首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The promoting activity of polyamine analogs (IV approximately XV) on staphylococcal nuclease with DNA as the substrate was compared with that of natural polyamines (I APPROXIMATELY III): I. NH2(CH2)3NH(CH2)4NH(CH2)3NH2(spermine); II. NH2(CH2)3NH(CH2)3NH(CH2)3NH2(thermine); III. NH2(CH2)4NH2 (putrescine); IV. CN(CH2)2NH(CH2)4NH(CH2)2CN; V. HOOC(CH2)2NH(CH2)4NH(CH2)2COOH; VI. C2H5OOC(CH2)2NH(CH2)4NH(CH2)2COOC2H5; VII. HO(CH2)3NH(CH2)4HH(CH2)3OH; VIII. CH3COHH(CH2)3NH(CH2)4NH(CH2)3NHCOCH3; IX. C2H5NH(CH2)3NH(CH2)4NH(CH2)3NHC2H5; X. NH2(CH2)3S(CH2)4S(CH2)3NH2; XI. NH2(CH2)3NH(CH2)2O(CH2)2NH(CH2)3NH2; XII. NH2(CH2)3NCH3(CH2)4HCH3(CH2)3NH2; XIII. CN(CH2)2NCH3(CH2)4NCH3(CH2)2CN; XIV. (CH3)2N(CH2)3NCH3(CH2)4NCH3(CH2)3N(CH3)2; XV. NH2(CH2)2O(CH2)2NH2 Replacement of the terminal groups by CN, COOH, COOEt, NHAc, NHEt, or N(CH3)2 remarkably decreased the activity. The compound VII with terminal hydroxyl groups had a lower promoting activity at low concentrations, but revealed higher activity at higher concentrations and, in contrast to spermine, no inhibition at all even at very high concentrations. Replacement of both internal amino groups by sulfur or NCH3 decreased the activity. The introduction of an ether bond into the internal methylene groups (compound XI) highly decreased the activity. Based upon these findings the possible relationship between structure and activity is discussed.  相似文献   

2.
2-Keto-3-fluoroglutaric acid prepared by acid hydrolysis of its diethyl ester is stable, as the free acid in aqueous solution at pH 2, and can be stored at -20 degrees C for several years. Both enantiomers are reduced by NADH in the presence of glutamate dehydrogenase (EC 1.4.1.2) to the two diastereomers of 3-fluoro-L-glutamate, which are stable at neutral pH and at high pH unless heated. 2-Keto-3-fluoroglutarate exists in solution almost entirely as a hydrate both at low and neutral pH. Both enantiomers of ketofluoroglutarate react with the pyridoxamine forms of aspartate, alanine and 4-aminobutyrate transaminases to give fluoride release. 2 mol of cosubstrate amino acid react for each mol of ketofluoroglutarate (KFG) when starting from the pyridoxamine form of the enzyme: 2 RCHNH2COOH + KFG + H2O----F- + NH4+ + glutamate + 2 RCOCOOH. Both diastereomers of fluoroglutamate are decarboxylated by glutamate decarboxylase (EC 4.1.1.15) with fluoride release: KFG + H2O----CO2 + F- + HCOCH2CH2COOH. By contrast, only one isomer of fluoroglutamate will react with the pyridoxal form of glutamate-oxalacetate transaminase to give fluoride release: HOOCCHNH2CHFCH2COOH + H2O----4F- + NH4+ + HOOCCOCH2CH2COOH. The enzymatic decarboxylation of 3-fluoroisocitrate produces only one enantiomer of ketofluoroglutarate, which is reduced to threo (2R,3R)-3-fluoroglutamate by NADH and glutamate dehydrogenase: [2R,3S]-HOOCCH(OH)CF(COOH)CH2COOH + NADP+----[3R]-KFG + CO2 + NADPH + H+. The proton, 13C, and 19F-NMR parameters of ketofluoroglutarate and the two fluoroglutamate diastereomers are presented. These molecules are useful probes of enzymatic mechanisms thought to involve carbanion intermediates.  相似文献   

