首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Our main objective was to analyze the role of lipid rafts in the activation of Vα-14? and Vα-14+ T hybridomas by dendritic cells. We showed that activation of Vα-14+ hybridomas by dendritic cells or other CD1d-expressing cells was altered by disruption of lipid rafts with the cholesterol chelator MβCD. However, CD1d presentation to autoreactive Vα-14? anti-CD1d hybridomas which do not require the endocytic pathway was not altered. Using partitioning of membrane fractions with Brij98 at 37°C, we confirmed that CD1d was enriched in subcellular fractions corresponding to lipid rafts and we describe that α-GalCer enhanced CD1d amount in the low density detergent insoluble fraction. We conclude that the membrane environment of CD1d can influence antigen presentation mainly when the endocytic pathway is required. Flow cytometry analysis can provide additional information on lipid rafts in plasma membranes and allows a dynamics follow-up of lipid rafts partitioning. Using this method, we showed that CD1d plasma membrane expression was sensitive to low concentrations of detergent. This may suggest either that CD1d is associated with lipid rafts mainly in intracellular membranes or that its association with the lipid rafts in the plasma membrane is weak.  相似文献   

3.
Annexin-II (AII) is a Ca(2+)-dependent phospholipid-binding protein that is present in both intracellular and extracellular compartments. In the present study AII immunoreactivity was found in a subpopulation of neurons in specific brain regions, including the cerebral cortex and the surface of hippocampal pyramidal neurons from adult rats. AII from synaptic membranes was detected by immunoblotting as multiple species containing the monomer (AII36) and heterotetramer (AIIt). AIIt was resistant to beta-mercaptoethanol and dithiothreitol in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but was completely reduced to monomers (36 kDa) by two-dimensional electrophoresis. AIIt resided exclusively in the detergent-resistant lipid rafts concentrated in neuronal dendrites, and its recruitment to those structures was enhanced by antibody cross-link. AII abundantly distributed on the outer leaflet of neuronal membranes and between spaces of neurons appeared to be neuronal adhesive. The formation of AIIt required synthesis of sphingolipids and cholesterol, and its stability depended on Ca2+. Increases in neuronal activities such as depolarization and learning were shown to promote formation of AIIt. Our results suggest that, via a dynamic association with dendritic lipid rafts, AII may play a role in synaptic signal transduction and remodeling. This probably involves focal adhesion and interactions with actin that are associated with brain development and memory consolidation.  相似文献   

4.
The transformation abilities of CD44s and CD44v6 in normal intestinal epithelial cells have not yet been reported. Herein, we established both CD44s and CD44v6 overexpressing stable clones from rat IEC-6 cells and demonstrated that the CD44v6 clones had higher saturation density and anchorage independence. Additionally, CD44v6 clones were more resistant to oxaliplatin and irinotecan which might be attributed to a significantly increased B-cell lymphoma 2 level and a reduced DNA damage response in these cells. Moreover, c-Met and vascular endothelial growth factor receptor 2 signalings were involved in modulating the saturation density in CD44v6 clones. Interestingly, higher activation of both AKT and extracellular-signal-regulated kinase (ERK) were detected in CD44v6 clones which might account in part for the cell density-independent nuclear localization of Yes-associated protein (YAP). To no surprise, increases of both saturation density and anchorage independence in CD44v6 clones were markedly diminished by PI3K, AKT, MEK, and ERK inhibitors as well as YAP knockdown. By contrast, overexpression of a constitutively active YAP robustly increased the aforementioned phenotypes in IEC-6 cells. Collectively, our results suggest that upregulation of CD44v6, but not CD44s, induces the transformation of normal intestinal epithelial cells possibly via activating the c-Met/AKT/YAP pathway which might also explain the important role of CD44v6 in the initiation of various carcinomas.  相似文献   

5.
Formation of the immunological synapse (IS) in T cells involves large scale molecular movements that are mediated, at least in part, by reorganization of the actin cytoskeleton. Various signaling proteins accumulate at the IS and are localized in specialized membrane microdomains, known as lipid rafts. We have shown previously that lipid rafts cluster and localize at the IS in antigen-stimulated T cells. Here, we provide evidence that lipid raft polarization to the IS depends on an intracellular pathway that involves Vav1, Rac, and actin cytoskeleton reorganization. Thus, lipid rafts did not translocate to the IS in Vav1-deficient (Vav1-/-) T cells upon antigen stimulation. Similarly, T cell receptor transgenic Jurkat T cells also failed to translocate lipid rafts to the IS when transfected with dominant negative Vav1 mutants. Raft polarization induced by membrane-bound cholera toxin cross-linking was also abolished in Jurkat T cells expressing dominant negative Vav1 or Rac mutants and in cells treated with inhibitors of actin polymerization. However, Vav overexpression that induced F-actin polymerization failed to induce lipid rafts clustering. Therefore, Vav is necessary, but not sufficient, to regulate lipid rafts clustering and polarization at the IS, suggesting that additional signals are required.  相似文献   

