首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant soluble CD134 (sCD134) facilitated feline immunodeficiency virus (FIV) entry into CXCR4-positive, cell surface CD134-negative target cells. sCD134-activated entry was dose dependent and CXCR4 dependent. We used the sCD134 activation system to explore the neutralization by four anti-V3 monoclonal antibodies (MAbs). V3 MAbs weakly neutralized FIV infection using target cells expressing both CD134 and CXCR4 but potently inhibited sCD134-activated entry into target cells expressing CXCR4 alone. These findings provide direct evidence for a sequential interaction of FIV Env with CD134 and CXCR4 and reveal the presence of a cryptic epitope in V3 that is masked in the mature envelope oligomers.  相似文献   

2.
Hu QY  Fink E  Happer M  Elder JH 《Journal of virology》2011,85(14):7108-7117
Heparan sulfate proteoglycans (HSPGs) act as binding receptors or attachment factors for the viral envelope of many viruses, including strains of HIV and feline immunodeficiency virus (FIV). The FIV gp95 glycoprotein (SU) from laboratory-adapted strains (tissue culture adapted [TCA]) such as FIV-34TF10 can bind to HSPG, whereas SU from field strains (FS) such as FIV-PPR cannot. Previous studies indicate that SU-HSPG interactions occur within the V3 loop. We utilized a series of nested V3 peptides to further map the HSPG binding sites and found that both sides of the predicted V3 loop stem were critical for the binding but not the CXCR4 binding domain near the predicted tip of the V3 loop. Neutralization assays for TCA strain entry using the same set of V3 peptides showed that peptides targeting CXCR4 or HSPG binding sites can block infection, supporting the V3 loop as a critical neutralization target. Site-directed mutagenesis identified two highly conserved arginines, R379 and R389, on the N-terminal side of the V3 stem as critical for the contact between SU and HSPG. Residues K407, K409, K410, and K412 on the C-terminal side of the V3 stem form a second nonconserved domain necessary for HSPG binding, consistent with the observed specificity distinctions with FS FIV. Our findings discriminate structural determinants important for HSPG and CXCR4 binding by FIV SU and thus further define the importance of the V3 loop for virus entry and infection.  相似文献   

3.
Heparan sulfate proteoglycans (HSPG) can act as binding receptors for certain laboratory-adapted (TCA) strains of feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV). Heparin, a soluble heparin sulfate (HS), can inhibit TCA HIV and FIV entry mediated by HSPG interaction in vitro. In the present study, we further determined the selective interaction of heparin with the V3 loop of TCA of FIV. Our current results indicate that heparin selectively inhibits infection by TCA strains, but not for field isolates (FS). Heparin also specifically interferes with TCA surface glycoprotein (SU) binding to CXCR4, by interactions with HSPG binding sites on the V3 loop of the FIV envelope protein. Peptides representing either the N- or C-terminal side of the V3 loop and containing HSPG binding sites were able to compete away the heparin block of TCA SU binding to CXCR4. Heparin does not interfere with the interaction of SU with anti-V3 antibodies that target the CXCR4 binding region or with the interaction between FS FIV and anti-V3 antibodies since FS SU has no HSPG binding sites within the HSPG binding region. Our data show that heparin blocks TCA FIV infection or entry not only through its competition of HSPG on the cell surface interaction with SU, but also by its interference with CXCR4 binding to SU. These studies aid in the design and development of heparin derivatives or analogues that can inhibit steps in virus infection and are informative regarding the HSPG/SU interaction.  相似文献   

4.
CD134 is a primary binding receptor for feline immunodeficiency virus (FIV), and with CXCR4 facilitates infection of CD4(+) T cells. Human CD134 fails to support FIV infection. To delineate the regions important for defining virus specificity of CD134, we exchanged domains between human and feline CD134. The binding site for FIV surface glycoprotein (SU) is located in domain 1, in a region distinct from the natural ligand (CD134L)-binding site. Mutagenesis showed that Asp60 and Asp62 are required for interaction with FIV, and modeling studies localized these two residues to the outer edge of domain 1. Substitutions S60D and N62D, in conjunction with H45S, R59G and V64K, imparted both FIV SU binding and receptor function to human CD134. Finally, we demonstrated that soluble CD134 facilitates infection of CD134(-) CXCR4(+) target cells in a manner analogous to CD4 augmentation of HIV infection.  相似文献   

