首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【背景】福寿螺因其食性杂、抗逆性和繁殖力强以及自然天敌少等不断扩散,侵害农作物,被列为我国首批外来入侵物种。国内外学者一直致力于研究对其的防治与监控。自然界中福寿螺存在2种壳色——黄色和黑色,壳色受遗传因素和环境因素的双重影响。广东省福寿螺多以黑色为主,福寿螺倾向于与不同壳色的螺交配。壳色在一定程度上影响其交配的选择性,但2种壳色的福寿螺繁殖力指标差异不显著。而关于这2种壳色的螺在形态学上的差异鲜有报道。【方法】利用生物统计软件和分析方法进行相关性分析、通径分析及多元回归分析,计算相关系数、通径系数和决定系数,研究2种壳色福寿螺形态性状与体质量的关系。【结果】2种壳色福寿螺的体质量、层高的变异系数较大,且黄色比黑色变异系数大。对黄色福寿螺体质量影响较大的依次为壳高、口宽;对黑色福寿螺体质量影响较大的依次为口宽、层高。【结论与意义】2种壳色福寿螺在形态性状方面差异显著,可以将壳色作为特征标记,为福寿螺的监测与灾害评估提供参考。  相似文献   

2.
Understanding the genetic and environmental bases of phenotypic variation and how they covary on local and broad geographic scales is an important goal of evolutionary ecology. Such information can shed light on how organisms adapt to different and changing environments and how life-history trade-offs arise. Surveys of phenotypic variation in 25 Littorina obtusata populations across an approximately 400-km latitudinal gradient in the Gulf of Maine revealed pronounced clines. The shells of snails from northern habitats weighed less and were thinner and weaker in compression than those of conspecifics from southern habitats. In contrast, body size (as measured by soft tissue mass) followed an opposite pattern; northern snails weighed more than southern snails. A reciprocal transplant between a northern and southern habitat revealed substantial plasticity in shell form and body mass and their respective measures of growth. Southern snails transplanted to the northern habitat produced lighter, thinner shells and more body mass than controls raised in their native habitat. In contrast, northern snails transplanted to the southern site produced heavier, thicker shells and less body mass than controls raised in their native habitat. Patterns of final phenotypic variation for all traits were consistent with cogradient variation (i.e., a positive covariance between genetic and environmental influences). However, growth in shell traits followed a countergradient pattern (i.e., a negative covariance between genetic and environmental influences). Interestingly, body growth followed a cogradient pattern, which may reflect constraints imposed by cogradient variation in final shell size and thickness. This result suggests the existence of potential life-history trade-offs associated with increased shell production. Differences in L. obtusata shell form, body mass, and their respective measures of growth are likely induced by geographic differences in both water temperature and the abundance of an invading crab predator (Carcinus maenas). Water temperatures averaged 6.8 degrees C warmer during the transplant experiment and C. maenas abundance is greater in the southern Gulf of Maine. Because both increased water temperature and crab effluent affect shell form in the same way, future experiments are needed to determine the relative importance of each. Nevertheless, it is clear that phenotypic plasticity has an important role in producing geographic variation in L. obtusata shell form. Moreover, the evolution of phenotypic plasticity in L. obtusata and other marine gastropods may be driven by architectural constraints imposed by shell form on body mass and growth.  相似文献   

3.
Body water is a major element of the cold-hardiness strategies observed in ectothermic animals, in particular in freezing avoidant species for which body ice formation is lethal. Here, we investigate the relationships, in terrestrial snails, between the temperature of crystallisation (Tc) and body water (water mass and water content), shell shape, geographic and climatic distribution, taking into account phylogenetic inertia. Phylogenetic relationships among 31 species from 13 different families of terrestrial Gastropods were studied using 28S rRNA nuclear and COI mitochondrial sequence data, together with species-specific traits. Our results provide evidence for clear relationships between Tc and absolute/relative body water: smaller species with lower water content tended to be characterized by colder temperatures of crystallisation, although some exceptions were noticeable. Environmental conditions do not appear to affect Tc significantly, as well as shell shape which is however correlated with water content. This study confirmed that supercooling ability in land snails is size-constrained, with consequences on cold-hardiness strategies.  相似文献   

