首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Knoblauch A  Palm G 《Bio Systems》2005,79(1-3):83-90
The response of a cortical neuron to a stimulus can show a very large variability when repeatedly stimulated by exactly the same stimulus. This has been quantified in terms of inter-spike-interval (ISI) statistics by several researchers (e.g., [Softky, W., Koch, C., 1993. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13(1), 334-350.]). The common view is that this variability reflects noisy information processing based on redundant representation in large neuron populations. This view has been challenged by the idea that the apparent noise inherent in brain activity that is not strictly related or temporally coupled to the experiment could be functionally significant. In this work we examine the ISI statistics and discuss these views in a recently published model of interacting cortical areas [Knoblauch, A., Palm, G., 2002. Scene segmentation by spike synchronization in reciprocally connected visual areas. I. Local effects of cortical feedback. Biol. Cybernet. 87(3), 151-167.]. From the results of further single neuron simulations we can isolate temporally modulated synaptic input as a main contributor for high ISI variability in our model and possibly in real neurons. In contrast to alternative mechanisms, our model suggests a function of the temporal modulations for short-term binding and segmentation of figures from background. Moreover, we show that temporally modulated inputs lead to ISI statistics which fit better to the neurophysiological data than alternative mechanisms.  相似文献   

3.
4.
The therapeutic potential of autophagy for the treatment cancer and other diseases is beset by paradoxes stemming from the complexity of the interactions between the apoptotic and autophagic machinery. The simplest question of how autophagy acts as both a protector and executioner of cell death remains the subject of substantial controversy. Elucidating the molecular interactions between the processes will help us understand how autophagy can modulate cell death, whether autophagy is truly a cell death mechanism, and how these functions are regulated. We suggest that, despite many connections between autophagy and apoptosis, a strong causal relationship wherein one process controls the other, has not been demonstrated adequately. Knowing when and how to modulate autophagy therapeutically depends on understanding these connections.  相似文献   

5.
Sex and death: what is the connection?   总被引:15,自引:0,他引:15  
Partridge L  Gems D  Withers DJ 《Cell》2005,120(4):461-472
A cost of reproduction, where lifespan and fecundity are negatively correlated, is of widespread occurrence. Mutations in insulin/IGF signaling (IIS) pathways and dietary restriction (DR) can extend lifespan in model organisms but do not always reduce fecundity, suggesting that the link between lifespan and fecundity is not inevitable. Understanding the molecular basis of the cost of reproduction will be informed by elucidation of the mechanisms by which DR and IIS affect these two traits.  相似文献   

6.
Technology is a social practice that embodies the capacity of societies to transform themselves by creating and manipulating not only physical objects, but also symbols and cultural forms. It is an illusion that scientific and socioeconomic drivers are the sole elements determining the destiny of a technology. Although they are important, what is really crucial is the way in which a human community 'metabolizes' a new technology, that is the way in which a new technology becomes part of the mental landscape of people living in that society. In this paper I argue that today, fear of technology mainly emerges from a lack of meaning surrounding the technology revolution. Present technology is developing without a sound cultural framework that could give technology a sense beyond mere utilitarian considerations. Frightening stories then end up being a privileged way to incorporate technology into a meaningful context. However, fear is not the sole emotion that can enable integration of new concepts into mental schemes, two other powerful emotional forces should be considered: wonder and curiosity.  相似文献   

7.
8.
9.
The first systematic investigation of an annelid genome has revealed that the genes of the marine worm Platynereis dumerilii are more closely related to those of vertebrates than to those of insects or nematodes. For hundreds of millions of years vertebrates have preserved exon-intron structures descended from their last common ancestor with the annelids.  相似文献   

