首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
苋科(Amaranthaceae sensu lato)是石竹目(Caryophyllales)第二大科, 目前被普遍接受的苋科为其广义概念, 含狭义苋科(Amaranthaceae sensu stricto)和藜科(Chenopodiaceae)。然而到目前为止, 藜科是否应作为独立的科还存在争议。此外, 广义苋科内部各亚科之间的系统关系也尚未厘清。对广义苋科所有13个亚科代表类群进行取样(共59种), 基于8个叶绿体序列片段重建其系统发育关系, 并结合分子钟估算, 对该科及其主要分支的起源与分化时间进行推测。结果表明, 广义苋科与狭义苋科都是很好的单系, 但藜科并非单系, 因此不支持藜科在科级水平的地位, 支持广义苋科的观点。除了多节草亚科(Polycnemoideae)之外, 其它亚科的系统位置均得到很好的分辨。分子钟估算结果表明, 广义苋科于白垩纪晚期约69.9 Ma分化出该科的2个主要分支, 且该科在白垩纪-古近纪边界附近时期(约66.0 Ma)可能发生过快速辐射分化事件。  相似文献   

2.
Wood and stem anatomy is studied for seven species of six genera (root anatomy also reported for one species) of Amaranthaceae s.s. Quantitative data on vessels correlate closely with relative xeromorphy of respective species, agreeing with values reported for dicotyledons without successive cambia in comparable habitats. Libriform fibre abundance increases and vessel diameter decreases as stems and roots of the annual Amaranthus caudatus mature. Long, thick-walled fibres in Bosea yervamora may be related to the upright nature of elongate semi-climbing stems. Non-bordered or minutely bordered perforation plates characterize Amaranthaceae, as they do most other Caryophyllales. Amaranthaceae have idioblastic cells containing druses, rhomboidal crystals or crystal sand: these forms intergrade and seem closely related. Rays are present in secondary xylem of the Amaranthaceae studied. Cells intermediate between ray cells and libriform fibres occur in Charpentiera elliptica . Degrees of diversity in rays and reports of raylessness in Amaranthaceae induce discussion of definition and identification of rays in dicotyledons; some sources recognize both rays and radial plates of conjunctive tissue in Amaranthaceae. The action of successive cambia is described: lateral meristem periclinal divisions produce secondary cortex externally, conjunctive tissue internally and yield vascular cambia as well. Vascular cambia produce secondary phloem and secondary xylem, in both ray and fascicular zones, as in a dicotyledon with a single cambium. Identification of meristem activity and appreciation of varied ray manifestations are essential in understanding the ontogeny of stems in Amaranthaceae (which have recently been united with Chenopodiaceae).  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 143 , 1–19.  相似文献   

3.
4.
The core Caryophyllales consist of approximately 30 families (12 000 species) distributed worldwide. Many members evolved one-seeded or conjoined fruits, but their origin and structural diversity have not been investigated. A comparative anatomical investigation of the one-seeded fruits within the core Caryophyllales was conducted. The origin of the one-seeded fruits and the evolutionary reconstructions of some carpological characters were traced using a tree based on rbcl and matK data in order to understand the ancestral characters and their changes. The one-seeded fruit type is inferred to be an ancestral character state in core Caryophyllales, with a subsequent increase in the seed number seen in all major clades. Most representatives of the ‘Earlier Diverging’ clade are distinguished in various carpological traits. The organization of the pericarp is diverse in many groups, although fruits with a dry, many-layered pericarp, consisting of sclerenchyma as outer layers and a thin-walled parenchyma below, with seeds occupying a vertical embryo position, are likely ancestral character states in the core Caryophyllales clade. Several carpological peculiarities in fruit and seed structure were discovered in obligate one-seeded Achatocarpaceae, Chenopodiaceae, Nyctaginaceae, Seguieriaceae and Sarcobataceae. The horizontal embryo evolved in only certain groups of Chenopodiaceae. The bar-thickening of endotegmen cells appears to be an additional character typical of core Caryophyllales. The syncarpy-to-lysicarpy paradigm in Caryophyllaceae needs to be reinterpreted.  相似文献   