4.
Habitat selection by marine snails is profoundly affected by variations in biotic and abiotic factors. In the supralittoral fringe of Caribbean rocky shores, the littorinid Cenchritis muricatus endures a near-terrestrial existence through a combination of active microhabitat choice and, during dry periods, repose. In this study, we sought to compare knobby periwinkle body size, thermal load, water loss, and stress protein expression among common supralittoral microhabitats to determine the physiological consequences of habitat selection. In this study, we show: (1) body temperatures in these snails exhibit daily fluctuations of more than 20°C and regularly exceed 46°C, (2) microhabitats differ in thermal stress over small spatial scales, with snails on black rocks and within crevices experiencing more extreme temperatures than snails on white rocks or grass, (3) water losses of 8.5% of total snail mass do not affect survival during 1 week, and (4) Hsp70, but not Hsp90, expression varies slightly among microhabitats but at a level much lower than physiologically possible. During arousal following hydration, snails exhibited substantially higher levels of Hsp70s than snails on dry substrates in the field. When inactive, Cenchritis appears to utilize a distinctly different physiological state consistent with aestivation metabolism and does not exhibit significant up-regulation of inducible heat shock proteins (Hsps). In summary, studies lacking detailed thermal and hydration history, and relying only upon Hsp levels, may misrepresent the true physiological consequences of microhabitat choice for high-shore tropical gastropods.  相似文献   

5.
Rising environmental temperatures have become a global threat for ectotherms, with the increasing risk of overheating promoting population declines. Flexible thermoregulatory behavior might be a plausible mechanism to mitigate the effects of extreme temperatures. We experimentally evaluated thermoregulatory behavior in the bunchgrass lizard, Sceloporus aeneus, at three different environmental temperatures (25, 35 and 45 °C) both with and without a thermal refuge. We recorded themoregulatory behaviors (body posture and movement between hot and cold patches) and compared individual lizards across all experimental temperature and shelter combinations. Behavioral thermoregulation in S. aeneus was characterized by the expression of five body postures, whose frequencies varied based on environmental temperature and microthermal conditions. Behavioral responses allowed lizards to maintain a mean body temperature <40 °C, the critical thermal maximum for temperate species, even at extreme environmental temperatures (45 °C). Although S. aeneus express an array of behavioral postures that provide an effective mechanism to cope with elevating temperatures, the presence of a thermal refuge was important to better achieve this. Together, our study offers a novel method to evaluate microhabitat preference that encompasses both behavioral observations and time-space analysis based on the ambient thermal distribution, a consideration that can aid in the formulation of more accurate predictions on ectotherm vulnerability related to increasing global environmental temperatures.  相似文献   

6.
The distribution of insects can often be related to variation in their response to thermal extremes, which in turn may reflect differences in plastic responses or innate variation in resistance. Species with widespread distributions are expected to have evolved higher levels of plasticity than those from restricted tropical areas. This study compares adult thermal limits across five widespread species and five restricted tropical species of Drosophila from eastern Australia and investigates how these limits are affected by developmental acclimation and hardening after controlling for environmental variation and phylogeny. Irrespective of acclimation, cold resistance was higher in the widespread species. Developmental cold acclimation simulating temperate conditions extended cold limits by 2°-4°C, whereas developmental heat acclimation under simulated tropical conditions increased upper thermal limits by <1°C. The response to adult heat-hardening was weak, whereas widespread species tended to have a larger cold-hardening response that increased cold tolerance by 2°-5°C. These patterns persisted after phylogenetic correction and when flies were reared under high and low constant temperatures. The results do not support the hypothesis that widely distributed species have larger phenotypic plasticity for thermal tolerance limits, and Drosophila species distributions are therefore more closely linked to differences in innate thermal tolerance limits.  相似文献   