3.
Gel-electrophoretically homogeneous methioninase [L-methionine methanethiol-lyase (deaminating), EC 4.4.1.11] of Pseudomonas putida, which catalyzes alpha, beta- and alpha, gamma-eliminations from S-substituted amino acids, could also catalyze a variety of beta- and gamma-exchange reactions, according to the following equations: RSCH2CH(NH2)COOH+R'SH in equilibrium R'SCH2CH(NH2)COOH+RSH (beta-exchange) and RSCH2CH2CH(NH2)COOH+R'SH in equilibrium R'SCH2CH2CH(NH2)COOH+RSH (gamma-exchange), where R'SH represents an exogeneously added alkanethiol or a substituted thiol. Related amino acids not available for elimination reactions appeared to be inert as substrates for exchange. The maximum activity for the exchange reactions was observed at pH 8.5 in potassium pyrophosphate buffer. The activity increased linearly with the increase in protein concentration from zero to 3.0 mug per ml, and with incubation time up to at least 15 min at 30 degrees. Some of the exchange reaction products were purified by a combination of paper and ion exchange chromatographies, and charcoal treatment: their structures were confirmed by physicochemical methods including elemental analysis and proton magnetic resonance, infrared, and mass spectrometries.  相似文献   

4.
Enzymatic studies of the cell extracts of Vibrio alginolyticus and V. parahaemolyticus provided evidence that there exists a novel biosynthetic pathway for norspermidine (NH2(CH2)3NH(CH2)3NH2), a major polyamine species. In this pathway, the Schiff base formed between aspartic beta-semialdehyde and 1,3-diaminopropane is first reduced by a NADPH-dependent enzyme to yield "carboxynorspermidine" (NH2(CH2)3NH(CH2)2CH(NH2)COOH), which is in turn decarboxylated by a pyridoxal phosphate dependent enzyme to form norspermidine. The end product and its intermediate were identified by gas chromatography - mass spectrometry. Experiments with L-[U-14C]aspartic acid resulted in appreciable incorporation of the label into norspermidine. Putrescine could replace 1,3-diaminopropane as a substrate to produce spermidine, but at a reduced rate. The enzyme activity was greatly enhanced by dithiothreitol. Since the activity of an aminopropyltransferase that utilizes decarboxylated S-adenosylmethionine as an aminopropyl group donor could not be detected in any of the cell extracts by our assay method, it was concluded that this novel pathway is primarily responsible for producing norspermidine and spermidine in these species.  相似文献   

5.
In vivo studies have shown that, in the absence of homoserine-O-transacetylase activity (locus met(2)), the C(4)-carbon moiety of ethionine is utilized (provided the ethionine resistance gene eth-2r is present) by methionine auxotrophs, except for met(8) mutants (homocysteine synthetase-deficient). Concomitant utilization of sulfur and methyl group from methylmercaptan or S-methylcysteine has been demonstrated. In the absence of added methylated intermediates, the methyl group of methionine formed from ethionine is derived from serine. In vitro studies with crude extracts of Saccharomyces cerevisiae have demonstrated that this synthesis of methionine occurs by the following reactions: CH(3)-SH + ethionine right harpoon over left harpoon methionine + C(2)H(5)SH and S-methylcysteine + ethionine right harpoon over left harpoon methionine + S-ethylcysteine. In the forward direction, the second product of the second reaction was shown to be S-ethylcysteine; this reaction has also been found reversible, leading to ethionine formation. Genetic and kinetic data have shown that homocysteine synthetase catalyzes these two reactions, at 0.3% of the rate it catalyzes direct homocysteine synthesis: O-Ac-homoserine + Na(2)S --> homocysteine + acetate. The three reactions are lost together in a met(8) mutant and are recovered to the same extent in spontaneous prototrophic revertants from this strain. Methionine-mediated regulation of enzyme synthesis affects the three activities and is modified to the same extent by the presence of the recessive allele (eth-2r) of the regulatory gene eth-2. Affinities of the enzyme for substrates of both types of reactions are of the same order of magnitude. Moreover, ethionine, the substrate of the second reaction, inhibits the third reaction, whereas O-acetyl-homoserine, the substrate of the third reaction, inhibits the second reaction. An enzymatic cleavage of S-methylcysteine, leading to methylmercaptan production, has been shown to occur in crude yeast extracts. It is concluded that the enzyme homocysteine synthetase participates in the two alternate pathways leading to methionine biosynthesis in S. cerevisiae, one involving O-acetyl-homoserine and H(2)S, the other involving the 4-carbon chain of ethionine and a mercaptyl donor. Participation of the two types of reactions catalyzed by homocysteine synthetase, in in vivo methionine synthesis, has been shown to occur in a met(2) partial revertant.  相似文献   

