首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abstract. The alcyonacean soft coral genera Sarcophyton and Lobophytum are conspicuous, ecologically important members of shallow reef communities throughout the Indo-West Pacific. Study of their ecology is, however, hindered by incomplete knowledge of their taxonomy: most species cannot be identified in the field and the two genera cannot always be distinguished reliably. We used a 735-bp fragment of the octocoral-specific mitochondrial protein-coding gene msh1 to construct a phylogeny for 92 specimens identified to 19 species of Lobophytum and 16 species of Sarcophyton . All phylogenetic methods used recovered a tree with three strongly supported clades. One clade included only morphologically typical Sarcophyton species with a stalk distinct from the polypary, poorly formed club-shaped sclerites in the colony surface, and large spindles in the interior of the stalk. A second clade included only morphologically typical Lobophytum colonies with lobes and ridges on the colony surface, poorly formed clubs in the colony surface, and interior sclerites consisting of oval forms with regular girdles of ornamental warts. The third distinct clade included a mix of Sarcophyton and Lobophytum nominal species with intermediate morphologies. Most of the species in this mixed clade had a polypary that was not distinct from the stalk, and the sclerites in the colony surface were clubs with well-defined heads. Within the Sarcophyton clade, specimens identified as Sarcophyton glaucum belonged to six very distinct genetic sub-clades, suggesting that this morphologically heterogeneous species is actually a cryptic species complex. Our results highlight the need for a complete taxonomic revision of these genera, using molecular data to help confirm species boundaries as well as to guide higher taxonomic decisions.  相似文献   

3.
Coral reef anthozoans exhibit extensive morphological variation across and within environmental clines making it difficult to define species boundaries. The relative contributions of genetic variation and ecophenotypic plasticity to the observed phenotypic variation are unknown in most cases. The branching octocoral Pseudopterogorgia elisabethae is widely distributed throughout the Caribbean and colonies vary in appearance within and among populations. We performed genetic and morphological analyses of P.elisabethae from multiple locations within the Bahamas, as well as a Florida Keys and a distant western Caribbean location to determine the levels of genetic and morphological variation (colony form and sclerites characteristics) across populations from different sites, and assessed whether there was congruence between the genetic and morphological variation. Based on sequences of the internal transcribed spacer region of the ribosomal DNA, four groups were found that generally correspond to the geography of the Bahamas. Morphometric analysis of branch and branchlet characteristics indicated that colonies from two of the sites differed from the rest, but there was no clear correspondence between genetic and morphological variation. In general, there were no qualitative differences in the sclerites from the different populations. However, there were some differences in the dimensions of scaphoids and rods of colonies from different sites. This study has shown that P. elisabethae displays genetic and morphologic variation among some populations of the Bahamas, Florida and San Andres, Colombia. P. elisabethae is harvested in the Bahamas and these findings should be considered in management plans and conservation efforts for the species.  相似文献   

4.
The gross morphology of soft coral surface sclerites has been studied for taxonomic purposes for over a century. In contrast, sclerites located deep in the core of colonies have not received attention. Some soft coral groups develop massive colonies, in these organisms tissue depth can limit light penetration and circulation of internal fluids affecting the physiology of coral tissues and their symbiotic algae; such conditions have the potential to create contrasting calcifying conditions. To test this idea, we analyzed the crystal structure of sclerites extracted from different colony regions in selected specimens of zooxanthellate and azooxanthellate soft corals with different colony morphologies, these were: Sarcophyton mililatensis, Sinularia capillosa, Sinularia flexibilis, Dendronephthya sp. and Ceeceenus levis. We found that the crystals that constitute polyp sclerites differ from those forming stalk sclerites. We also observed different crystals in sclerites located at various depths in the stalk including signs of sclerite breakdown in the stalk core region. These results indicate different modes of calcification within each colonial organism analyzed and illustrate the complexity of organisms usually regarded as repetitive morphological and functional units. Our study indicates that soft corals are ideal material to study natural gradients of calcification conditions. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