6.
7.
The role of lipid rafts in T cell antigen receptor (TCR) signaling was investigated using fluorescence microscopy. Lipid rafts labeled with cholera toxin B subunit (CT-B) and cross-linked into patches displayed characteristics of rafts isolated biochemically, including detergent resistance and colocalization with raft-associated proteins. LCK, LAT, and the TCR all colocalized with lipid patches, although TCR association was sensitive to nonionic detergent. Aggregation of the TCR by anti-CD3 mAb cross-linking also caused coaggregation of raft-associated proteins. However, the protein tyrosine phosphatase CD45 did not colocalize to either CT-B or CD3 patches. Cross-linking of either CD3 or CT-B strongly induced tyrosine phosphorylation and recruitment of a ZAP-70(SH2)(2)-green fluorescent protein (GFP) fusion protein to the lipid patches. Also, CT-B patching induced signaling events analagous to TCR stimulation, with the same dependence on expression of key TCR signaling molecules. Targeting of LCK to rafts was necessary for these events, as a nonraft- associated transmembrane LCK chimera, which did not colocalize with TCR patches, could not reconstitute CT-B-induced signaling. Thus, our results indicate a mechanism whereby TCR engagement promotes aggregation of lipid rafts, which facilitates colocalization of LCK, LAT, and the TCR whilst excluding CD45, thereby triggering protein tyrosine phosphorylation.  相似文献   

8.
He HT  Marguet D 《EMBO reports》2008,9(6):525-530
T-cell antigen receptor triggering mechanisms and lipid rafts are of broad interest, but are also controversial topics. Here, we review some recent progress in these two research fields, which has been accomplished mostly in live cells and with the use of advanced technologies. We then discuss the potential relationship between membrane-domain organization and T-cell antigen receptor-triggering mechanisms. On the basis of the relevant experimental observations, we argue that the key to achieving a better understanding of both processes is the ability to monitor the molecular dynamics and interactions taking place in the membrane of T cells at a spatial scale of tens to hundreds of nanometres, with a subsecond-to-second temporal resolution.  相似文献   

9.
Supramolecular clusters at the immunological synapse provide a mechanism for structuring complex communication networks between cells of the immune system. Regulating intra- and intercellular trafficking of proteins and lipids to and from the immunological synapse provides an additional level of complexity in determining the functional outcome of immune cell interactions. An emergent principle is that molecules requiring tightly regulated cell surface expression, e.g. negative regulators of cell activation or molecules promoting cytotoxicity, are trafficked to the immunological synapse from intracellular secretory as required lysosomes. Many molecules required for the early stages of the intercellular communication are already present at the cell surface, sometimes in lipid rafts, and are rapidly translocated laterally to the intercellular contact. Our understanding of these events critically depends on utilizing appropriate technologies for probing supramolecular recognition in live cells. Thus, we also present here a critical discussion of the technologies used to study lipid rafts and, more broadly, a map of the spatial and temporal dimensions covered by current live cell physical techniques, highlighting where advances are needed to exceed current spatial and temporal boundaries.  相似文献   

10.
Melanoma cells are often surrounded by hyaluronic acid (HA) rich environments, which are considered to promote tumor progression and metastasis. Induced effects in compound materials consisting of cells embedded in an extracellular matrix have been studied, however, alterations of the single cells have never been addressed. Here, we explicitly addressed single cell properties and measured HA‐induced biomechanical changes via deformations induced solely by optical forces. With the optical stretcher setup, cells were deformed after culturing them in either the presence or absence of HA revealing the crucial interplay of HA with the CD44 receptor. To assess the role of CD44 in transducing effects of HA, we compared a CD44 expressing variant of the melanoma cell line RPM‐MC to its natural CD44‐negative counterpart. Our measurements revealed a significant stiffness change, which we attribute to changes of the actin cytoskeleton.  相似文献   