6.
The beta-elimination and nucleophile addition reactions of the substituted serine and threonine residues were studied using several synthesized fluorescence-labeled phosphopeptides and a salmon egg polysialoglycoprotein (PSGP). The reagents used were 1 M CH3SH-0.43 M NaOH, 1 M NaBH4-0.1 M NaOH, 1 M CH3NH2-0.1 M NaOH, and 1 M Na2SO3-0.1 M NaOH. The beta-elimination reaction of a phosphoserine peptide, Gly-Ser(PO4)-Glu-AEAP, was about 20 times faster than that of the corresponding phosphothreonine peptide. The carboxyl-side amino acid of the phosphoamino acids in peptides greatly affected the beta-elimination rate. The beta-elimination reaction rates of O-glycosyl serine and threonine in the polysialoglycoprotein were similar and were about a half of that of the phosphoserine peptide. The rates of addition of the three nucleophiles and hydrogen to alpha-aminoacrylic acid (beta-elimination product of substituted serine) in the peptide decreased in the order of CH3SH, Na2SO3, CH3NH2, and H2(NaBH4), and the addition to alpha-aminocrotonic acid (beta-elimination product of substituted threonine) in the order of Na2SO3, CH3NH2, CH3SH, and H2. These results indicated that sulfite is the most recommended nucleophile because of its high addition rate. If sulfite addition is carried out in the presence of NaBH4, sugar chains can be released as alditols, converting the sugar-attaching amino acids to beta-sulfoamino acids.  相似文献   

7.
Reaction of elemental copper and zinc powder mixtures with glycine (NH2.CH2COOH; HA) or aspartic acid (NH2CHCOOHCH2COOH; H2B) (in 1:1:2 ratio, respectively) in the presence of excess hydrogen peroxide (H2O2) at 50 degrees C, results in the formation of a new mixed metal peroxy carbonate compound corresponding to formula [Cu(Zn)2(O2(2-) (CO3)2(H2O)4], while the same reaction with elemental copper powder alone yields merely peroxy amino acid compounds having the formula [Cu(O2(2-)) (HA)2(H2O)] and [Cu(O2(2-)) (H2B) (H2O)2] for glycine and aspartic acid, respectively. These compounds have been characterized by elemental analysis, ESR, and electronic and IR spectra. It is interesting to note that both amino acids are converted to carbonate in the presence of zinc alone. A method analogous to that described above, for the reaction of elemental copper, zinc powder mixtures with succinic acid [(CH2COOH)2] or acetic acid (CH3COOH) in excess H2O2, on the other hand, gave a product essentially comprising copper succinate or acetate, respectively. These observations suggest an interesting and perhaps important phenomenon by which only the simple amino acids such as glycine and aspartic acid are converted to carbonates while their corresponding carboxylic acids form only their respective salts.  相似文献   