10.
11.
12.
13.
14.
Following several decades of research, there is not yet a convincing vaccine against shigellosis. It is still difficult, in spite of the breadth of strategies (i.e. live attenuated oral, killed oral, subunit parenteral) to select an optimal option. Two approaches are clearly emerging: (i) live attenuated deletion mutants based on rational selection of genes that are key in the pathogenic process, and (ii) conjugated detoxified polysaccharide parenteral vaccines, or more recently conjugated synthetic carbohydrates. Some of these approaches have already undergone phase I and II clinical trials with promising results, but important issues have also emerged, particularly the discrepancy between colonization and immunogenic potential of live attenuated vaccine candidates depending upon the population concerned (i.e. non endemic vs. endemic areas). Efforts are needed to definitely establish the proof of concept of these approaches, and thus the need for clinical trials which should also soon explore the possibility to associate different serotypes, in response to serotype specific protection against shigellosis. More basic research is also required to improve what we can still consider as first-generation vaccines, and to explore possible new paradigms including the search for cross-protective antigens.  相似文献   

15.
Brylinski M  Skolnick J 《Proteins》2008,70(2):363-377
It is well known that ligand binding and release may induce a wide range of structural changes in a receptor protein, varying from small movements of loops or side chains in the binding pocket to large‐scale domain hinge‐bending and shear motions or even partial unfolding that facilitates the capture and release of a ligand. An interesting question is what in general are the conformational changes triggered by ligand binding? The aim of this work is analyze the magnitude of structural changes in a protein resulting from ligand binding to assess if the state of ligand binding needs to be included in template‐based protein structure prediction algorithms. To address this issue, a nonredundant dataset of 521 paired protein structures in the ligand‐free and ligand‐bound form was created and used to estimate the degree of both local and global structure similarity between the apo and holo forms. In most cases, the proteins undergo relatively small conformational rearrangements of their tertiary structure upon ligand binding/release (most root‐mean‐square‐deviations from native, RMSD, are <1 Å). However, a clear difference was observed between single‐ and multiple‐domain proteins. For the latter, RMSD changes greater than 1 Å and sometimes larger were found for almost 1/3 of the cases; these are mainly associated with large‐scale hinge‐bending movements of entire domains. The changes in the mutual orientation of individual domains in multiple‐domain proteins upon ligand binding were investigated using a mechanistic model based on mass‐weighted principal axes as well as interface buried surface calculations. Some preferences toward the anticipated mechanism of protein domain movements are predictable based on the examination of just the ligand‐free structural form. These results have applications to protein structure prediction, particularly in the context of protein domain assembly, if additional information concerning ligand binding is exploited. Proteins 2008. © 2007 Wiley‐Liss, Inc.  相似文献   

16.
The oxidation of low-density lipoprotein (LDL) is centrally involved in the initiation and progression of atherosclerosis. High-density lipoprotein (HDL) paraoxonase 1 (PON1) retards the oxidation of LDL and is a major antiatherosclerotic component of HDL. The PON1 gene contains a number of functional polymorphisms in both the coding and the promoter regions, which affect either the level or the substrate specificity of PON1. Genetic case-control and prospective studies conducted to date have produced confusing results. Meta-analysis of these studies indicates no simple relationship between the PON1 polymorphisms and the presence of coronary heart disease (CHD). However, at the present moment in time, it seems that PON1 status, i.e., activity and/or concentration, is more closely related to CHD, and indeed, PON1 has shown to be an independent risk factor for CHD in a prospective study, compared to the genetic polymorphisms. PON1 levels can also be modulated by environmental\lifestyle and possibly pharmaceutical factors. Larger, better designed, preferably prospective studies are needed to determine further the association of PON1 genetic polymorphisms and status with CHD.  相似文献   

17.
This paper explores the implications of certain new developments in cell biology upon neuroscience. Until recently it was thought that neurotransmitters and neuromodulators had only one function, which was to stimulate their specific receptors at the cell surface. From here on, all activity was supposed to be effected by postsynaptic cascades. The discovery that membrane components, particularly G-protein-linked receptors, are not static but are subject to a massive and complex process of continual endocytosis, processing in the endosome system and recycling back to the external membrane, raises the question of its functional significance. In addition, it has been found that many neuromodulators such as polypeptides have their main locus of action inside the postsynaptic neuron. This review covers the role of the endocytic mechanism on receptor desensitization and resensitization, synaptic reorganization and plasticity synaptic scaling and the possible repair of oxidative damage. The possible involvement of this system in Alzheimer's disease is discussed.  相似文献   

