首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bcl-2 mediated suppression of apoptosis in myeloma NS0 cultures   总被引:4,自引:0,他引:4  
The influence of Bcl-2 expression on the suppression of apoptosis during the cultivation of an NS0 cell line expressing a chimeric antibody was investigated. Following selection of transfectants in medium containing G418, Western analysis revealed evidence of some up-regulation of endogenous Bcl-2 expression even in the control vector transfectants. Cultivation of the two cell lines in suspension batch cultures clearly demonstrated the enhanced robustness of the bcl-2 vector transfected cells. Suppression of apoptosis resulted in an approximately 20% increase in maximum viable cell number, and a doubling in culture duration compared to the control transfected cells. However, despite the significant affect on viability, Bcl-2 expression did not result in an increase in final antibody titre in comparison with the control cell line. Exposure of cells to various nutrient limited conditions further emphasised the influence of Bcl-2 on cell survival. After 3 days of exposure to serum, glucose, glutamate and asparagine deprivation, the viable cell number and viability were significantly higher in the bcl-2 transfected cell line. When control cells were deprived of all amino acids, there was a complete loss of viability and viable cell number within 3 days. By contrast, the bcl-2 transfected cell line retained greater than 75% of the initial viable cell number and about 70% viability. In response to exposure to 8 mM thymidine (a cytostatic agent) the control cell line underwent complete loss of viability and viable cell number after 6 days. This compared with 18 days for complete loss of viability in the bcl-2 transfected cell line. As under batch culture conditions, there was no difference between the two cell lines in final antibody titre, which indicated that MAb synthesis is limited by nutrient availability during the latter stages of culture in both cases. When fed batch cultures were carried out using a concentrated essential amino acid feed, the bcl-2 cell line exhibited a 60% increase in maximum viable cell number and a 50% increase in culture duration, when compared to the control cell line. Moreover, the bcl-2 cell line exhibited a greater than 40% increase in maximum antibody titre.  相似文献   

2.
The monoclonal antibody productivity of cell culture systems is strongly dependent on the maintenance of hybridoma cell viability. We report that partial (<50%) and transient (3 h) inhibition of protein synthesis by cycloheximide or deprivation of an essential amino acid induces apoptosis (programmed cell death) in B cell hybridomas. This unusual mechanism of apoptosis induction is likely to play a significant role in limiting cell viability in batch and perfusion cultures of hybridomas and emphasizes the importance of constantly maintaining a near optimal rate of macromolecular synthesis by optimization of all culture parameters. Inhibition of apoptosis in hybridomas by cell engineering and other technologies should permit, in the near future, a significant increase in the antibody productivity of existing cell culture systems.Abbreviations CHX cycloheximide - EDTA ethylenediaminetetraacetic acid - FBS fetal bovine serum - MEM minimum essential medium - PBS phosphate buffered saline  相似文献   

3.
TB/C3 hybridoma cells were transected with either pEF-MClneopA or pEF bcl2-MClneopA vectors to produce a control cell line (TB/C3 pEF) and a cell line that overexpresses the "antiapoptotic" human bcl-2 protein (TB/C3 bcl2). Flow cytometry analysis of intracellular bcl-2 protein levels enabled near on-line monitoring of the stability of bcl-2 expression in the absence of drug selection. It was possible to maintain spontaneous selection of cells with the overexpression of bcl-2 protein during semicontinuous cultures at very low dilution rates, where cells were subjected to the selective conditions of nutrient limitation and high toxic metabolite concentrations. Interestingly, cells that overexpressed bcl-2 were adapted to suspension culture conditions significantly faster than control cells. Dual fluorescence staining with acridine orange and propidium iodide allowed for discrimination between viable, apoptotic, secondary necrotic, and necrotic cells, respectively. Compared with the usual trypan blue method of establishing culture viability, dual staining demonstrated that under stressful conditions a significant proportion of cells that excluded trypan blue were also undergoing cell death through apoptosis. In batch cultures the overexpression of bcl-2 more than doubled the membrane intact (MI) cell productive period (the integral of Ml cell density with respect to culture time) and increased the monoclonal antibody (mAb) production by approximately 40% when compared with the control cell line. The overexpression of bcl-2 protein also significantly extended the cell integrity and viability by the suppression of apoptosis in conditions of hypoxia, hyperoxia, glutamine deprivation, glucose deprivation, and serum limitation. The suppression of apoptosis in anaerobic conditions suggests that bcl-2 exerts its antiapoptotic activity by a mechanism that does not involve an oxidative reactive pathway. In conditions of excess thymidine, which suppressed cell proliferation, Ml cell density and specific mAb productivity were further enhanced by the overexpression of bcl-2, which suggests the possibility of accomplishing a controlled proliferation in immortalized cell lines without invoking cell death. Cell size and intracellular mAb were increased for TB/C3 bcl2 cells compared with TB/C3 pEF control cells when analyzed by flow cytometry. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 1-16, 1997.  相似文献   

