understanding the molecular mechanisms underlying the distinct steps of retinal specification. Emphasis is placed on key regulatory events that control the multipotency of retinal progenitors, the generation of cell diversity, and the establishment of the clock that determines the ordered generation of retinal cell types. These basic studies have paved the way to the latest progress on the isolation and in vitro generation of retinal stem cells, which is presented in the light of possible therapeutic applications. Birth Defects Research (Part C) 87:284–295, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Summary TheManduca sexta (L.) [Lepidoptera: Sphingidae] andHeliothis virescens (F.) [Lepidoptera: Noctuidae] midguts consist of a pseudostratified epithelium surrounded by striated muscle and tracheae. This epithelium contains goblet, columnar, and basal stem cells. The stem cells are critically important in that they are capable of massive proliferation and differentiation. This growth results in a fourfold enlargement of the midgut at each larval molt. The stem cells are also responsible for limited cell replacement during repair. While the characteristics of the stem cell population vary over the course of an instar, stem cells collected early in an instar and those collected late can start in vitro cultures. Cultures of larval stem, goblet, and columnar cells survive in vitro for several mo through proliferation and differentiation of the stem cells. One of the two polypeptide differentiation factors which have been identified and characterized from the culture medium has now been shown to be present in midgut in vivo. Thus the ability to examine lepidopteran midgut stem cell growth in vitro and in vivo is proving to be effective in determining the basic features of stem cell action and regulation. Mention of any product in this publication does not imply endorsement by the USDA.  相似文献   

8.
来源于囊胚期胚胎内细胞团的胚胎干细胞具有独特的生物学特性,包括无限自我更新的能力以及分化为内胚层、中胚层和外胚层各种细胞的潜能.阐明胚胎干细胞全能性维持以及向各种特定细胞分化的分子机制,不仅有助于我们了解胚胎发育过程,而且将促进胚胎干细胞尽早应用于疾病治疗.本文主要就干细胞的一种命运决定过程,维持胚胎干细胞全能性或失去全能性开始分化,结合最新的研究进展讨论该过程中的分子调控网络,包括信号转导通路、表达调控网络以及表观遗传调控.  相似文献   

9.
随着生物材料、生物反应器设计及对机体发育和创伤修复机制的深入理解,在体外构建用于修复替代人体丧失功能的组织器官这一人类理想,已发展成一门独立且蓬勃发展的学科——组织工程学(Tissue Engineering)。组织工程学是一个多学科交叉的新兴领域,至少涉及生命科学、医学及工程学等三个学科。种子细胞、支架材料和诱导信号是组织工程学的三个基本要素。目前种子细胞是制约组织工程发展的一个主要瓶颈。干细胞生物学的发展使人们看到了打破这个瓶颈的可能。干细胞体外扩增及定向分化的技术发展,及对其增殖和诱导分化机制的深入理解,使工程化组织可以获得理想的基本功能单位,使其应用于临床成为可能。  相似文献   

10.
骨髓移植是目前治疗恶性白血病以及遗传性血液病最有效的方法之一。但是HLA相匹配的骨髓捐献者严重短缺,骨髓造血干细胞(hematopoietic stem cells,HSCs)体外培养困难,在体外修复患者骨髓造血干细胞技术不成熟,这些都大大限制了骨髓移植在临床上的应用。多能性胚胎干细胞(embryonic stem cells,ESCs)具有自我更新能力,在合适的培养条件下分化形成各种血系细胞,是造血干细胞的另一来源。在过去的二十多年里,血发生的研究是干细胞生物学中最为活跃的领域之一。小鼠及人的胚胎干细胞方面的研究最近取得了重大进展。这篇综述总结了近年来从胚胎干细胞获得造血干细胞的成就,以及在安全和技术上的障碍。胚胎干细胞诱导生成可移植性血干细胞的研究能够使我们更好地了解正常和异常造血发生的机制,同时也为造血干细胞的临床应用提供理论和实验依据。  相似文献   

11.
12.
In this work we describe the establishment of mesenchymal stem cells (MSCs) derived from embryonic stem cells (ESCs) and the role of bFGF in adipocyte differentiation. The totipotency of ESCs and MSCs was assessed by immunofluorescence staining and RT-PCR of totipotency factors. MSCs were successfully used to induce osteoblasts, chondrocytes and adipocytes. MSCs that differentiated into adipocytes were stimulated with and without bFGF. The OD/DNA (optical density/content of total DNA) and expression levels of the specific adipocyte genes PPARγ2 (peroxisome proliferator activated receptor γ2) and C/EBPs were higher in bFGF cells. Embryonic bodies had a higher adipocyte level compared with cells cultured in plates. These findings indicate that bFGF promotes adipocyte differentiation. MSCs may be useful cells for seeding in tissue engineering and have enormous therapeutic potential for adipose tissue engineering.  相似文献   