8.
Carboxynorspermidine synthase, mediates the nicotinamide-nucleotide-linked reduction of the Schiff base H2N(CH2)3N = CHCH2CH(NH2)COOH. This is formed from L-aspartic beta-semialdehyde (ASA) and 1,3-diaminopropane (DAP) and is reduced to carboxynorspermidine [H2N(CH2)3NH(CH2)2CH(NH2)COOH], an intermediate in the novel pathway for norspermidine (NSPD) biosynthesis. The enzyme was purified to apparent homogeneity from Vibrio alginolyticus and characterized. The overall purification was about 1800-fold over the crude extract, with a yield of 33%. The enzyme displayed an apparent Mr of 93500 +/- 1000 by gel filtration and 45100 +/- 500 by SDS-PAGE, indicating that the native form is probably composed of two subunits of similar size. The specific activity of the purified enzyme was 31.0 mumol carboxynorspermidine produced min-1 (mg protein)-1. The enzyme was activated by dithiothreitol, and inhibited by SH-reactive compounds. The pH and temperature optima were 7.25-7.5 and 37 degrees C, respectively. The Km value for the Schiff base was 4.68 mM, measured by varying the ASA concentration while keeping the DAP concentration constant. Putrescine was slightly active as a substrate, forming carboxyspermidine (at about 7% of the rate of DAP), but ethylenediamine, cadaverine and D-ASA were inert. The Km value for NADPH was 1.51 mM. NADH was a much poorer cofactor than NADPH. When V. alginolyticus was grown in the presence of 5 mM-NSPD, the specific activity of this enzyme was reduced by approximately 70%. NSPD also repressed two other enzymes responsible for its biosynthesis, 2,4-diaminobutyrate decarboxylase and carboxynorspermidine decarboxylase.  相似文献   

9.
Two series of water-soluble, symmetrical two-tailed homologous dendritic amphiphiles--R(2)NCONHC((CH(2))(2)COOH)(3), 2(n,n), and R(2)CHNHCONHC((CH(2))(2)COOH)(3), 3(n,n), where R=n-C(n)H(2n+1)--were synthesized and compared to R'NHCONHC((CH(2))(2)COOH)(3), 1(n), R'=n-C(n)H(2n+1), to determine whether antimicrobial activity was influenced by total or individual alkyl chain lengths, and whether antimicrobial activity depends on hydrophobicity or tail topology (one or two). In a broad screen of 11 microorganisms, 2(n,n) and 3(n,n) generally displayed higher minimal inhibitory concentrations (MICs) than 1(n) against growth as measured by broth microdilution assays. Chain-length specificity was observed against Candida albicans as 1(16), 2(8,8), and 3(8,8) showed the lowest MIC in their respective series. The one case where two-tailed compounds displayed the lowest MICs-3(10,10), 15 microM; 3(11,11), 7.2microM; and 3(12,12), 6.9 microM-was against Cryptococcus neoformans.  相似文献   

10.
In the present study we show that the enzymatic activity of the coenzyme nicotinamide adenine dinucleotide (NAD+) and its analogues (C(O)NH2 replaced by C(S)NH2, C(O)CH3, C(O)H and CN) with horse liver alcohol dehydrogenase (LADH) (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) can be rationalized by their conformation in the active site determined with molecular mechanics (AMBER, assisted model building with energy refinement). In order to establish the relation between the hydride transfer rate and the conformation of the NAD+ and its analogues, kinetic experiments with the poor substrate isopropanol were carried out. It appears that the enzymatic activity can be readily explained by the geometry of the pyridinium ring, in particular the magnitude of the 'out-of-plane' rotation of the carboxamide side chain (or analogues). The latter is nicely illustrated in the case of 3-cyanopyridine adenine dinucleotide which lacks any 'out-of-plane' rotation and concomitantly exhibits no significant enzymatic activity.  相似文献   