4.
The influence of Bcl-2 expression on the robustness of a CHO cell line (22H11) developed for the industrial production of a chimeric antibody was evaluated. Western blot analysis following transfection with the expression vector unexpectedly revealed upregulation of endogenous Bcl-2 expression in the control (Neo) cell line in response to exposure to the selection drug G418. This indicated that geneticin may function by inducing apoptosis in cells not carrying the control plasmid or expressing very low levels of survival genes. Thus, exposure to the drug enriched the culture for a population of cells which expressed enhanced levels of endogenous Bcl-2. In batch cultures, ectopic bcl-2 expression resulted in a 75% increase in maximum viable cell density over control cultures. Moreover, the rate of decrease in viability in the Bcl-2 cultures was significantly lower than that in the control cultures. After 18 days, the Bcl-2 viability was around 90%, compared to 20% in the control cultures. Evaluation of the mechanism of cell death revealed very few cells with classical apoptotic morphology. Around 10% were clearly necrotic, but the majority of dead cells were seen as chromatin free but otherwise relatively intact structures. Because of the relatively low rate of cell death in both cell lines, few cells were observed in the transitional, easily identifiable early stages of apoptosis. However, DNA gel electrophoresis revealed a clear ladder-pattern, but only in the control cultures, thus confirming high levels of apoptotic death. Antibody concentrations during both sets of cultures were very similar, both during the growth and death phases, with a maximum titer of around 40 microgram/ml. Analysis of Bcl-2 expression by flow cytometry revealed that the cultures contained two populations of cells: a large population which expressed high levels of Bcl-2 and a relatively smaller low-expressing population. During the course of the batch, the smaller, low-expressing population declined in frequency, suggesting that these cells were more sensitive to cell death. In addition, the mean level of Bcl-2 expression in the overexpressing population also declined significantly, presumably reflecting the exhaustion of precursors for protein synthesis following nutrient depletion. Importantly, when cells were taken from day 40 of the significantly extended Bcl-2 batch cultures, they immediately proliferated, confirming that they had retained their replicative potential. Cultivation of the cells in basal medium lacking (individually) serum, all amino acids, glutamate/asparagine, and, finally, glucose, resulted in relatively lower viable cell numbers and viability in the control cell line compared to the Bcl-2 cell line. Exposure of cells to ammonia toxicity also revealed the relative robustness of the bcl-2 transfected cells. When growth was arrested by treatment with 4 mM thymidine, Bcl-2 overexpressing cells exhibit a viability of over 80% after 5 days in culture, compared to only 40% in the control cell line. However, under growth-arrested conditions, there was no major difference in antibody titer between the two cell lines.  相似文献   