18.
Nitric oxide gas in solution (NO) relaxes blood vessels with similar actions and pharmacodynamics as the endothelium derived relaxant factor (EDRF) and has been proposed to be a component of the materials released from stimulated endothelial cells. Certain data however suggest that EDRF and NO may not be identical. In some non-vascular smooth muscles, NO and EDRF exhibit markedly different pharmacologic profiles. Furthermore the interaction of EDRF and NO with anion exchange resins differ. The hypothesis that EDRF is identical to nitric oxide gas in solution or a nitrogen oxide containing compound is discussed.  相似文献   

19.
The DNA–membrane complex has been the subject of intensive investigation for over 35 years as the possible site for DNA replication in the prokaryotic cell and the site through which newly synthesized chromosomes are segregated into daughter cells. However, the molecular mechanisms which control these phenomena are, for the most part, poorly understood despite genetic, biochemical, and morphologic evidence in favour of their existence. This is probably due to the transient nature and non-covalent interactions that occur between DNA and the membrane. In addition, there is a paucity of knowledge concerning the nature of the membrane receptors for DNA and whether the membrane plays simply a structural or metabolic role in the two processes. Plasmids can provide important insights into the role of the membrane in replication and partitioning because the plasmid life cycle is relatively simple, with replication occurring during the cell cycle and partitioning during cell division. The replicon model of Jacob et al. (1963, Cold Spring Harbor Symp Quant Biol 28: 329–348) still represents a good conceptual framework (with modifications) to explain how plasmid replication and partitioning are linked by the membrane. In its simplest form, the model focuses on specific membrane binding sites (possibly along the equator of the cell) for plasmid (or bacterial) replication, with the membrane acting as a motive force to separate the newly synthesized replicons and their attached sites into daughter cells. Indeed, proteins involved in both plasmid replication and partitioning have been found in membrane fractions and some plasmids require membrane binding for initiation and an active partitioning. We propose that several factors are critical for both plasmid DNA replication and partitioning. One factor is the extent of negative supercoiling (brought about by an interplay of various topoisomerases, but most importantly by DNA gyrase). Supercoiling is known to be critical for initiation of DNA replication but may also be important for the formation of a partition complex in contact with the cell membrane. Another factor is the presence of specific subdomains of the membrane which can interact specifically with origin DNA and possibly other regions involved in partitioning. Such domains may be induced transiently or be present at all times during the cell cycle.  相似文献   

20.

Iron is an essential trace element involved in oxidation–reduction reactions, oxygen transport and storage, and energy metabolism. Iron in excess can be toxic for cells, since iron produces reactive oxygen species and is important for survival of pathogenic microbes. There is a fine-tuning in the regulation of serum iron levels, determined by intestinal absorption, macrophage iron recycling, and mobilization of hepatocyte stores versus iron utilization, primarily by erythroid cells in the bone marrow. Hepcidin is the major regulatory hormone of systemic iron homeostasis and is upregulated during inflammation. Hepcidin metabolism is altered in chronic kidney disease. Ferroportin is an iron export protein and mediates iron release into the circulation from duodenal enterocytes, splenic reticuloendothelial macrophages, and hepatocytes. Systemic iron homeostasis is controlled by the hepcidin–ferroportin axis at the sites of iron entry into the circulation. Hepcidin binds to ferroportin, induces its internalization and intracellular degradation, and thus inhibits iron absorption from enterocytes, and iron release from macrophages and hepatocytes. Recent data suggest that hepcidin, by slowing or preventing the mobilization of iron from macrophages, may promote atherosclerosis and may be associated with increased cardiovascular disease risk. This article reviews the current data regarding the molecular and cellular pathways of systemic and autocrine hepcidin production and seeks the answer to the question whether changes in hepcidin translate into clinical outcomes of all-cause and cardiovascular mortality, and cardiovascular and renal end-points.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号