7.
The present study uses a mathematical-empirical approach to estimate the cardinal growth temperature parameters (T(min), the temperature below which growth is no longer observed; T(opt), the temperature at which the μ(max) equals its optimal value; μ(opt), the optimal value of μ(max); and T(max), the temperature above which no growth occurs) of 27 yeast strains belonging to different Saccharomyces and non-Saccharomyces species. S. cerevisiae was the yeast best adapted to grow at high temperatures within the Saccharomyces genus, with the highest optimum (32.3°C) and maximum (45.4°C) growth temperatures. On the other hand, S. kudriavzevii and S. bayanus var. uvarum showed the lowest optimum (23.6 and 26.2°C) and maximum (36.8 and 38.4°C) growth temperatures, respectively, confirming that both species are more psychrophilic than S. cerevisiae. The remaining Saccharomyces species (S. paradoxus, S. mikatae, S. arboricolus, and S. cariocanus) showed intermediate responses. With respect to the minimum temperature which supported growth, this parameter ranged from 1.3 (S. cariocanus) to 4.3°C (S. kudriavzevii). We also tested whether these physiological traits were correlated with the phylogeny, which was accomplished by means of a statistical orthogram method. The analysis suggested that the most important shift in the adaptation to grow at higher temperatures occurred in the Saccharomyces genus after the divergence of the S. arboricolus, S. mikatae, S. cariocanus, S. paradoxus, and S. cerevisiae lineages from the S. kudriavzevii and S. bayanus var. uvarum lineages. Finally, our mathematical models suggest that temperature may also play an important role in the imposition of S. cerevisiae versus non-Saccharomyces species during wine fermentation.  相似文献   

8.
Using half-sib analysis, we analysed the consequences of extreme rearing temperatures on genetic and phenotypic variations in the morphological and life-history traits of Drosophila ananassae. Paternal half-sib covariance contains a relatively small proportion of the epistatic variance and lacks the dominance variance and variance due to maternal effect, which provides more reliable estimates of additive genetic variance. Experiments were performed on a mass culture population of D. ananassae collected from Kanniyakumari (India). Two extremely stressful temperatures (18°C and 32°C) and one standard temperature (25°C) were used to examine the effect of stressful and non-stressful environments on the morphological and life-history traits in males and females. Mean values of various morphological traits differed significantly among different temperature regimens in both males and females. Rearing at 18°C and 32°C resulted in decreased thorax length, wing-to-thorax (w/t) ratio, sternopleural bristle number, ovariole number, sex comb-tooth number and testis length. Phenotypic variances increased under stressful temperatures in comparison with non-stressful temperatures. Heritability and evolvability based on among-sires (males), among-dams (females), and the sum of the two components (sire + dam) showed higher values at both the stressful temperatures than at the non-stressful temperature. These differences reflect changes in additive genetic variance. Viability was greater at the high than the low extreme temperature. As viability is an indicator of stress, we can assume that stress was greater at 18°C than at 32°C in D. ananassae. The genetic variations for all the quantitative and life-history traits were higher at low temperature. Variation in sexual traits was more pronounced as compared with other morphometric traits, which shows that sexual traits are more prone to thermal stress. Our results agree with the hypothesis that genetic variation is increased in stressful environments.  相似文献   

9.
Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade‐off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing temperature helps providing more accurate predictions on species vulnerability to warming.  相似文献   