5.
6.
Resolving an ancient, rapid radiation in Saxifragales   总被引:1,自引:0,他引:1  
Despite the prior use of approximately 9000 bp, deep-level relationships within the angiosperm clade, Saxifragales remain enigmatic, due to an ancient, rapid radiation (89.5 to 110 Ma based on the fossil record). To resolve these deep relationships, we constructed several new data sets: (1) 16 genes representing the three genomic compartments within plant cells (2 nuclear, 10 plastid, 4 mitochondrial; aligned, analyzed length = 21,460 bp) for 28 taxa; (2) the entire plastid inverted repeat (IR; 26,625 bp) for 17 taxa; (3) "total evidence" (50,845 bp) for both 17 and 28 taxa (the latter missing the IR). Bayesian and ML methods yielded identical topologies across partitions with most clades receiving high posterior probability (pp = 1.0) and bootstrap (95% to 100%) values, suggesting that with sufficient data, rapid radiations can be resolved. In contrast, parsimony analyses of different partitions yielded conflicting topologies, particularly with respect to the placement of Paeoniaceae, a clade characterized by a long branch. In agreement with published simulations, the addition of characters increased bootstrap support for the putatively erroneous placement of Paeoniaceae. Although having far fewer parsimony-informative sites, slowly evolving plastid genes provided higher resolution and support for deep-level relationships than rapidly evolving plastid genes, yielding a topology close to the Bayesian and ML total evidence tree. The plastid IR region may be an ideal source of slowly evolving genes for resolution of deep-level angiosperm divergences that date to 90 My or more. Rapidly evolving genes provided support for tip relationships not recovered with slowly evolving genes, indicating some complementarity. Age estimates using penalized likelihood with and without age constraints for the 28-taxon, total evidence data set are comparable to fossil dates, whereas estimates based on the 17-taxon data are much older than implied by the fossil record. Hence, sufficient taxon density, and not simply numerous base pairs, is important in reliably estimating ages. Age estimates indicate that the early diversification of Saxifragales occurred rapidly, over a time span as short as 6 million years. Between 25,000 and 50,000 bp were needed to resolve this radiation with high support values. Extrapolating from Saxifragales, a similar number of base pairs may be needed to resolve the many other deep-level radiations of comparable age in angiosperms.  相似文献   

7.
Piperales represent the largest basal angiosperm order with a nearly worldwide distribution. The order includes three species rich genera, Piper (ca. 2000 species), Peperomia (ca. 1500-1700 species), and Aristolochia s. l. (ca. 500 species). Sequences of the matK gene and the non-coding trnK group II intron are analysed for a dense set of 105 taxa representing all families (except Hydnoraceae) and all generic segregates (except Euglypha within Aristolochiaceae) of Piperales. A large number of highly informative indels are found in the Piperales trnK/matK dataset. Within a narrow region approximately 500 nt downstream in the matK coding region (CDS), a length variable simple sequence repeat (SSR) expansion segment occurs, in which insertions and deletions have led to short frame-shifts. These are corrected shortly afterwards, resulting in a maximum of six amino acids being affected. Furthermore, additional non-functional matK copies were found in Zippelia begoniifolia, which can easily be discriminated from the functional open reading frame (ORF). The trnK/matK sequence data fully resolve relationships within Peperomia, whereas they are not effective within Piper. The resolution contrast is correlated with the rate heterogeneity between those lineages. Parsimony, Bayesian and likelihood analyses result in virtually the same topology, and converge on the monophyly of Piperaceae and Saururaceae. Lactoris gains high support as sister to Aristolochiaceae subf. Aristolochioideae, but the different tree inference methods yield conflicting results with respect to the relationships of subfam. Asaroideae. In Piperaceae, a clade formed by the monotypic genus Zippelia and the small genus Manekia (=Sarcorhachis) is sister to the two large genera Piper and Peperomia.  相似文献   

8.
9.
A survey of 112 species of the Caryophyllales showed the presence of flavonols in all eleven families and of C-glycosylflavonoids in nine families, being absent from the Aizoaceae and Cactaceae. 18% of the species contained both classes of compound. C-glycosylflavonoids are reported for the first time in the Amaranthaceae, Basellaceae, Didieraceae, Nyctaginaceae, Phytolaccaceae, Portulacaceae and Molluginaceae. The Caryophyllaceae contained prodominantly C-glycosylflavonoids, suggesting they are the most advanced family in the order.  相似文献   