13.
Neural stem cells (NSCs) are immature precursors of the central nervous system (CNS), with self‐renewal and multipotential differentiation abilities. Their proliferation and differentiation are dynamically regulated by hormonal and local factors. Alteration in neurogenesis is associated with many neurological disorders. Increasing evidence suggests that modulation of NSCs can be a promising therapeutic approach for neural injury and neurodegenerative disorders. Melatonin, a pineal gland‐derived hormone, regulates the neuroimmuno‐endocrine axis and is functionally important to the circadian rhythm, tumour suppression and immunity. In the CNS, melatonin exerts neuroprotective effects in many diseases, such as Parkinson's disease, Alzheimer's disease and ischaemic brain injury. Emerging evidence suggests that it might also mediate such protective action by influencing proliferation and differentiation of NSCs. In this article, we review the current literature concerned with effects of melatonin on NSCs in different physiological and pathological conditions.  相似文献   

14.
15.
16.
Recent work demonstrates that central nervous system (CNS) regeneration and tumorigenesis involves populations of stem cells (SCs) resident within the adult brain. However, the mechanisms these normally quiescent cells employ to ensure proper functioning of neural networks, as well as their role in recovery from injury and mitigation of neurodegenerative processes are little understood. These cells reside in regions referred to as "niches" that provide a sustaining environment involving modulatory signals from both the vascular and immune systems. The isolation, maintenance, and differentiation of CNS SCs under defined culture conditions which exclude unknown factors, makes them accessible to treatment by pharmacological or genetic means, thus providing insight into their in vivo behavior. Here we offer detailed information on the methods for generating cultures of CNS SCs from distinct regions of the adult brain and approaches to assess their differentiation potential into neurons, astrocytes, and oligodendrocytes in vitro. This technique yields a homogeneous cell population as a monolayer culture that can be visualized to study individual SCs and their progeny. Furthermore, it can be applied across different animal model systems and clinical samples, being used previously to predict regenerative responses in the damaged adult nervous system.  相似文献   

17.
18.
《朊病毒》2013,7(2):142-146
Prion protein (PrP) can be considered a pivotal molecule because it interacts with several partners to perform a diverse range of critical biological functions that might differ in embryonic and adult cells. In recent years, there have been major advances in elucidating the putative role of PrP in the basic biology of stem cells in many different systems. Here, we review the evidence indicating that PrP is a key molecule involved in driving different aspects of the potency of embryonic and tissue-specific stem cells in self-perpetuation and differentiation in many cell types. It has been shown that PrP is involved in stem cell self-renewal, controlling pluripotency gene expression, proliferation, and neural and cardiomyocyte differentiation. PrP also has essential roles in distinct processes that regulate tissue-specific stem cell biology in nervous and hematopoietic systems and during muscle regeneration. Results from our own investigations have shown that PrP is able to modulate self-renewal and proliferation in neural stem cells, processes that are enhanced by PrP interactions with stress inducible protein 1 (STI1). Thus, the available data reveal the influence of PrP in acting upon the maintenance of pluripotent status or the differentiation of stem cells from the early embryogenesis through adulthood.  相似文献   

19.
20.
We have previously demonstrated that the rate of fluid shear stress (ΔSS) can manipulate the fate of mesenchymal stem cells (MSCs) to osteogenic or chondrogenic cells. However, whether ΔSS is comparable to other two means of induction medium and substrate stiffness that have been proven to be potent in differentiation control is unknown. In this study, we subjected MSCs to 1–7 days of osteogenic or chondrogenic chemical induction, or 1–4 days of 37 or 86 kPa of substrate stiffness induction, followed by 20 min of Fast ΔSS (0–0′) or Slow ΔSS (0–2′), which is a laminar FSS that linearly increased from 0 to 10 dyn/cm 2 in 0 (Fast) or 2 min (Slow) and maintained at 10 dyn/cm 2 for a total of 20 min. We found that 20 min of ΔSS could compete with 5 days' chemical and 2 days' substrate stiffness inductions. Our study confirmed that ΔSS is a powerful tool to control the differentiation of MSCs, which stressed the possible application in MSCs linage specification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号