11.
R B Silverman  B J Invergo 《Biochemistry》1986,25(22):6817-6820
The mechanism of inactivation of pig brain gamma-aminobutyric acid aminotransferase (GABA-T) by (S)-4-amino-5-fluoropentanoic acid (1, R = CH2CH2COOH, X = F) previously proposed [Silverman, R. B., & Levy, M. A. (1981) Biochemistry 20, 1197-1203] is revised. apo-GABA-T is reconstituted with [4-3H]pyridoxal 5'-phosphate and inactivated with 1 (R = CH2CH2COOH, X = F). Treatment of inactivated enzyme with base followed by acid denaturation leads to the complete release of radioactivity as 6-[2-hydroxy-3-methyl-6-(phosphonoxymethyl)-4-pyridinyl]-4-oxo-5-+ ++hexenoic acid (4, R = CH2CH2COOH). Alkaline phosphatase treatment of this compound produces dephosphorylated 4 (R = CH2CH2COOH). These results support a mechanism that was suggested by Metzler and co-workers [Likos, J. J., Ueno, H., Feldhaus, R. W., & Metzler, D. E. (1982) Biochemistry 21, 4377-4386] for the inactivation of glutamate decarboxylase by serine O-sulfate (Scheme I, pathway b, R = COOH, X = OSO3-).  相似文献   

12.
After having set up the computational methodology for Cu(I)-sulfur systems as models for copper proteins, namely using the simple ligands H(2)S, HS(-), CH(3)SH, and CH(3)S(-), the Cu(I)-Cysteine systems have been investigated: [Cu(I)( S -H(2)Cys) (n) ](+) (H(2)Cys, cysteine, NH(2),SH,COOH) [Cu(I)( S -HCys) (n) ](1-) (n) (NH(2),S(-),COOH). Finally, the structures for bi-nuclear [Formula: see text] (Et, CH(2)CH(3)), [Formula: see text] and tri-nuclear [Cu(I)( S -SH)](3), [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] (NH(2),SH,COOH), [Formula: see text] (NH(2),S(-),COOH, and NH(2),SH,COO(-)), as well as [Formula: see text] (NH(2),S(-),COO(-)), were also optimized to mimic the active center for a metallo-chaperone copper transport protein (CopZ). The X-ray structures for the biomolecules were matched fairly well as regards the Cu-S bond distances and Cu…Cu contact distances in the case the model cysteine S atom is deprotonated. Upon protonation of ligand S atoms, the conformation of clusters is altered and might bring about the di- and tri-nuclear core breakage. These findings suggest that subtle protonation/deprotonation steps, i.e. small and/or local pH changes play a significant role for copper transport processes.  相似文献   

13.
Diglycolic acid (DGA) oxidizing activity was found in crude extracts of Rhodococcus sp. no. 432 grown in DGA. Glycolic acid (GA) oxidase was purified approximately 80 times by treatment with streptomycin sulfate, precipitation with (NH4)2SO4, chromatographies with DEAE-cellulose, DEAE-Toyopearl and Butyl-Toyopearl, and gel filtration on Toyopearl HW-55. The purified GA oxidase was almost homogeneous on sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. The purity was calculated to be more than 95%. The molecular weight of the enzyme, which appeared to consist of three identical units, was 158,000. Each subunit of GA oxidase included one molecule of FAD as a cofactor. The isoelectric point of the enzyme was around 5.3. GA oxidase was stable below 30°C and at the pH range of 6.0–8.5. The optimum pH and temperature were around 7.5 and 40°C, respectively. Oxygen, cytochrome c, ferricyanide and 2,6-dichlorophenol indophenol (DCIP) acted as an electron acceptor. The activity of GA oxidase was strongly inhibited by potassium cyanide, quinine, quinacrine, monoiodoacetate, 1,4-benzoquinone and some heavy metal ions. GA oxidase also had activity in DGA, GA, glyoxylic acid (GOA), methoxy acetate, ethoxy acetate and l-malate. Alcohols and other organic acids were not oxidized by the enzyme. The apparent Km values for DGA, GA and GOA were about 26.7, 0.5 and 4.4 mM, respectively. The reaction products from DGA were supposed to be GOA and GA by the enzymatic assays. The reaction mechanism of GA oxidase in oxidation of DGA was supposed to be as follows: HOOCH2COCH2COOH+H2O+acceptor→HOOCCHO+HOOCCH2OH+ reduced acceptor.  相似文献   