5.
Cell lines derived from the hemopoetic lineages are widely used as hosts for the production of biologicals. These cell lines have been demonstrated to undergo high levels of the active death program commonly referred to as apoptosis. The effects of overexpression of the apoptosis suppressor gene bcl-2 on the properties of a Burkitt lymphoma were compared with the control cell line (transfected with a negative control plasmid) under a variety of conditions relevant to cell culture production technology. In stationary batch cultures, there was a clear reduction in both the rate of total cell death and the level of apoptosis during the decline phase of the bcl-2 transfected cell cultures as compared with that of the control cell cultures. Nutrient analysis revealed that the onset of death during the control cell cultures occurred following complete exhaustion of glutamine. However, the bcl-2 transfected cell cultures continued to grow even though glutamine had been exhausted, and a significant decline in viability only occurred when glucose had also been completely exhausted.When cells were cultured in suspension without prior adaptation, the bcl-2 transfected cells grew significantly better, suggesting that the bcl-2 gene protected the cells from apoptosis triggered by either the lack of substrate or the hydrodynamic environment. Fluorescence microscopy revealed that death of the control cells was almost entirely by apoptosis, whereas death was almost exclusively by necrosis in the delayed decline phase of the transfected cell cultures. In both instances, death occurred before total exhaustion of glucose and glutamine.The induction of apoptosis following growth arrest is a major impediment to the development of culture strategies that optimize specific productivity by reducing the growth rate. Results presented here suggest that suppression of apoptosis by bcl-2 under the condition of excess thymidine allows the maintenance of cells in a growth-arrested state for much longer than would otherwise be possible.When cells were transferred to a range of commercial serum-free media, cell growth was, in all cases, much better for the bcl-2 transfected cell line. Moreover, when cells were cultivated in glutamine-free medium, the control cells exhibited a decrease in viable cell number within the first 24 h whereas, for the bcl-2 transfected cell cultures, viable cell number did not exhibit any clear decrease until after 75 h. Clearly, these results indicate that the metabolic engineering approach can be used to alter advantageously the survival and proliferative capacity of cells in cell culture environments. (c) 1996 John Wiley & Sons, Inc.  相似文献   

6.
The impact of bcl-2 over-expression on the glycosylation pattern of an antibody produced by a bcl-2 transfected hybridoma cell line (TB/C3.bcl-2) was investigated in suspension batch, continuous and high cell density culture (Flat hollow fibre, Tecnomouse system). In all culture modes bcl-2 over-expression resulted in higher cell viability. Analysis of the glycans from the IgG of batch cultures showed that >95% of the structures were neutral core fucosylated asialo biantennary oligosaccharides with variable terminal galactosylation (G0f, G1f and G2f) consistent with previous analysis of glycans from the conserved site at Asn-297 of the IgG protein. The galactosylation index (GI) was determined as an indicator of the glycan profile (=(G2 + 0.5* G1)/(G0 + G1 + G2)). GI values in control cultures were comparable to bcl-2 cultures during exponential growth (0.53) but declined toward the end of the culture when there was a loss in cell viability. Low dilution rates in chemostat culture were associated with reduced galactosylation of the IgG glycans in both cell lines. However, at the higher dilution rates the GI for IgG was consistently higher in the TB/C3.bcl-2 cultures. In the hollow fibre bioreactor the galactosylation of the IgG glycans was considerably lower than in suspension batch or continuous cultures with GI values averaging 0.38. Similar low galactosylation values have been found previously for high density cell cultures and these are consistent with the low values obtained when the dissolved oxygen level is maintained at a low value (10%) in controlled suspension cultures of hybridomas.  相似文献   

7.
It has been demonstrated that the cell lines used for production of biopharmaceuticals are highly susceptible to apoptosis, and that over-expression of the bcl-2 oncogene can protect cells from death. Stress associated with the deprivation of nutrients has been shown to be the main cause of apoptosis in culture. We have extended these studies by investigating the mechanism of cell death under conditions of sub-optimal pH, shear stress and hyperosmolarity, and the protective action of bcl-2 over-expression. At pH 6, there was no clear evidence of protection from cell death. However, at pH 8, the viability of the bcl-2 transfected cells was about 20% higher relative to the control cells. Cultivation of control cells in a flat bottomed bioreactor with a magnetic stirrer bar without a pivot ring resulted in exposure of the cells to a high attrition effect. As a result, cell growth was retarded and a high level of cell death by apoptosis was observed. Under the same conditions, the bcl-2 transfected cell line exhibited a nearly five fold increase in viable cell number. This finding indicates that under apoptosis-suppressed conditions, shear stress can stimulate cell growth. Batch cultivation of both control and bcl-2 transfected cells in 350 and 400 mOsm media resulted in suppression of cell growth, athough the effect was most marked in the control cell line. Adaptation of control cells to 400 mOsm proved to be impossible to achieve. However, the bcl-2 transfected cells exhibited resistance to the osmotic stress resulting in long term adaptation to a high salt environment. Specific productivity of bcl-2 transfected cells grown in high osmolarity medium was 100% higher than that produced by non- adapted bcl-2 transfected cells grown in normal osmolarity medium. These results demonstrate that bcl-2 has a beneficial effect on hybridoma cultivation under a wide range of culture stresses. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Human bcl-2 DNA was introduced into mouse hybridoma 2E3 cells and expressed at a high level by using BCMGSneo vector, which reportedly amplifies as multiple copies in the cells independently of their chromosomes. The high expression of bcl-2 in BCMGSneo-bcl-2 transfectants was confirmed by western blotting. In batch cultures, the overexpression of bcl-2 raised the maximum viable cell density by 45%, delayed the initiation of apoptosis by 2 days, and prolonged the viable culture period by 4 days. The delayed initiation of apoptosis was detected by emergence of the ladder pattern on DNA electrophoresis and increase of the dead cell number. The bcl-2 transfectants produced lgG(1) fourfold per batch culture in comparison with 2E3 cells transfected with BCMGSneo but not with bcl-2: a little less than twofold due to the improved survival of the cells and more than twofold due to the enhanced lgG(1) production rate per cell of the bcl-2 transfectants. The method to engineer hybridoma cells genetically with bcl-2 using BCMGSneo vector for increasing viability and productivity would be widely applied for improving antibody productivity of hybridoma cultures. (c) 1995 John Wiley & Sons, Inc.  相似文献   