5.
Shimojima M 《Uirusu》2007,57(1):75-82
Feline immunodeficiency virus (FIV) induces a disease similar to acquired immunodeficiency syndrome (AIDS) in cats, yet in contrast to human immunodeficiency virus (HIV), CD4 is not the viral receptor. We identified a primary receptor for FIV as CD134 (OX40), a T cell activation antigen and costimulatory molecule. CD134 expression promotes viral binding and renders cells permissive for viral entry, productive infection, and syncytium formation. Infection is CXCR4-dependent, analogous to infection with X4 strains of HIV. Thus, despite the evolutionary divergence of the feline and human lentiviruses, both viruses use receptors that target the virus to a subset of cells that are pivotal to the acquired immune response. Further, we applied the new method for FIV receptor to Ebola virus entry factors with some modifications, and identified receptor-type tyrosine kinases, Axl and Dtk (members of Tyro3 family). Distribution of the molecules matches well with the Ebola virus tropism.  相似文献   

6.
Strains of the feline immunodeficiency virus (FIV) presently under investigation exhibit distinct patterns of in vitro tropism. In particular, the adaptation of FIV for propagation in Crandell feline kidney (CrFK) cells results in the selection of strains capable of forming syncytia with cell lines of diverse species origin. The infection of CrFK cells by CrFK-adapted strains appears to require the chemokine receptor CXCR4 and is inhibited by its natural ligand, stromal cell-derived factor 1alpha (SDF-1alpha). Here we found that inhibitors of CXCR4-mediated infection by human immunodeficiency virus type I (HIV-1), such as the bicyclam AMD3100 and short peptides derived from the amino-terminal region of SDF-1alpha, also blocked infection of CrFK by FIV. Nevertheless, we observed differences in the ranking order of the peptides as inhibitors of FIV and HIV-1 and showed that such differences are related to the species origin of CXCR4 and not that of the viral envelope. These results suggest that, although the envelope glycoproteins of FIV and HIV-1 are substantially divergent, FIV and HIV-1 interact with CXCR4 in a highly similar manner. We have also addressed the role of CXCR4 in the life cycle of primary isolates of FIV. Various CXCR4 ligands inhibited infection of feline peripheral blood mononuclear cells (PBMC) by primary FIV isolates in a concentration-dependent manner. These ligands also blocked the viral transduction of feline PBMC by pseudotyped viral particles when infection was mediated by the envelope glycoprotein of a primary FIV isolate but not by the G protein of vesicular stomatitis virus, indicating that they act at an envelope-mediated step and presumably at viral entry. These findings strongly suggest that primary and CrFK-adapted strains of FIV, despite disparate in vitro tropisms, share usage of CXCR4.  相似文献   

7.
Miyazawa T 《Uirusu》2005,55(1):27-34
Lentiviruses consist of primate lentiviruses, ungulate lentiviruses and feline immunodeficiency virus (FIV). The primate lentiviruses utilize CD4 and chemokine receptors as a primary receptor and coreceptors, respectively. Recently we found that FIV utilizes CD134 and CXCR4 as a primary receptor and a coreceptor, respectively. FIV utilizes feline CD134 but not human CD134, whereas it can utilize both feline and human CXCR4. Exceptionally an FIV laboratory strain can infect human cells via CXCR4 only by the CD134-independent manner. Similarly several strains of primate lentiviruses also infect cells by the CD4-independent manner. In this review, the evolution of the lentiviruses and possible mechanism for lentiviral cross-species transmission is discussed.  相似文献   

8.
Synthetic peptides have been used to map linear B-cell epitopes of the third variable (V3) region of the feline immunodeficiency virus (FIV) external membrane glycoprotein gp120. The analysis of sera from naturally and experimentally FIV-infected cats by Pepscan and enzyme immunoassay with four partially overlapping peptides evidenced three antibody-binding domains, two of which mapped in the carboxyl-terminal half of V3. In particular, the V3.3 sequence (Gly-392-Phe-413) turned out to be important for in vitro neutralization of the virus in that the peptide inhibited the FIV-neutralizing activity of pooled immune cat sera, and on the other hand, cat sera raised against this peptide effectively neutralized FIV infectivity for Crandell feline kidney cells.  相似文献   