14.
The O-methyl substituents of aromatic compounds constitute a C(1) growth substrate for a number of taxonomically diverse anaerobic acetogens. In this study, strain TH-001, an O-demethylating obligate anaerobe, was chosen to represent this physiological group, and the carbon flow when cells were grown on O-methyl substituents as a C(1) substrate was determined by C radiotracer techniques. O-[methyl-C]vanillate (4-hydroxy-3-methoxy-benzoate) was used as the labeled C(1) substrate. The data showed that for every O-methyl carbon converted to [C]acetate, two were oxidized to CO(2). Quantitation of the carbon recovered in the two products, acetate and CO(2), indicated that acetate was formed in part by the fixation of unlabeled CO(2). The specific activity of C in acetate was 70% of that in the O-methyl substrate, suggesting that only one carbon of acetate was derived from the O-methyl group. Thus, it is postulated that the carboxyl carbon of the product acetate is derived from CO(2) and the methyl carbon is derived from the O-methyl substituent of vanillate. The metabolism of O-[methyl-C]vanillate by strain TH-001 can be described as follows: 3CH(3)OC(7)H(5)O(3) + CO(2) + 4H(2)O --> CH(3)COOH + 2CO(2) + 10H + 10e + 3HOC(7)H(5)O(3).  相似文献   

15.
Methanosphaera stadtmanae (DSM 3091) is a methanogen that requires H2 and CH3OH for methanogenesis. The organism does not possess an F420-dependent hydrogenase and only low levels of F420. It does however possess NADP+:F420 oxidoreductase activity. The NADP+:F420 oxidoreductase, the enzyme which catalyses the electron transfer between NADP+ and F420 in this organism, was purified and characterized. NAD+, NADH, FMN, and FAD could not be used as electron acceptors. Optimal pH for F420 reduction was 6.0, and 8.5 for NADP+ reduction. During the purification process, it was noted that precipitation with (NH4)2SO4 increased total activity 16-fold but reduced the stability of the enzyme. However, recombination of cell-free extracts with resuspended 65-90% (NH4)2SO4 pellet returned activity to near cell-free extract levels. Neither high salt or protease inhibitors were effective in stabilizing the activity of the partially purified enzyme. The purified enzyme from M. stadtmanae possessed a molecular weight of 148 kDa as determined by gel filtration chromatography and native-PAGE, consisting of alpha, beta, and gamma subunits of 60, 50, and 45 kDa, respectively, using SDS-PAGE. The Km values were 370 microM for NADP+, 142 microM for NADPH, 62.5 microM for F420, and 7.7 microM for F420H2. These values were different from the Km values observed in the cell-free extract.  相似文献   

16.
Gelsolin can sever actin filaments, nucleate actin filament assembly, and cap the fast-growing end of actin filaments. These functions are activated by Ca2+ and inhibited by polyphosphoinositides (PPI). We report here studies designed to delineate critical domains within gelsolin by deletional mutagenesis, using COS cells to secrete truncated plasma gelsolin after DNA transfection. Deletion of 11% of gelsolin from the COOH terminus resulted in a major loss of its ability to promote the nucleation step in actin filament assembly, suggesting that a COOH-terminal domain is important in this function. In contrast, derivatives with deletion of 79% of the gelsolin sequence exhibited normal PPI-regulated actin filament-severing activity. Combined with previous results using proteolytic fragments, we deduce that an 11-amino acid sequence in the COOH terminus of the smallest severing gelsolin derivative identified here mediates PPI-regulated binding of gelsolin to the sides of actin filaments before severing. Deletion of only 3% of gelsolin at the COOH terminus, including a dicarboxylic acid sequence similar to that found on the NH2 terminus of actin, resulted in a loss of Ca2+-requirement for filament severing and monomer binding. Since these residues in actin have been implicated as potential binding sites for gelsolin, our results raise the possibility that the analogous sequence at the COOH terminus of gelsolin may act as a Ca2+-regulated pseudosubstrate. However, derivatives with deletion of 69-79% of the COOH-terminal residues of gelsolin exhibited normal Ca2+ regulation of severing activity, establishing the intrinsic Ca2+ regulation of the NH2-terminal region. One or both mechanisms of Ca2+ regulation may occur in members of the gelsolin family of actin-severing proteins.  相似文献   