10.
ABSTRACT

The reality of spatial clinal variation in morphological traits of freshwater pulmonate snails (Gastropoda: Pulmonata) has repeatedly been questioned or totally discounted. There is a lack of sound statistical evidence in the articles hitherto published on this subject supporting these claims. Here, by means of different analytical methods (analysis of spatial autocorrelation, linear regression analysis, canonical correlation analysis and others), we demonstrate that shell variation in the dwarf pond snail, Galba truncatula, is patterned in space throughout the northern and central Palearctic, with latitudinally-oriented clines in body size and in some shell proportions. Shell size in G. truncatula decreases with latitude and temperature, representing a special case of converse Bergmann cline. However, the temperature itself is hardly the main driver of shell size variation. It is argued that the shorter growing seasons at high latitudes may represent a better explanation for the observed trend. Shell proportions in the dwarf pond snails vary weakly at the macrogeographic scale, being spatially patterned at lower (mesogeographic) scales around 1200–1500?km. In general, spatial variation in G. truncatula shell size is decoupled from variation in shell shape, demonstrating clear scale-dependence similar to that found in different species of terrestrial (non-aquatic) pulmonate snails.  相似文献   

11.
Recent studies in animal behavior have emphasized the ecological importance of individual variation in behavioral types (e.g., boldness, activity). Such studies have emphasized how variation in one species affects its interaction with other species. But few (if any) studies simultaneously examine variation in multiple interacting species, despite the potential for coevolutionary responses to work to either maintain or eliminate variation in interacting populations. Here, we investigate how individual differences in behavioral types of both predators (ocher sea stars, Pisaster ochraceus) and prey (black turban snails, Chlorostoma funebralis) interact to mediate predation rates. We assessed activity level, degree of predator avoidance behavior, and maximum shell diameter of individual C. funebralis and activity levels of individual P. ochraceus. We then placed 46 individually marked C. funebralis into outdoor mesocosms with a single P. ochraceus and allowed them to interact for 14 days. Overall, predator avoidance behavior and maximum shell diameter were positively associated with survival for C. funebralis. However, the effects of these traits depended on the predator's behavioral type: greater predator avoidance behavior was favored with active P. ochraceus, and low predator avoidance behavior was favored with inactive P. ochraceus. We argue that, even in two-species interactions, trait variation in heterospecifics could be an important factor maintaining trait variation within populations.  相似文献   

12.
Two intertidal snails, Littorina saxatilis (Olivi, 1972) (upper eulittoral fringe/maritime zone) and Littorina obtusata (Linnaeus, 1758) (lower eulittoral) were collected from a boulder shore on Nobska Point, Cape Cod, Massachusetts, in July and acclimated for 15–20 days at 4 ° or 21 °C. Oxygen consumption rate (Vo2) was determined for 11–15 subsamples of individuals at 4 °, 11 ° and 21 °C with silver/platinum oxygen electrodes. Multiple factor analysis of variance (MFANOVA) of lo10 transformed values of whole animal Vo2 with log10 dry tissue weight (DTW) as a covariant revealed that increased test temperature induced a significant increase in Vo2 in both species (P<0.00001). In contrast, MFANOVA revealed that temperature acclimation did not affect Vo2 in either L. saxatilis (P= 0.35) or L. obtusata (P= 0.095). Thus, neither species displayed a capacity for the typical metabolic temperature compensation marked by an increase in Vo2 at any one test temperature in individuals acclimated to a lower temperature that is characteristic of most ectothermic animals. Lack of capacity for metabolic temperature acclimation has also been reported in other littorinid snail species, and may be characteristic of the group as a whole. Lack of capacity for respiratory temperature acclimation in these two species and other littorinids may reflect the extensive semi-diurnal temperature variation that they are exposed to in their eulittoral and eulittoral fringe/maritime zone habitats. In these habitats, any metabolic benefits derived from longer-term temperature compensation of metabolic rates are negated by extreme daily temperature fluctuations. Instead, littorinid species appear to have evolved mechanisms for immediate metabolic regulation which, in L. saxatilis and L. obtusata and other littorinids, appear to centre on a unique ability for near instantaneous suppression of metabolic rate and entrance into short-term metabolic diapause at temperatures above 20–35 °C, making typical seasonal respiratory compensation mechanisms characteristic of most ectotherms of little adaptive value to littorinid species.  相似文献   