9.
The surface glycoprotein (gp95) of the feline immunodeficiency virus (FIV) binds in a strain-specific manner to several cell surface molecules, including CXCR4, heparan sulfate proteoglycans (HSPGs), DC-SIGN, and a 43-kDa cell surface receptor on T cells recently identified as CD134 by M. Shimojima et al. (Science 303:1192-1195, 2004). CXCR4 is the entry receptor in all known cases, and the other molecules act as binding receptors to help facilitate infection. In this report, we confirm and extend the findings regarding CD134 as a primary receptor for FIV. In addition, we show that temperature critically influences the binding properties of FIV gp95 to CXCR4 and HSPGs. The data show that gp95 of the field strain FIV-PPR bound to CXCR4 at 22 degrees C, whereas binding was not detected at 4 degrees C. In contrast, binding of the laboratory adapted FIV-34TF10 gp95 was observed at either 4 degrees C or 22 degrees C, albeit at increased levels at the higher temperature. The level of CXCR4 increased after the temperature was switched from 4 to 22 degrees C, whereas the level of HSPGs decreased, resulting in higher binding of gp95 from both strains to CXCR4 and lower binding of gp95 of FIV-34TF10 to HSPGs (FIV-PPR gp95 does not bind to these molecules). The findings also show that HSPGs facilitate the CXCR4-mediated infectivity of CrFK and G355-5 cells by FIV-34TF10. These two nonlymphoid cell lines express very low levels of CXCR4 and are permissive to FIV-34TF10 but not to productive infection by FIV-PPR. However, overexpression of human CXCR4 in CrFK or G-355-5 cells resulted in extensive cell fusion and infection by FIV-PPR. Taken together, these findings indicate that factors that increase the effective concentration of CXCR4 enhance FIV infectivity and may involve (i) temperature or ligand-induced conformational changes in CXCR4 that enhance SU binding, (ii) coreceptor interactions with gp95 that either alter gp95 conformation to enhance CXCR4 binding and/or raise the localized concentration of receptor or ligand, or (iii) direct increase in CXCR4 concentration via overexpression.  相似文献   

10.
The use of chemokine receptors as cell recognition signals is a property common to several lentiviruses, including feline, human, and simian immunodeficiency viruses. Previously, two feline immunodeficiency virus (FIV) isolates, V1CSF and Petaluma, were shown to use chemokine receptors in a strain-dependent manner to infect human peripheral blood mononuclear cells (PBMC) (J. Johnston and C. Power, J. Virol. 73:2491-2498, 1999). Since the sequences of these viruses differed primarily in regions of the FIV envelope gene implicated in receptor use and cell tropism, envelope chimeras of V1CSF and Petaluma were constructed to investigate the role of envelope diversity in the profiles of chemokine receptors used by FIV to infect primate cells. By use of a receptor-blocking assay, all viruses were found to infect human and macaque PBMC through a mechanism involving the CXCR4 receptor. However, infection by viruses encoding the V3-to-V5 region of the V1CSF surface unit was also inhibited by blockade of the CCR3 or CCR5 receptor. Similar results were obtained with GHOST cells, human osteosarcoma cells expressing specific combinations of chemokine receptors. CXCR4 was required for infection by all FIV strains, but viruses expressing the V3-to-V5 region of V1CSF required the concurrent presence of either CCR3 or CCR5. In contrast, CXCR4 alone was sufficient to allow infection of GHOST cells by FIV strains possessing the V3-to-V5 region of Petaluma. To assess the role of primate chemokine receptors in productive infection, Crandell feline kidney (CrFK) cells that expressed human CXCR4, CCR3, or CCR5 in addition to feline CXCR4 were generated. Sustained infection by viruses encoding the V3-to-V5 region of V1CSF was detected in CrFK cells expressing human CCR3 or CCR5 but not in cells expressing CXCR4 alone, while all CrFK cell lines were permissive to viruses encoding the V3-to-V5 region of Petaluma. These results indicate that FIV uses chemokine receptors to infect both human and nonhuman primate cells and that the profiles of these receptors are dependent on envelope sequence, and they provide insights into the mechanism by which xenoinfections may occur.  相似文献   