11.
The anti-cancer drug bleomycin (BLM) induces lung injury and triggers apoptosis of alveolar epithelial cells. In epithelia, among other functions, the adhesion protein CD44 promotes the contact to components of the extracellular matrix like hyaluronate. A functional link between apoptosis and the loss of CD44 has been observed in colon carcinoma cells and involvement of CD44 in apoptosis of lung cells has been reported in several studies. The present in vitro study examined the expression of CD44s (CD44 standard) in two human epithelial lung cell lines, L132 and A549, during BLM-induced apoptosis. A loss of CD44s by lung epithelial cells and an increase of the soluble form of this adhesion protein in culture supernatants upon exposure to BLM were observed. Apoptosis was characterized by an activation of caspase-3 as well as by release of cytochrome C into the cytosol as shown for L132 cells. Inhibition of apoptosis by the broad-range caspase inhibitor Z-VAD-fmk reduced CD44 release by both cell lines demonstrating that CD44 release is a result of apoptotic processes. Kinetic experiments failed to discriminate between the initiation of apoptosis and CD44 release. Blocking experiments using antagonistic anti-CD95 receptor antibodies revealed that BLM may cause apoptosis and CD44 release in a CD95-independent manner.  相似文献   

12.
Summary In our preliminary subcellular localization experiment we demonstrated that annexin II co-localized with submembranous actin in subpopulations of both cultured fibroblasts and keratinocytes. To investigate the physical interaction between annexin II and actin at the cell periphery, in vitro reconstitution experiments were carried out with keratins used as a control. Annexin II, isolated by immunoaffinity column chromatography, was found to exist as globular structures measuring 10 to 25 nm in diameter by rotary shadowing, similar to a previous report. We believe that these structures represent its polymeric forms. By negative staining, monomeric annexin II was detectable as tapered rods, measuring 6 nm in length and 1 to 2 nm in diameter. When annexin II was mixed with actin in 3 mM piperazine-N, N-bis-2-ethanesulfonic acid (PIPES) buffer with 10 mM NaCl2, 2 mM MgCl2 and 0.1 mM CaCl2, thick twisting actin bundles formed, confirming previous reports. This bundling was much reduced when calcium was removed. In the presence of 5 mM ethylenediamine tetra-acetic acid (EDTA) in 5 mM tris, pH 7.2, keratins were found to form a network of filaments, which began to disassemble when the chelator was removed and became fragmented when 0.1 mM CaCl2 was added. Keratins under the same conditions did not fragment when annexin II was present. These results suggest that annexin II, in conjunction with Ca2+, may be involved in a flexible system accommodating changes in the membrane cytoskeletal framework at the cell periphery in keratinocytes.  相似文献   

13.
Internalization of the Hyaluronan Receptor CD44 by Chondrocytes   总被引:1,自引:0,他引:1  
Chondrocytes express CD44 as a primary receptor for the matrix macromolecule hyaluronan. Hyaluronan is responsible for the retention and organization of proteoglycan within cartilage, and hyaluronan-chondrocyte interactions are important for the assembly and maintenance of the cartilage matrix. Bovine articular chondrocytes were used to study the endocytosis and turnover of CD44 and the effects of receptor occupancy on this turnover. Matrix-intact chondrocytes exhibit approximately a 6% internalization of cell surface CD44 by 4 h. Treatment with Streptomyces hyaluronidase to remove endogenous pericellular matrix increased internalization to approximately 20% of cell surface CD44 at 4 h. This turnover could be partially inhibited by the addition of exogenous hyaluronan to these matrix-depleted chondrocytes. Cell surface biotin-labeled CD44 was internalized by chondrocytes and this internalization was decreased in the presence of hyaluronan. Colocalization of internalized CD44 and fluorescein-labeled hyaluronan in intracellular vesicles correlates with the previous results of receptor-mediated endocytosis pathway for the degradation of hyaluronan by acid hydrolases. Taken together, our results indicate that CD44 is internalized by chondrocytes and that CD44 turnover is modulated by occupancy with hyaluronan.  相似文献   