13.
With global climate changes, biological invasions are considered to be one of the main causes of the decline of freshwater biodiversity. In this context, predicted increases in global temperature may alter the geographical distributions of native and invasive species. The purpose of our study was to examine the metabolic, behavioral and physiological responses to short-term temperature acclimation of two widely distributed species (the most successful European invader, Dikerogammarus villosus, and its main victim, Gammarus pulex), in order to estimate the potential effect of global warming on its invasion of freshwater ecosystems. Our results show that D. villosus is more vulnerable to high temperatures than G. pulex. The native species seems to be best adapted to intermediate temperatures (10-20°C) with a possibility of adjustment to "extreme" temperatures (5-27°C), whereas the "killer shrimp" D. villosus seems best adapted to lower temperatures (5-10°C) with a limited possibility of adjustment above 20°C. In the light of our results, global warming is likely to be less favorable to the invasive species. However, D. villosus showed reduced metabolic and activity rates, associated with higher glycogen content. This adaptive strategy was interpreted as having functional advantages, allowing D. villosus to successfully invade harsh and/or unpredictable biotopes. In addition, our results show that glycogen stores may be used as a powerful indicator of the optimal thermal window for aquatic ectotherms.  相似文献   

14.
中国四种小型鸟类代谢产热的气候适应   总被引:3,自引:0,他引:3  
采用封闭式流体压力呼吸计 ,分别在 5 - 35°C、 10 - 30°C和 10 - 35°C的环境温度范围内测定了黄眉(Emberizachrysophrys)、红胁绣眼鸟 (Zosteropserythropleura)、画眉 (Garrulaxcanorus)和红嘴相思鸟 (Leio thrixlutea)的耗氧量、热传导、体温等指标 ,探讨了其代谢产热特征。黄眉、红胁绣眼鸟、画眉和红嘴相思鸟的热中性区分别为 2 5 - 30°C、 2 5 - 2 7 5°C、 2 2 5 - 2 7 5°C和 30 - 32 5°C。在 5 - 30°C的温度范围内 ,黄眉和画眉能保持稳定的体温 ,分别为 4 0 5 8± 0 2 6°C和 4 1 6 8± 0 11°C ;红胁绣眼鸟和红嘴相思鸟的体温随环境温度的降低有下降的趋势。在热中性区内 ,黄眉、红胁绣眼鸟、画眉和红嘴相思鸟的平均基础代谢率分别是3 6 5± 0 14、 4 6 9± 0 2 7、 3 5 5± 0 14和 4 2 4± 0 17mlO2 / (g·h) ,分别是体重预期值的 12 8%、 2 30 %、 6 0 %和 12 0 %。在下临界温度以下 ,黄眉、红胁绣眼鸟、画眉和红嘴相思鸟的最小热传导分别是 0 2 4、 0 31、 0 2 1和 0 34mlO2 / (g·h·°C) ,分别是体重预期值的 14 9%、 14 9%、 2 15 %和 2 4 3%。这些小型鸟类的生理生态学特征是 :(1)黄眉和红胁绣眼鸟有高的基础代谢率和相对低的下临界温度 ,适应低温环境  相似文献   

15.
Vertebrate ectotherms may deal with changes of environmental temperatures by behavioral and/or physiological mechanisms. Reptiles inhabiting tropical highlands face extreme fluctuating daily temperatures, and extreme values and intervals of fluctuations vary with altitude. Anolis heterodermus occurs between 1800 m to 3750 m elevation in the tropical Andes, and is the Anolis species found at the highest altitude known. We evaluated which strategies populations from elevations of 2200 m, 2650 m and 3400 m use to cope with environmental temperatures. We measured body, preferred, critical maximum and minimum temperatures, and sprint speed at different body temperatures of individuals, as well as operative temperatures. Anolis heterodermus exhibits behavioral adjustments in response to changes in environmental temperatures across altitudes. Likewise, physiological traits exhibit intrapopulation variations, but they are similar among populations, tended to the “static” side of the evolution of thermal traits spectrum. The thermoregulatory behavioral strategy in this species is extremely plastic, and lizards adjust even to fluctuating environmental conditions from day to day. Unlike other Anolis species, at low thermal quality of the habitat, lizards are thermoconformers, particularly at the highest altitudes, where cloudy days can intensify this strategy even more. Our study reveals that the pattern of strategies for dealing with thermal ambient variations and their relation to extinction risks in the tropics that are caused by global warming is perhaps more complex for lizards than previously thought.  相似文献   