11.
Feline immunodeficiency virus (FIV) induces a disease state in the domestic cat that is similar to AIDS in human immunodeficiency virus (HIV)-infected individuals. As with HIV, FIV can be divided into primary and cell culture-adapted isolates. Adaptation of FIV to replicate and form syncytia in the Crandell feline kidney (CrFK) cell line is accompanied by an increase in the net charge of the V3 loop of the envelope glycoprotein, mirroring the changes observed in the V3 loop of HIV gp120 with the switch from a non-syncytium-inducing phenotype to a syncytium-inducing phenotype. These data suggest a common mechanism of infection with FIV and HIV. In this study, we demonstrate that cell culture-adapted strains of FIV are able to use the alpha-chemokine receptor CXCR4 for cell fusion. Following ectopic expression of human CXCR4 on nonpermissive human cells, the cells are able to fuse with FIV-infected feline cells. Moreover, fusion between FIV-infected feline cells and CXCR4-transfected human cells is inhibited by both anti-CXCR4 and anti-FIV antibodies. cDNAs encoding the feline CXCR4 homolog were cloned from both T-lymphoblastoid and kidney cell lines. Feline CXCR4 displayed 94.9% amino acid sequence identity with human CXCR4 and was found to be expressed widely on cell lines susceptible to infection with cell culture-adapted strains FIV. Ectopic expression of feline CXCR4 on human cells rendered the cells susceptible to FIV-dependent fusion. Moreover, feline CXCR4 was found to be as efficient as human CXCR4 in supporting cell fusion between CD4-expressing murine fibroblast cells and either HIV type 1 (HIV-1) or HIV-2 Env-expressing human cells. Previous studies have demonstrated that feline cells expressing human CD4 are not susceptible to infection with HIV-1; therefore, further restrictions to HIV-1 Env-dependent fusion may exist in feline cells. As feline and human CXCR4 support both FIV- and HIV-dependent cell fusion, these results suggest a close evolutionary link between FIV and HIV and a common mechanism of infection involving an interaction between the virus and a member of the seven-transmembrane domain chemokine receptor family of molecules.  相似文献   

12.
The CD4 molecule is an essential receptor for human immunodeficiency virus type 1 (HIV-1) through high-affinity interactions with the viral external envelope glycoprotein gp120. Previously, neutralizing monoclonal antibodies (MAbs) specific to the third hypervariable domain of gp120 (the V3 loop) have been thought to block HIV infection without affecting the binding of HIV particles to CD4-expressing human cells. However, here we demonstrate that this conclusion was not correct and was due to the use of soluble gp120 instead of HIV particles. Indeed, neutralizing anti-V3 loop MAbs inhibited completely the binding and entry of HIV particles into CD4+ human cells. In contrast, the binding of virus was only partially inhibited by neutralizing anti-CD4 MAbs against the gp120 binding site in CD4, which, like the anti-V3 loop MAbs, completely inhibited HIV entry and infection. Nonneutralizing control MAbs against either the V3 loop or the N or C terminus of gp120 had no significant effect on HIV binding and entry. HIV-1 particles were also found to bind human and murine cells expressing or not expressing the human CD4 molecule. Interestingly, the binding of HIV to CD4+ murine cells was inhibited by both anti-V3 and anti-CD4 MAbs, whereas the binding to human and murine CD4- cells was affected only by anti-V3 loop MAbs. The effect of anti-V3 loop neutralizing MAbs on the HIV binding to cells appears not to be the direct consequence of gp120 shedding from HIV particles or of a decreased affinity of CD4 or gp120 for binding to its surface counterpart. Taken together, our results suggest the existence of CD4-dependent and -independent binding events involved in the attachment of HIV particles to cells; in both of these events, the V3 loop plays a critical role. As murine cells lack the specific cofactor CXCR4 for HIV-1 entry, other cell surface molecules besides CD4 might be implicated in stable binding of HIV particles to cells.  相似文献   

13.
The env open reading frames of African lion (Panthera leo) lentivirus (feline immunodeficiency virus [FIV(Ple)]) subtypes B and E from geographically distinct regions of Africa suggest two distinct ancestries, with FIV(Ple)-E sharing a common ancestor with the domestic cat (Felis catus) lentivirus (FIV(Fca)). Here we demonstrate that FIV(Ple)-E and FIV(Fca) share the use of CD134 (OX40) and CXCR4 as a primary receptor and coreceptor, respectively, and that both lion CD134 and CXCR4 are functional receptors for FIV(Ple)-E. The shared usage of CD134 and CXCR4 by FIV(Fca) and FIV(Ple)-E may have implications for in vivo cell tropism and the pathogenicity of the E subtype among free-ranging lion populations.  相似文献   

14.
The process of feline immunodeficiency virus (FIV) cell entry was examined using assays for virus replication intermediates. FIV subtype B was found to utilize the chemokine receptor CXCR4, but not CCR5, as a cellular receptor. Zidovudine blocked formation of late viral replication products most effectively, including circular DNA genome intermediates. Our findings extend the role of CXCR4 as a primary receptor for CD4-independent cell entry by FIV.  相似文献   