9.
Targets for metabolic engineering have been identified in a hybridoma cell line to make it more robust in culture toward potential limitations inducing apoptosis. The cells were genetically modified with plasmids harboring endogenous bcl-2 gene and also with viral Bcl-2 homologues, particularly ksbcl-2 and bhrf-1 genes. When cells were exposed to apoptosis-inducing conditions (i.e., glutamine-free medium), the control cells exhibited a decrease in viable cell number within the first 12 h, whereas, for the bcl-2 and ksbcl-2 transfected cell cultures, the viable cell number did not exhibit any clear decrease until after 60 h. Furthermore, hybridoma cells expressing the viral homologue bhrf-1 were even more resistant to cell death, showing a decrease in viability of only 50% at 72 h of culture in glutamine-deprived medium, substantially lower than the 90% viability decrease observed for the control culture. In addition, and most relevant for further bioprocess applications, the cells genetically modified could be brought back to growth conditions even after being exposed to glutamine-deprived conditions during a significant time window, up to 72 h.  相似文献   

10.
The development of serum- and protein-free Chinese hamster ovary (CHO) cell cultures is a high priority for the production of biopharmaceuticals. Protein-free competent CHO cells lines have been previously constructed by two different methods-metabolic engineering with cell-cycle regulatory proteins and long-term selective adaptation. Apoptosis was present in both cell lines during protein-free, static-batch culture as a result of nutrient deprivation, and glucose deprivation alone was a potent inducer of apoptosis compared to the depletion of other nutrients such as amino acids. By adding back serum to the cultures during batch growth or nutrient deprivation, it was shown that unidentified survival factors in serum can greatly reduce apoptosis in protein-competent cell lines in all phases of the culture. Both observations contrast to previous reports for hybridoma cells, in which amino acids were the key determinants of apoptosis and serum had no additional antiapoptotic effect. Serum's protective effect against CHO cell death in batch culture was multifaceted and complex: (1) 10% FBS increased cell viability to >99% during exponential growth from roughly 75-90%, (2) 5-10% fetal bovine serum (FBS) reduced specific glucose consumption rates in both cell lines by 40%, thereby delaying the onset of apoptosis caused by glucose deprivation, and (3) 5% FBS reduced the specific cell death rate by 65% during a 3-d lactate-consumption phase characterized by substantial abortive proliferation, in which the cells both proliferated and died at a constant rate. The benefit of serum on cell production over the various phases of batch growth was combined into a single parameter by integrating the viable cell concentration vs. time profile (termed here as cumulative volumetric viable cell-time, VCTvol). Despite the ability of both cell lines to grow indefinitely without any exogenous growth factors, the addition of serum resulted in a 2. 3-fold increase in the VCTvol. Thus, it is clear that there is much room for improvement of protein-free CHO cell lines despite their adequate growth competence, and new strategies different from those successfully used for hybridomas may be necessary to combat CHO cell apoptosis.  相似文献   