14.
The association of cell surface receptors with sterol-sphingolipid-enriched microdomains of the plasma membrane, so-called lipid rafts, may affect the receptor-mediated entry and trafficking dynamics of viruses. A model retrovirus, subgroup A avian sarcoma and leukosis virus (ASLV-A), can initiate infection by binding to either of two forms of the tumor virus subgroup A (TVA) receptor, a lipid-raft-associated glycosylphosphatidylinositol (GPI)-anchored receptor (TVA800) or a transmembrane receptor (TVA950). Narayan et al. previously found that virus particles bound to TVA950 were more rapidly internalized than virions bound to TVA800, and the internalization via TVA950 exhibited biphasic kinetics. To explore potential molecular mechanisms for these results we developed a mathematical model that accounts for internalization of viruses through cellular pits, trafficking to an endosomal compartment where fusion occurs, and viral DNA synthesis. By fitting the model to experimental data we found that viruses bound to TVA950 were internalized up to 2.6-fold more rapidly than viruses bound to TVA800. Two- to threefold greater lateral diffusivities of transmembrane proteins, relative to GPI-anchored proteins, observed in other systems, suggest that the internalization rate of ASLV-A is diffusion-limited. Furthermore, by allowing for recycling of internalized TVA950-bound viruses back to the cell surface, we can account for the observed biphasic internalization kinetics. This mechanism is also consistent with the observed slower rate of DNA synthesis for viruses that enter via TVA950. Overall, the model provides a means to generate new experimentally testable hypotheses and sets a foundation for building a quantitative and integrated understanding of viral entry, trafficking, and intracellular dynamics.  相似文献   

15.
We have isolated and characterized an antigen from normal human brain called p80, so called because it migrated with an Mr of 80 kDa on SDS PAGE. The Mr of 80 kDa consists of a protein of about 55-60 kDa and carbohydrate (20-25 kDa). The carbohydrate is almost entirely of the N-linked type, although a small amount of O-linked carbohydrate was detected. Cross-reactivity with monoclonal antibodies A3D8 and A1G3 showed that p80 could therefore be considered an isoform of the CD44 adhesion molecules. In addition, specific binding to hyaluronate which was not competed for by proteoglycan demonstrated that it involved different sites than the proteoglycan binding sites. We also observed that fucoidan and dextran sulphate increased the binding by 200-250% while chondroitin sulphate C also increased the binding but to a lesser extent. Heparin, heparan sulphate and chondroitin sulphates A and B did not have such an effect. The binding of p80 to hyaluronate was pH dependent with a maximum at pH 6.4. We concluded that p80 was an astrocyte specific adhesion molecule.  相似文献   

16.
T cell polarization and redistribution of cellular components are critical to processes such as activation, migration, and potentially HIV infection. Here, we investigate the effects of CD4 engagement on the redistribution and localization of chemokine receptors, CXCR4 and CCR5, adhesion molecules, and lipid raft components including cholesterol, GM1, and glycosyl-phosphatidylinositol (GPI)-anchored proteins. We demonstrate that anti-CD4-coated beads (alpha CD4-B) rapidly induce co-capping of chemokine receptors as well as GPI-anchored proteins and adhesion molecules with membrane cholesterol and lipid rafts on human T cell lines and primary T cells to the area of bead-cell contact. This process was dependent on the presence of cellular cholesterol, cytoskeletal reorganization, and lck signaling. Lck-deficient JCaM 1.6 cells failed to cap CXCR4 or lipid rafts to alpha CD4-B. Biochemical analysis reveals that CXCR4 and LFA-1 are recruited to lipid rafts upon CD4 but not CD45 engagement. Furthermore, we also demonstrate T cell capping of both lipid rafts and chemokine receptors at sites of contact with HIV-infected cells, despite the binding of an HIV inhibitory mAb to CXCR4. We conclude that cell surface rearrangements in response to CD4 engagement may serve as a means to enhance cell-to-cell signaling at the immunological synapse and modulate chemokine responsiveness, as well as facilitate HIV entry and expansion by synaptic transmission.  相似文献   

17.
In this study, we have showed that aortic endothelial cells (GM7372A cell line) express CD44v10 [a hyaluronan (HA) receptor], which is significantly enriched in cholesterol-containing lipid rafts (characterized as caveolin-rich plasma membrane microdomains). HA binding to CD44v10 promotes recruitment of the cytoskeletal protein, ankyrin and inositol 1,4,5-triphosphate (IP3) receptor into cholesterol-containing lipid rafts. The ankyrin repeat domain (ARD) of ankyrin is responsible for binding IP3 receptor to CD44v10 at lipid rafts and subsequently triggering HA/CD44v10-mediated intracellular calcium (Ca2+) mobilization leading to a variety of endothelial cell functions such as nitric oxide (NO) production, cell adhesion and proliferation. Further analyses indicate (i) disruption of lipid rafts by depleting cholesterol from the membranes of GM7372A cells (using methyl-beta-cyclodextrin treatment) or (ii) interference of endogenous ankyrin binding to CD44 and IP3 receptor using overexpression of ARD fragments (by transfecting cells with ARDcDNA) not only abolishes ankyrin/IP3 receptor accumulation into CD44v10/cholesterol-containing lipid rafts, but also blocks HA-mediated Ca2+ signaling and endothelial cell functions. Taken together, our findings suggest that CD44v10 interaction with ankyrin and IP3 receptor in cholesterol-containing lipid rafts plays an important role in regulating HA-mediated Ca2+ signaling and endothelial cell functions such as NO production, cell adhesion and proliferation.  相似文献   