17.
A transition state analogue inhibitor, boronic acid benzophenone (BBP) photoprobe, was used to study the differences in the topology of the S1 pocket of chemically modified mutant enzymes (CMMs). The BBP proved to be an effective competitive inhibitor and a revealing active site directed photoprobe of the CMMs of the serine protease subtilisin Bacillus lentus (SBL) which were chemically modified with the hydrophobic, negatively charged and positively charged moieties at the S1 pocket S166C residue. As expected, in all cases BBP bound best to WT-SBL. BBP binding to S166C-SCH2C6H5 and S166C-CH2-c-C6H11, with their large hydrophobic side chains, was reduced by 86-fold and 9-fold, respectively, compared to WT. Relative to WT, BBP binding to the charged CMMs, S166C-S-CH2CH2SO3- or S166C-S-CH2CH2NH3+, was reduced 170-fold and 4-fold respectively. Photolysis of the WT-SBL-BBP enzyme inhibitor (EI) complex, inactivated the enzyme and effected the formation of a covalent crosslink between WT and BBP. The crosslink was identified at Gly127 by peptide mapping analysis and Edman sequencing. Gly127 is located in the S1 hydrophobic pocket of SBL and its modification thus established binding of the benzophenone moiety in S1. Photolysis of the EI complex of S166C-SCH2C6H5, S166C-S-CH2CH2SO3-, or S166C-S-CH2CH2NH3+ and BBP under the same conditions did not inactivate these enzymes, nor effect the formation of a crosslink. These results corroborated the kinetic evidence that the active site topology of these CMMs is dramatically altered from that of WT. In contrast, while photolysis of the S166C-CH2-c-C6H11-BBP EI complex only inactivated 50% of the enzyme after 12 h, it still effected the formation of a covalent crosslink between the CMM and BBP, again at Gly127. However, this photolytic reaction was less efficient than with WT, demonstrating that the S1 pocket of S166C-CH2-c-C6H11 is significantly restricted compared to WT, but not as completely as for the other CMMs.  相似文献   

18.
Methylammonium transport in Anacystis nidulans R-2   总被引:6,自引:5,他引:1       下载免费PDF全文
Methylammonium was taken up rapidly by illuminated cells of Anacystis nidulans R-2, leading to internal concentrations of 1.3 +/- 0.1 mM within 1 min, and a gradient of up to 200 between the cells and medium. Accumulation of 14CH3NH3+ required at least 5 mM NaCl, but the uptake rate was independent of medium pH between 6.5 and 9. The kinetics of uptake could be resolved into an initial fast phase lasting less than 1 min (approximate Km, 7.2 microM; Vmax, 12.5 nmol min-1 mg of protein-1 at 15 degrees C). A second, slower phase associated with product formation was eliminated by preincubation with methionine sulfoximine, a specific inhibitor of glutamine synthetase; the rapid phase was unaffected by this treatment. Ammonium ions competed with 14CH3NH3+ for entry, and addition of 5 microM NH4+ or 100 microM CH3NH3+ released 14CH3NH3+ accumulated during the rapid phase of entry. Small additions of NH4+ made at the same time as additions of 14CH3NH3+ delayed the start of radioactivity uptake by a time which corresponded accurately with the period needed for the complete removal of the added NH4+. The effects of inhibitors on accumulation and carbocyanine dye fluorescence suggest that ATP-dependent membrane potential was needed to drive 14CH3NH3+ transport. Spheroplasts were as active as whole cells in accumulating NH4+ and 14CH3NH3+, indicating that soluble periplasmic components are not involved in the translocation. Some significant differences between the translocation of 14CH3NH3 and that of NH4+ were observed: growth with NH4+ in place of NO3- repressed 14CH3NH3+ accumulation ability without affecting the NH4+ uptake rate Na+ was not required for NH4+ uptake, and concentration of KCl inhibitory with 14C3NH3+ did not reduce NH4+ uptake.  相似文献   