11.
In the present study, the protective effects of Bcl-2 over-expression in a suspension culture (without any adaptation) and spent medium (low nutrient and high toxic metabolite conditions) were investigated. In the suspension culture without prior adaptation, the viability of the control cell line fall to 0% by day 7, whereas the Bcl-2 cell line had a viability of 65%. The difference in the viability and viable cell density between the Bcl-2 and control cell lines was more apparent in the suspension culture than the static culture, and became even more apparent on day 6. Fluorescence microscopic counting revealed that the major mechanism of cell death in the control cell line in both the static and suspension cultures was apoptosis. For the Bcl-2 cell lines, necrosis was the major mode of cell death in the static culture, but apoptosis became equally important in the suspension culture. When the NSO 6A1 cell line was cultured in spent medium taken from a 14 day batch culture, the control cell line almost completely lost its viability by day 5, whereas, the Bcl-2 still had a viability of 73%. The viable cell density and viability of the Bcl-2 cell line cultivated in fresh medium were 2.2 and 2.7 fold higher, respectively, than those of the control cultures. However, the viable cell density and viability of the Bcl-2 cultivated in the spent medium were 8.7 and 7.8 fold higher, respectively, than those of the control cultures. Most of the dead cells in the control cell line were apoptotic; whereas, the major cell death mechanisms in the Bcl-2 cell line were necrotic.  相似文献   

12.
The effects of the microenvironment and the nature of the limiting nutrient on culture viability and overall MAb productivity were explored using a hybridoma cell line which characteristically produces MAb in the stationary phase. A direct comparison was made of the changes in the metabolic profiles of suspension and PEG-alginate immobilized (0.8 mm beads) batch cultures upon entry into the stationary phase. The shifts in glucose, glutamine, and amino acid metabolism upon entry into the stationary phase were similar for both microenvironments. While the utilization of most nutrients in the stationary phase decreased to below 20% of that in the growth phase, antibody production was not dramatically affected. The immobilized culture did exhibit a 1.5-fold increase in the specific antibody rate over the suspension culture in both the growth and stationary phases. The role of limiting nutrient on MAb production and cell viability was assessed by artificially depleting a specific nutrient to 1% of its control concentration. An exponentially growing population of HB121 cells exposed to these various depletions responded with dramatically different viability profiles and MAb production kinetics. All depletions resulted in growth-arrested cultures and nongrowth-associated MAb production. Depletions in energy sources (glucose, glutamine) or essential amino acids (isoleucine) resulted in either poor viability or low antibody productivity. A phosphate or serum depletion maintained antibody production over at least a six day period with each resulting in a 3-fold higher antibody production rate than in growing batch cultures. These results were translated to a high-density perfusion culture of immobilized cells in the growth-arrested state with continued MAb expression for 20 days at a specific rate equal to that observed in the phosphate- and serum-depleted batch cultures.  相似文献   

13.
In order to achieve the goal of developing extracorporeal liver support devices, it is necessary to optimise bioprocess environment such that viability and function are maximised. Optimising culture medium composition and controlling the constitution of the cellular microenvironment within the bioreactor have for many years been considered vital to achieving these aims. Coupled to this is the need to understand apoptosis, the prime suspect in the demise of animal cultures, including those of hepatocytes. Results presented here show that absent nutrients including glucose and amino acids play a substantial part in the induction of apoptosis. The use of chemical apoptosis inhibitors was utilised to investigate key components of hepatic apoptosis where caspases, predominantly caspase 8, were implicated in staurosporine (STS)-induced HepZ apoptosis. Caspase 9 and 3 activation although recorded was of less significance. Interestingly, these results were not consistent with those of mitochondrial membrane depolarisation where inhibition of caspase activation appeared to drive depolarisation. Inhibition of mitochondrial permeability transition and use of anti-oxidants was unsuccessful in reducing apoptosis, caspase activation and mitochondrial membrane depolarisation. In further studies, the anti-apoptotic gene bcl-2 was over-expressed in HepZ, resulting in a cell line that was more robust and resistant to death induced by glucose and cystine deprivation and treatment with STS. Bcl-2 did not however show significant cytoprotectivity where apoptosis was stimulated by deprivation of glutamine and serum. Overall, results indicated that although apoptosis can be curbed by use of chemical inhibitors and genetic manipulation, their success is dependent on apoptotic stimuli.  相似文献   