10.
The plastid genomes of early-diverging angiosperms were among the first land plant plastomes investigated. Despite their importance to understanding angiosperm evolution, no investigation has so far compared gene content or gene synteny of these plastid genomes with a focus on the Nymphaeales. Here, we report an evaluation and comparison of gene content, gene synteny and inverted repeat length for a set of 15 plastid genomes of early-diverging angiosperms. Seven plastid genomes of the Nymphaeales were newly sequenced for this investigation. We compare gene order and inverted repeat (IR) length across all genomes, review the gene annotations of previously published genomes, generate a multi-gene alignment of 77 plastid-encoded genes and reconstruct the phylogenetic relationships of the taxa under study. Our results show that gene content and synteny are highly conserved across early-diverging angiosperms: All species analyzed display complete gene synteny when accounting for expansions and contractions of the IRs. This conservation was initially obscured by ambiguous and potentially incorrect gene annotations in previously published genomes. We also report the presence of intact open reading frames across all taxa analyzed. The multi-gene phylogeny displays maximum support for the families Cabombaceae and Hydatellaceae, but no support for a clade of all Nymphaeaceae. It further indicates that the genus Victoria is embedded within Nymphaea. Plastid genomes of Trithuria were found to deviate by numerous substitutions and length changes in the IRs. Phylogenetic analyses further indicate that a previously published plastome named Nymphaea mexicana falls into a clade of N. odorata and should be re-evaluated.  相似文献   

11.
Long and short repetitive sequences were purified from the DNA of Paracentrotus lividus under conditions designed to optimize the yield of complete, end to end sequences. Double-stranded long repeat DNA prepared in this manner ranged in length from approximately 3000 to 15 000 nucleotide pairs with average sizes of approximately 6000 base pairs. In the electron microscope, long repeat DNA was observed to possess continuous sequences that often appeared to be terminated by one or more loops and/or fold backs. Long repeat DNA sequences, resheared to 300 base pairs, were found to have an average melting point identical to that for sheared native DNA. Thus, the reassociated duplexes of long repetitive DNA seem to possess very few mismatched base pairs. Reassociation kinetic analyses indicate that the majority of the long repeat sequences are reiterated only 4--7 times per haploid amount of DNA. Melt-reassociation analyses of short repetitive DNA, at several criteria, support the previously held concept that these sequences belong the sets or families of sequences which are inexact copies of one another. Our studies also support hypotheses suggesting that short repetitive sequences belong to families which may have arisen via distinct salttatory events. The relationships between long and short repetitive DNA sequences are considered with respect to widely held concepts of their sequence organization, evolution, and possible functions within eucaryotic genomes. A model for the possible organization of short repeats within long repetitive DNA sequences is also presented.  相似文献   

12.
The angiosperms, one of five groups of extant seed plants, are the largest group of land plants. Despite their relatively recent origin, this clade is extremely diverse morphologically and ecologically. However, angiosperms are clearly united by several synapomorphies. During the past 10 years, higher-level relationships of the angiosperms have been resolved. For example, most analyses are consistent in identifying Amborella, Nymphaeaceae, and Austrobaileyales as the basalmost branches of the angiosperm tree. Other basal lineages include Chloranthaceae, magnoliids, and monocots. Approximately three quarters of all angiosperm species belong to the eudicot clade, which is strongly supported by molecular data but united morphologically by a single synapomorphy-triaperturate pollen. Major clades of eudicots include Ranunculales, which are sister to all other eudicots, and a clade of core eudicots, the largest members of which are Saxifragales, Caryophyllales, rosids, and asterids. Despite rapid progress in resolving angiosperm relationships, several significant problems remain: (1) relationships among the monocots, Chloranthaceae, magnoliids, and eudicots, (2) branching order among basal eudicots, (3) relationships among the major clades of core eudicots, (4) relationships within rosids, (5) relationships of the many lineages of parasitic plants, and (6) integration of fossils with extant taxa into a comprehensive tree of angiosperm phylogeny.  相似文献   

13.
14.
Several complementary procedures were used to identify and characterize DNA sequences which are repeated within a 44 kilobase (kb) segment of rabbit chromosomal DNA containing four different rabbit β-like globin genes (β1–β4). Cross-hybridization between cloned DNAs from different regions of the gene cluster indicates the presence of a complex array of repeat sequences interspersed with the globin genes. We classified 20 different repeat sequences into five families whose members cross-hybridize. Electron microscopy was used to determine the location, size and relative orientations of many of the repeat sequences. Both direct and inverted repeats were identified, with sizes ranging from 140 to 1400 base pairs (bp). Each of the four closely linked globin genes is flanked by at least one pair of inverted repeats of 140–400 bp, and the entire set of four genes is flanked by an inverted repeat of 1400 bp. Two of the five repeat families contain repeat sequences of different sizes. We found that the smaller sequence elements can occur individually or in association with the larger repeat sequences, suggesting that the larger repeats may be composed of more than one smaller repeat sequence. The restriction fragments containing the intracluster repeats also contain sequences which are repeated many times in total rabbit genomic DNA, but it is not known whether the genomic and intracluster repeats are the same sequences. The results provide the first demonstration of the relationship between single-copy and repetitive DNA sequences in a large segment of chromosomal DNA containing a well characterized set of developmentally regulated genes.  相似文献   