5.
6.
Sclerites in the gorgonian coral Briareum asbestinum perform the dual role of skeletal support against wave action and structural defence against predators. Local populations of B. asbestinum vary along gradients of decreasing water movement and decreasing predator abundance with increasing depth, such that sclerite length increases and sclerite density decreases with depth. Based on this pattern, I explored a possible trade-off between the sclerite composition that is most resistant to tearing versus most deterrent to predatory gastropods. Feeding assays revealed that artificial foods containing longer sclerites and those containing higher volume fractions of sclerites are less palatable to the gastropod Cyphoma gibbosum. However, real colonies appear constrained, in that they do not contain both long sclerites and high volume fractions at the same time. Given a choice among real colonies, snails prefer shallow-water colonies with shorter sclerites e ven though the sclerite volume fractions are high. Although least deterrent to snails, shallow-water colonies are 56% more resistant to tearing than their deep-water counterparts. Hence, variation in sclerite composition among local populations of B. asbestinum may be maintained by opposing selection for support versus defense.  相似文献   

7.
8.
The South American seed-harvester ant Pogonomyrmex laticeps has dimorphic queens: ergatoid (permanently wingless) and brachypterous (short, non-functional wings). Surveys in western Argentina indicated that colonies near Chilecito, La Rioja Province, produced only ergatoid queens, while those near Punta Balasto, Catamarca Province (263 km away), produced only brachypterous queens. Brachypterous queens were significantly larger than ergatoid queens for 10 of 11 external characters, but both phenotypes had comparable reproductive potential, i.e., a spermatheca and a similar number of ovarioles. Using normal winged queens of the closely related P. uruguayensis for comparison, we determined that both queen phenotypes in P. laticeps had a full set of dorsal thoracic sclerites, albeit each sclerite was much reduced, whereas workers had a thorax without distinct dorsal sclerites. Sclerites were fused and immobile in ergatoid queens, while they were separable and fully articulated in brachypterous queens. Both phenotypes lacked the big indirect flight muscles, but brachypterous queens retained the tiny direct flight muscles. Overall, this dimorphism across populations indicates that there are alternative solutions to selective pressures against flying queens. We lack field data about colony founding strategy (independent or dependent) for either queen phenotype, but colonies at both sites produced numerous gynes, and we infer that all foundresses initiate colonies independently and are obligate foragers.  相似文献   

9.
鳞头犬牙南极鱼为南极最为重要的底层鱼类,具有重要的生态作用和极高的商业价值,鱼类耳石形态随着生活史过程的推移有所差异,故耳石形态分析可用于推断鳞头犬牙南极鱼的生活史过程。本研究利用采集自南极罗斯海、阿蒙森海、威德尔海及拉扎列夫海120尾分属4个生活史阶段的鳞头犬牙南极鱼耳石,结合传统测量分析与椭圆傅里叶分析两种形态学研究方法,对其各生活史阶段耳石形态的差异进行研究。结果表明: 鳞头犬牙南极鱼各生活史阶段耳石形态存在差异,随着生活史过程的推移,耳石的变化趋势为整体上由轮廓平滑、复杂度较低向轮廓曲折、高度复杂化转变,且纵轴方向增长速度低于横轴方向,翼叶等特征部位变化显著。针对耳石形态的线性判别分析结果显示,椭圆傅里叶分析判别值较高,为85.4%,而传统测量分析判别值较低,为71.9%,表明相较于传统测量分析,椭圆傅里叶分析更具优势。  相似文献   

10.
11.
We have been able to discriminate different castes and sexes of ants in the same colony by measuring cuticular hydrocarbon levels with Fourier transform infrared photoacoustic spectroscopy, compared by canonical discriminant function analysis. We have now applied this methodology to various colonies of two species of ants of the genus Ectatomma in the Brazilian Cerrado. There were clear interspecific differences in cuticular hydrocarbons of these ants, with a small intraspecific variation. The differences between colonies were greater in E. brunneum than in E. vizottoi. Genetic differences among the colonies and species were well estimated by Fourier transform infrared photoacoustic spectroscopy and statistical analyses.  相似文献   