18.
Hyaluronan, a high-molecular-weight glycosaminoglycan of the extracellular matrix, is prominent during rapid tissue growth and repair. It stimulates cell motility and hydrates tissue, providing an environment that facilitates cell movement. Markedly enhanced levels of hyaluronan also occur in the stroma surrounding human cancers, thus providing an environment that promotes spread of cancer cells. The ability of malignant tumors to generate lactate, even in the presence of adequate oxygen, is known as the Warburg effect. Early in wound healing as blood and oxygen supply decrease, lactate levels increase, as does stromal hyaluronan, suggesting a cause-and-effect relationship. Similarly, peritumor stromal fibroblast hyaluronan may be a response to cancer cell lactate. To test this, fibroblasts were cultured in the presence of lactate. With increasing lactate, higher levels of hyaluronan were observed, as were levels of CD44 expression, the predominant receptor for hyaluronan. The ability of tumor cells to utilize anaerobic metabolism and to generate lactate, even in the presence of adequate supplies of oxygen, may be one of the mechanisms used to recruit host fibroblasts to deposit hyaluronan and to express CD44, thereby participating in the process of cancer invasion and metastasis.  相似文献   

19.
BNIP3 is an atypical BH3-only member of the BCL-2 family of proteins with reported pro-death as well as pro-autophagic and cytoprotective functions, depending on the type of stress and cellular context. In line with this, the role of BNIP3 in cancer is highly controversial and increased BNIP3 levels in cancer patients have been linked with both good as well as poor prognosis. In this study, using small hairpin RNA (shRNA) lentiviral transduction to stably knockdown BNIP3 (BNIP3-shRNA) expression levels in melanoma cells, we show that BNIP3 supports cancer cell survival and long-term clonogenic growth. Although BNIP3-shRNA increased mitochondrial mass and baseline levels of reactive oxygen species production, which are features associated with aggressive cancer cell behavior, it also prevented cell migration and completely abolished the ability to form a tubular-like network on matrigel, a hallmark of vasculogenic mimicry (VM). We found that this attenuated aggressive behavior of these melanoma cells was underscored by severe changes in cell morphology and remodeling of the actin cytoskeleton associated with loss of BNIP3. Indeed, BNIP3-silenced melanoma cells displayed enhanced formation of actin stress fibers and membrane ruffles, while lamellopodial protrusions and filopodia, tight junctions and adherens junctions were reduced. Moreover, loss of BNIP3 resulted in re-organization of focal adhesion sites associated with increased levels of phosphorylated focal adhesion kinase. Remarkably, BNIP3 silencing led to a drop of the protein levels of the integrin-associated protein CD47 and its downstream signaling effectors Rac1 and Cdc42. These observations underscore that BNIP3 is required to maintain steady-state levels of intracellular complexes orchestrating the plasticity of the actin cytoskeleton, which is integral to cell migration and other vital processes stimulating cancer progression. All together these results unveil an unprecedented pro-tumorigenic role of BNIP3 driving melanoma cell''s aggressive features, like migration and VM.  相似文献   

20.
The neural cell adhesion molecule (NCAM) has been reported to stimulate neuritogenesis either via nonreceptor tyrosine kinases or fibroblast growth factor (FGF) receptor. Here we show that lipid raft association of NCAM is crucial for activation of the nonreceptor tyrosine kinase pathway and induction of neurite outgrowth. Transfection of hippocampal neurons of NCAM-deficient mice revealed that of the three major NCAM isoforms only NCAM140 can act as a homophilic receptor that induces neurite outgrowth. Disruption of NCAM140 raft association either by mutation of NCAM140 palmitoylation sites or by lipid raft destruction attenuates activation of the tyrosine focal adhesion kinase and extracellular signal-regulated kinase 1/2, completely blocking neurite outgrowth. Likewise, NCAM-triggered neurite outgrowth is also completely blocked by a specific FGF receptor inhibitor, indicating that cosignaling via raft-associated kinases and FGF receptor is essential for neuritogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号