15.
The feline homologue of CD134 is the primary binding receptor for feline immunodeficiency virus (FIV), targeting the virus preferentially to activated CD4+ helper T cells. However, strains of FIV differ in utilization of CD134; the prototypic strain PPR requires a minimal determinant in the first cysteine-rich domain (CRD1) of feline CD134 to confer near-optimal receptor function, while strains such as GL8 require additional determinants in the CD134 CRD2. We map this determinant to a loop in CRD2 governing the interaction between the receptor and its ligand; the amino acid substitutions S78N-S79Y-K80E restored full viral receptor activity to the CDR2 of human CD134 in the context of feline CD134, with tyrosine-79 appearing to be the critical residue for restoration of receptor function.  相似文献   

16.
17.
18.
The feline homolog of the α-chemokine receptor CXCR4 has recently been shown to support cell-cell fusion mediated by CXCR4-dependent strains of human immunodeficiency virus (HIV) and strains of feline immunodeficiency virus (FIV) that have been selected for growth in the Crandell feline kidney (CrFK) cell line. In this report we demonstrate that expression of CXCR4 alone is sufficient to render cells from diverse species permissive for fusion with FIV-infected cells, suggesting that CXCR4 is the sole receptor for CrFK-tropic strains of FIV, analogous to CD4-independent strains of HIV-2. To identify the regions of CXCR4 involved in fusion mediated by FIV, we screened panels of chimeric CXCR4 molecules for the ability to support fusion with FIV-infected cells. Human CXCR4 supported fusion more efficiently than feline CXCR4 and feline/human CXCR4 chimeras, suggesting that the second and third extracellular loops of human CXCR4 contain a critical determinant for receptor function. Rat/human CXCR4 chimeras suggested that the second extracellular loop contained the principal determinant for receptor function; however, chimeras constructed between human CXCR2 and CXCR4 revealed that the first and third loops of CXCR4 contribute to the FIV Env binding site, as replacement of these domains with the corresponding domains of CXCR2 rendered the molecule nonfunctional in fusion assays. Mutation of the DRY motif and the C-terminal cytoplasmic tail of CXCR4 did not affect the ability of the molecule to support fusion, suggesting that neither signalling via G proteins nor receptor internalization was required for fusion mediated by FIV; similarly, truncation of the N terminus of CXCR4 did not affect the function of the molecule as a receptor for FIV. CXCR4-transfected feline cells were rendered permissive for infection with both the CrFK-tropic PET isolate of FIV and the CXCR4-dependent RF strain of HIV-1, and susceptibility to infection correlated well with ability to support fusion. The data suggest that the second extracellular loop of CXCR4 is the major determinant of CXCR4 usage by FIV.  相似文献   

19.
Specific-pathogen-free cats, immunized with a 22-amino-acid synthetic peptide designated V3.3 and derived from the third variable region of the envelope glycoprotein of the Petaluma isolate of feline immunodeficiency virus (FIV), developed high antibody titers to the V3.3 peptide and to purified virus, as assayed by enzyme-linked immunoassays, as well as neutralizing antibodies, as assayed by the inhibition of syncytium formation in Crandell feline kidney cells. V3.3-immunized animals and control cats were challenged with FIV and then monitored for 12 months; V3.3 immunization failed to prevent FIV infection, as shown by virus isolation, anti-whole virus and anti-p24 immunoglobulin G antibody responses, and positive PCRs for gag and env gene fragments. Sequence analysis of the V3 region showed no evidence for the emergence of escape mutants that might have contributed to the lack of protection. The sera of the V3.3-hyperimmunized cats and two anti-V3.3 monoclonal antibodies neutralized FIV infectivity for Crandell feline kidney cells at high antibody dilutions but paradoxically failed to completely neutralize FIV infectivity at low dilutions. Moreover, following FIV challenge, V3.3-immunized animals developed a faster and higher antiviral antibody response than control cats. This was probably due to enhanced virus replication, as also suggested by quantitative PCR data.  相似文献   

20.
The cellular tropism of the feline immunodeficiency virus (FIV) is affected by changes in variable region 3 (V3) of the surface (SU) envelope glycoprotein (Verschoor, E. J., et al., J. Virol. 69:4752-4757, 1995). By using high-dose DNA transfection, an FIV molecular clone with a non-CRFK-tropic V3 acquired the ability to replicate in CRFK cells. A single point mutation from a methionine to a threonine in the ectodomain of its transmembrane (TM) envelope glycoprotein was responsible for this change in viral tropism. This substitution is located in the putative SU interactive region, between the fusion peptide and the membrane-spanning region. Our results show that this region of the TM envelope glycoprotein constitutes an additional determinant for cell tropism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号