12.
杨海东  白明  李莎  路园园  马德 《昆虫学报》2015,58(12):1322-1330
【目的】昆虫的翅非常精巧与灵活,翅脉及翅关节的形态及功能长久以来受到众多领域科学家的广泛关注。由于历史条件的限制,昆虫翅的研究主要集中在翅脉,即使少量的有关翅关节形态的研究也主要是停留在二维形态数据分析的层面上。更重要的是,各骨片内部形态结构还未见报道。本研究的目的就是为了重建翅关节骨片内部和外部复杂的三维形态结构,全面呈现利用传统形态学方法无法获得的形态学信息,进而深入探究昆虫翅的形态与功能的关系。【方法】本文利用显微CT对鞘翅目4种金龟进行了扫描,通过计算机三维重建技术,对折叠和展开状态时后翅关节各个骨片(第1, 2和3腋片及中片)的内部和外部的三维形态进行研究,展示和分析昆虫翅关节内部与外部形态结构和空间运动的复杂性。【结果】翅关节骨片的三维重建模型及虚拟切面图展示了其复杂的外部形态,主要表现在表面曲率的不均匀变化和部分结构的互相遮挡两个方面。前者主要表现骨片表面具有突起、沟槽、弯折以及外长物等。后者指各骨片均呈现了不同程度的弯折,有的弯折还会互相接触,最终形成筒状结构,这样不可避免造成部分结构被遮挡或包裹。三维重建模型的断层图显示了翅关节骨片并非是实心的结构,而是分为两层:靠近表皮的为高度骨化的外骨骼,而靠近骨片核心则为疏松的类似海绵状结构。本文还展示了各个骨片在后翅折叠状和展开状态下的空间位置,并对所研究的4个科的翅关节骨片的三维形态进行了比较。【结论】翅关节骨片具有复杂的内部和外部形态结构。关节骨片的内部海绵结构和外层强烈骨化的双层结构,可能与其尽量减小骨片的重量和节约运动能量,同时又尽量保持骨片的刚性结构的形态适应策略有关。此类形态适应在材料学、空气动力学等领域具有重要的仿生学意义。  相似文献   

13.
Bacterial colony morphology can reflect different physiological stages such as virulence or biofilm formation. In this work we used transposon mutagenesis to identify genes that alter colony morphology and cause differential Congo Red (CR) and Brilliant Blue G (BBG) binding in Shewanella algae, a marine indigenous bacterium and occasional human pathogen. Microscopic analysis of colonies formed by the wild-type strain S. algae CECT 5071 and three transposon integration mutants representing the diversity of colony morphotypes showed production of biofilm extracellular polymeric substances (EPS) and distinctive morphological alterations. Electrophoretic and chemical analyses of extracted EPS showed differential patterns between strains, although the targets of CR and BBG binding remain to be identified. Galactose and galactosamine were the preponderant sugars in the colony biofilm EPS of S. algae. Surface-associated biofilm formation of transposon integration mutants was not directly correlated with a distinct colony morphotype. The hybrid sensor histidine kinase BarA abrogated surface-associated biofilm formation. Ectopic expression of the kinase and mutants in the phosphorelay cascade partially recovered biofilm formation. Altogether, this work provides the basic analysis to subsequently address the complex and intertwined networks regulating colony morphology and biofilm formation in this poorly understood species.  相似文献   

14.
A new technique for studying the external morphology of thoracic sclerites of mosquitoes (Diptera: Culicidae) was developed. According to this method, the shape of sclerites and the position of setae and scales can be examined using SEM or light microscopy even in cases when setae or scales have been lost. The method can be recommended for the damaged material which is often obtained during sampling. The bases of setae usually exceed 100 μm in diameter and thus differ significantly from the bases of scales which are about 30 μm in diameter. Analysis of the structure of sclerites and the arrangement of setae and scales on them in different specimens of one species may reveal intraspecific variation of this character complex. Comparison of species from different genera of the family Culicidae, as well as comparison of closely related species, will probably help to estimate the diagnostic value of thoracic sclerites as morphological characters.  相似文献   