16.
Behavioral thermoregulation represents an important strategy for reducing energetic costs in thermally challenging environments, particularly among terrestrial vertebrates. Because of the cryptic lifestyle of aquatic species, the energetic benefits of such behaviors in marine endotherms have been much more difficult to demonstrate. In this study, I examined the importance of behavioral thermoregulation in the northern fur seal (Callorhinus ursinus) pup, a small-bodied endotherm that spends prolonged periods at sea. The thermal neutral zones of three weaned male northern fur seal pups (body mass range = 11.8-12.8 kg) were determined by measuring resting metabolic rate using open-flow respirometry at water temperatures ranging from 2.5° to 25.0°C. Metabolic rate averaged 10.03 ± 2.26 mL O?kg?1 min?1 for pups resting within their thermal neutral zone; lower critical temperature was 8.3° ± 2.5°C , approximately 8°C higher than the coldest sea surface temperatures encountered in northern Pacific waters. To determine whether behavioral strategies could mitigate this potential thermal limitation, I measured metabolic rate during grooming activities and the unique jughandling behavior of fur seals. Both sedentary grooming and active grooming resulted in significant increases in metabolic rate relative to rest (P = 0.001), and percent time spent grooming increased significantly at colder water temperatures (P < 0.001). Jughandling metabolic rate (12.71 ± 2.73 mL O?kg?1 min ?1) was significantly greater than resting rates at water temperatures within the thermal neutral zone (P < 0.05) but less than resting metabolism at colder water temperatures. These data indicate that behavioral strategies may help to mitigate thermal challenges faced by northern fur seal pups while resting at sea.  相似文献   

17.
The internal temperature of land snails depends on environmental factors, such as exposure to electromagnetic radiation and airflow as well as biotic factors including shell size, shell colouration and thickness or the resting position of the snail. In controlled field experiments, we quantified heating by thermal absorption of light and airflow-induced heat loss in the white garden snail, Theba pisana, from Normandy, France. Heating experiments revealed a significant positive relation of the internal body temperature with illumination period, shell temperature and air temperature at different times of day. The size of the snails was negatively related with both of the given illumination times: smaller animals heated up stronger than larger ones. The temperature at the surface of the shell significantly depended on the illumination period and the time of day. An AIC-based quality assessment of multiple linear modelling showed that, for explaining both shell surface and internal temperature of the soft body, several factors, i.e., exposure time, daytime, shell size and colouration contributed to the best models, respectively. Similarly, heat loss of the soft body after and during exposure of the snails to sunlight by a constant airflow depended on the initial body temperature, shell size, colouration and ambient air temperature. Our study revealed also the importance of both shell size and colouration for the loss of body temperature under natural conditions: small and banded animals that had heated up to temperatures above 30 °C cooled down faster than large and un-banded ones.  相似文献   