14.
We have addressed the possibility that Ca2+, Mg2+ and K+ ions play a central role in governing the morphological and biochemical changes attributed to apoptotic cell death. By removing Ca2+, Mg2+ or K+ ions from the cell culture medium we were able to assess the contribution of each ion to hybridoma cell growth and viability. The differences were explained in terms of a possible reduction in their respective intracellular levels. From several lines of evidence, the deprivation of K+ ions was the most detrimental to cellular growth and viability and induced significant levels of early apoptotic cells. Another effect of this deprivation was to weaken the plasma membranes without causing membrane breakdown; exposure to high agitation rates confirmed fragility of the cell membranes. Removal of Mg2+ caused a reduction in the levels of early apoptotic cells and predisposed cells to high levels of primary necrotic death. The lower levels of apoptotic cells failed to demonstrate the classic nuclear morphology associated with apoptosis, while retaining other apoptotic features. These results highlighted the importance of utilizing several assays for the determination of apoptosis. The absence of Ca2+ appeared to be the mildest insult, but its deprivation did accelerate a significant decline in culture by increasing apoptotic death. Hybridoma cells overexpressing the apoptotic suppresser gene bcl-2 were protected from the predominantly necrosis inducing effects of Mg2+ ion deprivation and apoptosis inducing effects of Ca2+ ion deprivation. However, apoptosis was not as effectively suppressed in bcl-2 cells responding to incubation in K+ free medium. The inclusion of bcl-2 activity in the mechanisms of Ca2+ Mg2+ or K+ deprivation induced cell death emphasizes a close relationship between ionic dissipation and the apoptotic process.  相似文献   

15.
16.
The identification of cell culture media components that may instigate apoptosis in cell lines used for the production of commercial antibodies and recombinant proteins, is crucial to aid the development of improved media for reduced cell death and to understand the role of nutrient components in cell survival and maintenance. Here we determine the impact of depriving all or individual B-group media vitamins either, D-CaPantothenate (DCaP), choline chloride (CC), riboflavin (Rb), i-inositol, nicotinamide (NAM), pyridoxal hydrochloride (PyrHCl), folic acid (FA), or thiamine hydrochloride (ThHCl) on hybridoma cell growth and viability using fluorescence microscopy techniques. Cultivation in media deprived of all these vitamins prevented cell proliferation from reaching maximum capacity while increasing cell death rate, predominantly via apoptosis. Deletion of either DCaP, CC, or Rb showed that these components were most likely responsible for the development of apoptosis. Exclusion of either i-inositol, NAM or PyrHCl failed to inhibit cell growth and viability, while marginal improvements in viability were noted by ThHCl deprivation and more so by FA exclusion. Over-expression of the anti-apoptotic gene bcl-2 suppressed cell death initiated by all or single vitamin (either DCaP, CC or Rb) deprivation. The involvement of bcl-2 activity, established a close association between small vitamin molecules particularly DCaP, CC or Rb and the biochemical activation of apoptosis.  相似文献   

17.
Summary The rates of spontaneous cell detachment, cell viability, and apoptosis in primary cultures of rat hepatocytes plated at high and low density were compared. Apoptosis was frequent in detached cells, and the rates of cell detachment and apoptosis were greater in high-density than in low-density cultures. Among attached cells, more cells had condensed or fragmented nuclei in high-density than in low-density cultures. Further, ladder-like DNA fragmentation was not seen in low-cell-density cultures but was clearly evident in high-density cultures. Bax was more highly expressed in cells cultured at high density, and on collagen vs. matrigel, whereas changes of Bcl-2 and Fas expression observed in culture appeared unrelated to the rate of apoptosis. The rate of hepatocyte apoptosis appeared to be identical in low-density cultures on collagen 1 and matrigel, but when cells were cultured at high density, matrigel suppressed apoptosis by more than 50% at 36 h. In hepatocytes cultured on collagen 1, dexamethasone (0.1 μM) suppressed apoptosis in both low- and high-density cultures; higher doses had no further effects. In high density cultures, aurintricarboxylic acid (10 μM) suppressed apoptosis and this improved cell attachment at 48 h. It is concluded that cell viability in primary cultures of rat hepatocytes grown on collagen I is dependent on optimal culture density and that the cell population is regulated, at least in part, by apoptosis. Corticosteroids suppress spontaneous apoptosis of cultured hepatocytes in a non-dose-dependent manner, whereas matrigel abolishes apoptosis induced by increasing cell density. Bax may be an important protein in the cell density and cell matrix-dependent regulation of apoptosis in cultured hepatocytes.  相似文献   