15.
Cynomorium is a herbaceous holoparasite that has been placed in Santalales, Saxifragales, Myrtales, or Sapindales. The inverted repeat (IR) region of the chloroplast genome region is slow evolving and, unlike mitochondrial genes, the chloroplast genome experiences few horizontal gene transfers between the host and parasite. Thus, in the present study, we used sequences of the IR region to test the phylogenetic placements of Cynomorium. Phylogenetic analyses of the chloroplast IR sequences generated largely congruent ordinal relationships with those from previous studies of angiosperm phylogeny based on single or multiple genes. Santalales was closely related to Caryophyllales and asterids. Saxifragales formed a clade where Peridiscus was sister to the remainder of the order, whereas Paeonia was sister to the woody clade of Saxifragales. Cynomorium is not closely related to Santalales, Saxifragales, Myrtales, or Sapindales; instead, it is included in Rosales and sister to Rosaceae. The various placements of the holoparasite on the basis of different regions of the mitochondrial genome may indicate the heterogeneous nature of the genome in the parasite. However, it is unlikely that the placement of Cynomorium in Rosales is the result of chloroplast gene transfer because Cynomorium does not parasitize on rosaceous plants and there is no chloroplast gene transfer between Cynomorium and Nitraria, a confirmed host of Cynomorium and a member of Sapindales.  相似文献   

16.
Summary Tobacco chloroplast DNA contains a large inverted repeat sequence of 26 kilobase pairs (kbp). The inverted repeat is separated by 20 kbp small single-copy and 90 kbp large single-copy regions. We have cloned four DNA fragments containing each junction between the inverted repeat and the single-copy regions. The sequence analysis revealed the exact edges of the inverted repeat. A putative coding region for a ribosomal protein CS19 was found 4 base pairs (bp) away from the inverted repeat on the left margin of the large single-copy region. A sequence AGGAG, which is complementary to the 3 terminal sequence of tobacco chloroplast 16S rRNA, was found within the inverted repeat. A tRNAHis gene was found 5 bp away from the inverted repeat on the right-hand margin of the large single-copy region.  相似文献   

17.
18.
B. Ruskin  G. R. Fink 《Genetics》1993,134(1):43-56
Tandem inverted repeats (TIRs or hairpins) of 30 and 80 base-pair unit lengths are unstable mitotically in yeast (Saccharomyces cerevisiae). TIR instability results from deletions that remove part or all of the presumed hairpin structure from the chromosome. At least one deletion endpoint is always at or near the base of the hairpin, and almost all of the repaired junctions occur within short direct sequence repeats of 4 to 9 base pairs. The frequency of this event, which we call ``hairpin excision,' is influenced by chromosomal position, length of the inverted repeats, and the distance separating the repeat units; increasing the distance between the inverted repeats as little as 25 base pairs increases their chromosomal stability. The frequency of excision is not affected by representative rad mutations, but is influenced by mutations in certain genes affecting DNA synthesis. In particular, mutations in POL1/CDC17, the gene that encodes the large subunit of DNA polymerase I, increase the frequency of hairpin deletions significantly, implicating this protein in the normal maintainance of genomic TIRs.  相似文献   

19.
A chemosystematic survey of flavonoids have been made in 55 centrospermous species. On the basis of both the experimental results and published data, the evolutionary significance of distribution patterns of proanthocyanidins, anthocyanidins, C-glycoflavones, flavonols and flavones is discussed. The Nyctaginaceae and Didiereaceae appear to be particularly primitive families, while Caryophyllaceae, Aizoaceae, Cactaceae, Amaranthaceae and Chenopodiaceae are the most advanced of the order.  相似文献   

20.
Historical demographic processes and mating systems are believed to be major factors in the shaping of the intraspecies genetic diversity of plants. Among Caryophyllales, the Beta section of the genus Beta, within the Amaranthaceae/Chenopodiaceae alliance, is an interesting study model with species and subspecies (Beta macrocarpa, Beta patula, Beta vulgaris maritima and B.v. adanensis) differing in geographical distribution and mating system. In addition, one of the species, B. macrocarpa, mainly diploid, varies in its level of ploidy with a tetraploid cytotype described in the Canary Islands and in Portugal. In this study, we analyzed the nucleotide diversity of chloroplastic and nuclear sequences on a representative sampling of species and subspecies of the Beta section (except B. patula). Our objectives were (1) to assess their genetic relationships through phylogenetic and multivariate analyses, (2) relate their genetic diversity to their mating system, and (3) reconsider the ploidy status and the origin of the Canarian Beta macrocarpa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号