19.
The energetics of ammonium ion transport by Escherichia coli have been studied using [14C]methylammonium as a substrate. Rapid assays for uptake allowed kinetic parameters (CH3NH3+ Km = 36 microM; Vmax = 4 nmol X s-1 X mg-1 to be determined in the absence of CH3NH3+ metabolism. Cells cultured in media containing 1 mM NH4+ failed to express CH3NH3+ transport activity. Methylammonium accumulated at levels which were 100-fold higher than those of the medium. This accumulation was dependent upon the addition of glucose or pyruvate. The entry of CH3NH3+ supported by glucose oxidation in an F1F0-ATPase-deficient mutant was blocked by uncoupler. Transport by wild-type cells under similar conditions was significantly inhibited by arsenate. Thus, CH3NH3+ uptake requires both ATP and an electrochemical H+ gradient. This transport activity was lost upon exposure of E. coli to osmotic shock, but could be recovered by incubation of shocked cells with boiled shock fluid or with glucose plus K+ in the presence of chloramphenicol. Similar reconstitution was observed in K+-depleted parental strains, but not in a mutant defective in K+ transport, demonstrating a requirement for internal K+. However, external K+ proved to be a noncompetitive inhibitor (Ki = 1 mM) of CH3NH3+ uptake by K+ -replete bacteria. External Na+ had no effect on transport. The addition of NH4+ or CH3NH3+ induced a rapid exodus of intracellular 86Rb+, an analog which was able to substitute for K+. The molar ratio of CH3NH3+ uptake to Rb+ exit was 1.12 +/- 0.11. These findings support a mechanism for CH3NH3+ (NH4+) accumulation which requires K+ antiport (exchange) and is driven by the electrochemical K+ gradient.  相似文献   

20.
During a study aimed at generating a bispecific molecule between BN antagonist (D-Trp(6),Leu(13)-psi[CH(2)NH]-Phe(14))BN(6-14) (Antag1) and mAb22 (anti-FcgammaRI), we attempted to cross-link the two molecules by introducing a thiol group into Antag1 via 2-iminothiolane (2-IT, Traut's reagent). We found that reaction of Antag1 with 2-IT, when observed using HPLC, affords two products, but that the later eluting peptide is rapidly transformed into the earlier eluting peptide. To understand what was occurring we synthesized a model peptide, D-Trp-Gln-Trp-NH(2) (TP1), the N-terminal tripeptide of Antag1. Reaction of TP1 with 2-IT for 5 min gave products 1a and 3a; the concentration of 1a decreased with reaction time, whereas that of 3a increased. Thiol 1a, the expected Traut product, was identified by collecting it in a vial containing N-methylmaleimide and then isolating the resultant Michael addition product 2a, which was confirmed by mass spectrometry. Thiol 1a is stable at acidic pH, but is unstable at pH 7.8, cyclizes and loses NH3 to give N-TP1-2-iminothiolane (3a), ES-MS (m/z) [602.1 (M+H)(+)], as well as regenerating TP1. Repeat reaction with Antag1 and 2-IT allowed us to isolate N-Antag1-2-iminothiolane (3b), FAB-MS (m/z) [1212.8 (M+H)(+)] and trap the normal Traut product 1b as its N-methylmaleimide Michael addition product 2b, ES-MS (m/z) [1340.8 (M+H)(+)]. Thiol 1b is also stable at acidic pH, but when neutralized is unstable and cyclizes, forming 3b and Antag1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号