15.
16.
17.
A major challenge in coral biology is to find the most adequate and phylogenetically informative characters that allow for distinction of closely related coral species. Therefore, data on corallite morphology and genetic data are often combined to increase phylogenetic resolution. In this study, we address the question to which degree genetic data and quantitative information on overall coral colony morphologies identify similar groupings within closely related morphospecies of the Caribbean coral genus Madracis. Such comparison of phylogenies based on colony morphology and genetic data will also provide insight into the degree to which genotype and phenotype overlap. We have measured morphological features of three closely related Caribbean coral species of the genus Madracis (M. formosa, M. decactis and M. carmabi). Morphological differences were then compared with phylogenies of the same species based on two nuclear DNA markers, i.e. ATPSα and SRP54. Our analysis showed that phylogenetic trees based on (macroscopical) morphological properties and phylogenetic trees based on DNA markers ATPSα and SRP54 are partially similar indicating that morphological characteristics at the colony level provide another axis, in addition to commonly used features such as corallite morphology and ecological information, to delineate genetically different coral species. We discuss this new method that allows systematic quantitative comparison between morphological characteristics of entire colonies and genetic data.  相似文献   

18.
Molecular phylogenetic evidence indicates that the octocoral family Alcyoniidae is highly polyphyletic, with genera distributed across Octocorallia in more than 10 separate clades. Most alcyoniid taxa belong to the large and poorly resolved Holaxonia–Alcyoniina clade of octocorals, but members of at least four genera of Alcyoniidae fall outside of that group. As a first step towards revision of the family, we describe a new genus, Parasphaerasclera gen. n., and family, Parasphaerascleridae fam. n., of Alcyonacea to accommodate species of Eleutherobia Pütter, 1900 and Alcyonium Linnaeus, 1758 that have digitiform to digitate or lobate growth forms, completely lack sclerites in the polyps, and have radiates or spheroidal sclerites in the colony surface and interior. Parasphaerascleridae fam. n. constitutes a well-supported clade that is phylogenetically distinct from all other octocoral taxa. We also describe a new genus of Alcyoniidae, Sphaerasclera gen. n., for a species of Eleutherobia with a unique capitate growth form. Sphaerasclera gen. n. is a member of the Anthomastus–Corallium clade of octocorals, but is morphologically and genetically distinct from Anthomastus Verrill, 1878 and Paraminabea Williams & Alderslade, 1999, two similar but dimorphic genera of Alcyoniidae that are its sister taxa. In addition, we have re-assigned two species of Eleutherobia that have clavate to capitate growth forms, polyp sclerites arranged to form a collaret and points, and spindles in the colony interior to Alcyonium, a move that is supported by both morphological and molecular phylogenetic evidence.  相似文献   

19.
Gorgonians are abundant in tropical waters and their polyps are seldom predated on. This study investigates how gorgonians defend themselves chemically and physically against fish predation. Gorgonian extracts and sclerites were incorporated into fish feed and tested on reef fishes. Laboratory bioassays using Greyhead wrasses, Halichoeres purpurescens, as well as field bioassays showed five gorgonian species from the family Ellisellidae and three from the family Plexauridae collected from Singapore reefs to be deterrent towards fishes. Bioassays of fractions obtained from subsequent fractionation suggested synergistic or additive effects between compounds present in gorgonians. Sclerites incorporated into fish feed in their natural concentrations were also tested for fish deterrence and were positive for only two gorgonian species from the family Ellisellidae.  相似文献   

20.
Alcyonacean octocorals in tropical reefs are usually not considered as reef builders. Some Sinularia species, however, are capable of consolidating sclerites at the colony base to form spiculite. Nanwan Bay, southern Taiwan, features both fossilized and recently formed boulders composed of spiculite, thus demonstrating the role of Sinularia in contributing to the reef structure. Section radiography of an 18.5 kg spiculite boulder demonstrated a regular density banding of 3–6-mm intervals. Core survey indicated spiculite coverage of 25–30% on the live reef and of 30–40% on the uplifted boulders. Cores taken from living Sinularia revealed a distinct transition from discrete sclerites to compact spiculite and amorphous calcium carbonate cementing the sclerites. In the widespread S. gibberosa, sclerite formation appeared to start intracellularly, followed by a prolonged extracellular calcification process. At the calcification site, multiple sclerocytes formed expanded pseudopod-like membranes that interconnected, forming multicellular vesicles (MCVs) around the sclerites. The MCVs and the pseudopods disappeared at sclerite maturation, followed by degradation of the sclerocytes around the mature sclerites. At the colony base, granular vesicles were distributed among the sclerites, indicating a cementing process in progress. These findings suggest that colonies of Sinularia are able to cement sclerites and consolidate them at their base into spiculite, thus making them reef builders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号