18.
Critical thermal limits provide an indication of the range of temperatures across which organisms may survive, and the extent of the lability of these limits offers insights into the likely impacts of changing thermal environments on such survival. However, investigations of these limits may be affected by the circumstances under which trials are undertaken. Only a few studies have examined these effects, and typically not for beetles. This group has also not been considered in the context of the time courses of acclimation and its reversal, both of which are important for estimating the responses of species to transient temperature changes. Here we therefore examine the effects of rate of temperature change on critical thermal maxima (CT(max)) and minima (CT(min)), as well as the time course of the acclimation response and its reversal in two beetle species, Tenebrio molitor and Cyrtobagous salviniae. Increasing rates of temperature change had opposite effects on T. molitor and C. salviniae. In T. molitor, faster rates of change reduced both CT(max) (c. 2°C) and CT(min) (c. 3°C), while in C. salviniae faster rates of change increased both CT(max) (c. 6°C) and CT(min) (c. 4°C). CT(max) in T. molitor showed little response to acclimation, while the response to acclimation of CT(min) was most pronounced following exposure to 35°C (from 25°C) and was complete within 24 h. The time course of acclimation of CT(max) in C. salviniae was 2 days when exposed to 36°C (from c. 26°C), while that of CT(min) was less than 3 days when exposed to 18°C. In T. molitor, the time course of reacclimation to 25°C after treatments at 15°C and 35°C at 75% RH was longer than the time course of acclimation, and varied from 3-6 days for CT(max) and 6 days for CT(min). In C. salviniae, little change in CT(max) and CT(min) (<0.5°C) took place in all treatments suggesting that reacclimation may only occur after the 7 day period used in this study. These results indicate that both T. molitor and C. salviniae may be restricted in their ability to respond to transient temperature changes at short-time scales, and instead may have to rely on behavioral adjustments to avoid deleterious effects at high temperatures.  相似文献   

19.
Pomacea canaliculata is a South American freshwater snail considered as one of the world’s worst invasive alien species. A temperature of around 25 °C has usually been considered to be optimal for rearing P. canaliculata. Nevertheless, snails have not been reared under a wide range of temperatures to reveal the optimum for performance in terms of population increase. We investigated the effect of temperature on growth, survival and reproduction, estimating demographic parameters for P. canaliculata in the wide range of temperatures at which these snails are active (15–35 °C). No reproductive activity was evidenced for the snails reared at 15 °C, probably explained by the small sizes attained at this temperature. Temperatures above 25 °C did not promote a significant acceleration in growth so higher temperatures will not result in a reduction in time to reach maturity. In fact, snails from 25 and 30 °C began reproduction at the same age. We report here for the first time a detrimental effect of high temperatures that provoked a significant decrease in the contribution of snails to the next generation: the viability of eggs from the snails reared at 30 °C was very low and the snails exposed to a constant water temperature of 35 °C were unable to produce eggs. Our findings reveal a new environmental constraint that could be a determinant of the range limits of this species in invaded regions, especially during the coming decades, anticipating the scenario predicted from global warming.  相似文献   

20.
Climate change and plant invasion are two of the most important ecological issues facing the world today. Extreme events are likely to play an important role in plant invasion. For example, tolerance to temperature stress is critical for plant germination and survival of seedlings. Nonnative invasive species tend to differ from co-occurring native species in several traits. Increased mean temperatures are known to enhance the risk of plant invasions, but few experimental studies have linked plant invasion to both increasing mean temperature and extreme (low and high) temperatures. Ten plant species from Asteraceae (six nonnative invasive and four native species) were chosen and six temperatures (extremely low, average winter, average annual, average summer, high and extremely high) were used to test the effects of extreme temperatures on plant invasion in southern China. The results showed that nonnative invasive plant species (IS) germinated more readily and the seedlings grew better than those of native plant species (NS) at high temperatures, suggesting that global warming may facilitate invasion. Extreme temperatures decreased the seed germination rate and seedling growth of both IS and NS, although NS were more tolerant of extremely low temperatures (5/0 °C). IS, in turn, were more tolerant of extremely high temperatures (40/35 °C). Extreme high temperatures may increase the risk of plant invasion because IS seedlings are better able to become established, whereas low temperatures may hinder invasion. In addition, the species-specific differences in plant origin (IS and NS) and temperature tolerance were correlated with other climatic factors and should be considered in managing invasive species in a changing world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号