18.
Lipotropes, a methyl group containing nutrients, including choline, methionine, folic acid, and vitamin B(12), are essential nutrients for humans. They are important methyl donors that interact in the metabolism of one-carbon units and are essential for the synthesis and methylation of deoxyribonucleic acid. The purpose of this study was to examine the effects of excess lipotropes on the growth of a human breast cancer cell line, MCF-7, and normal mammary cells, MCF-10A, in culture. Both cell lines were grown in basal culture medium for 24 h and then switched to medium supplemented with 50 times the amount of each lipotrope as basal culture medium (control). Although there were no significant differences in growth between treatments in either cell line, gene array and Northern analysis revealed that expression of bcl-2 was decreased in lipotrope-treated MCF-7 cells. The ability to induce tumor cell death could have many uses in the prevention and treatment of cancer. Bcl-2 regulates apoptosis and has been shown to directly affect the sensitivity of cancer cells to chemotherapy agents, and it is suggested that strategies designed to block Bcl-2 might prove useful in sensitizing tumor cells to chemotherapy-induced apoptosis. This study shows that although excess lipotropes do not inhibit the growth of breast cancer cells, they can down-regulate the bcl-2 gene, suggesting that lipotropes may increase the susceptibility of breast cancer cells to anticancer drugs.  相似文献   

19.
Human bcl-2 and bag-1 DNA were introduced into mouse hybridoma 2E3- O cells and expressed. The expression of bcl-2 in BCMGneo-bcl2 transfectants was confirmed by ELISA and that of bag-1 in pZeo-bag1 was confirmed by western blotting. In batch cultures, the over-expression of bcl-2 prolonged the culture period by 2 days and co-expression of bcl-2 and bag-1 prolonged the culture period by 3 days. The delayed increase in the dead cell number in culture of the bcl-2 and bag-1 cotransfectant indicated the additional antiapoptosis effect of bcl-2 and bag-1 cotransfection in comparison with the bcl-2 only transfection. The bcl-2 transfectants (2E3O-Bcl2) produced antibody twofold per batch culture in comparison with 2E3-O cells transfected with BCMGSneo (2E3O-Mock). Enhancement of this MoAb production was due to the improved survival of the cells and was not due to stimulation of antibody production rate per cell by Bcl-2 expression. And the bcl-2 and bag-1 co-transfectant (2E3O-Bcl2-BAG1) produced antibody approximately fourfold of 2E3O-Mock per batch culture. Enhancement of this MoAb production was due to the improved survival of the cells and was partly due to stimulation of MoAb production rate per cell in the non-growing phase by the cotransfection. The method to engineer hybridoma cells genetically with bcl-2 and bag-1 for increasing viability and productivity would be widely applied for improving antibody productivity of hybridoma cultures. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
A spin filter perfusion systems was used to achieve a high cell density culture for two NS0 cell lines in 2 litres bioreactors. One cell line is transfected with the bcl-2 gene (NS0 Bcl-2) encodes the 'anti-apoptotic' human Bcl-2 protein and the other cell line (NS0 Control) with a blank vector. The runs started as batch cultures for two days and were perfused with fresh medium at 0.5 volumes per day (day(-1)) for 4 days, increasing gradually to 2 day(-1) at day 7. The increase of the viable cell density of Bcl-2 cell line was far greater than the control cell line, although they were perfused with the same amount of medium. At the end of the period of each perfusion rate, the viable cell densities of Bcl-2 culture were 30%, 120%, 160% and 220% higher than its control cell line corresponding values. Overall, there was a roughly 9 fold increase in viable cell density from the inoculum for the control culture, but almost a 30 fold increase for the Bcl-2 culture. The mode of cell death in the control culture was initially predominantly by necrosis (viability higher than 80%), but apoptotic cell death became more significant after day 8 of the culture. Cell death in the Bcl-2 culture was almost entirely by necrosis, although it remained at a very low level (less than 5%) to the termination time. The cell cycle distributions for both cell lines were very much similar indicating they have a similar doubling time and G1 to S progression rate. Interestingly, the Bcl-2 cultures exhibited reduced antibody specific production rate with increasing viable cell number and time. The volumetric production rate was, however, similar in both cultures. Bcl-2 as an anti-death protein allowed cells to survive and thus divide to higher cell densities without the need for additional nutrients. Most of the cellular energy in a producer cell line is used for biomass production rather than for antibody production, as was the case with the control cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号