首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatocellular carcinoma is the main type of primary liver cancer, and also one of the most malignant tumors. At present, the pathogenesis mechanisms of liver cancer are not entirely clear. It has been shown that inactivation of tumor suppressor genes and activation of oncogenes play a significant role in carcinogenesis, caused by the genetic and epigenetic aberrance. In the past, people generally thought that genetic mutation is a key event of tumor pathogenesis, and somatic mutation of tumor suppressor genes is in particular closely associated with oncogenesis. With deeper understanding of tumors in recent years, increasing evidence has shown that epigenetic silencing of those genes, as a result of aberrant hypermethylation of CpG islands in promoters and histone modification, is essential to carcinogenesis and metastasis. The term epigenetics refers to heritable changes in gene expression caused by regulation mechanisms, other than changes in the underlying DNA sequence. Specific epigenetic processes include DNA methylation, genome imprinting, chromotin remodeling, histone modification and microRNA regulations. This paper reviews recent epigenetics research progress in the hepatocellular carcinoma study, and tries to depict the relationships between hepatocellular carcinomagenesis and DNA methylation as well as microRNA regulation. Supported by National Basic Research Program of China (Grant No. 2006CD910402) and Science and Technology Commission of Shanghai Municipality (Grant No. 05DZ22201 and 08JC1416400).  相似文献   

2.
ABSTRACT: Cervical cancer (CC) is one of the most malignant tumors and the second or third most common type of cancer in women worldwide. The association between human papillomavirus (HPV) and CC is widely known and accepted (99.7% of cases). At present, the pathogenesis mechanisms of CC are not entirely clear. It has been shown that inactivation of tumor suppressor genes and activation of oncogenes play a significant role in carcinogenesis, caused by the genetic and epigenetic alterations. In the past, it was generally thought that genetic mutation was a key event of tumor pathogenesis, especially somatic mutation of tumor suppressor genes. With deeper understanding of tumors in recent years, increasing evidence has shown that epigenetic silencing of those genes, as a result of aberrant hypermethylation of CpG islands in promoters and histone modification, is essential to carcinogenesis and metastasis. The term epigenetics refers to heritable changes in gene expression caused by regulation mechanisms, other than changes in DNA sequence. Specific epigenetic processes include DNA methylation, chromotin remodeling, histone modification, and microRNA regulations. These alterations, in combination or individually, make it possible to establish the methylation profiles, histone modification maps, and expression profiles characteristic of this pathology, which become useful tools for screening, early detection, or prognostic markers in cervical cancer. This paper reviews recent epigenetics research progress in the CC study, and tries to depict the relationships between CC and DNA methylation, histone modification, as well as microRNA regulations.  相似文献   

3.
Summary The development of cancer has long been perceived to be a complex and multistep process in which a normal cell progresses to a fully malignant tumor cell in a step-by-step fashion. At the molecular level it is believed that these steps correspond to the acquisition of activated oncogenes or alternatively the inactivation of tumor suppressor genes. With the ability to stably transfer foreign genetic information into the germ line of animals a new powerful tool to study oncogenes became available.  相似文献   

4.
Tumor environment: a potent driving force in colorectal cancer?   总被引:4,自引:0,他引:4  
Current models predict that colorectal carcinogenesis proceeds primarily through the progressive accumulation of fixed genetic changes in key tumor suppressor genes, oncogenes and DNA repair components. However, recent studies found evidence of dynamic changes in cellular adhesion and β-catenin localization occurring during invasion, metastasis and expansion of well-differentiated colorectal cancers. It is proposed that such changes might be driven by the local tumor environment, which, if validated, would necessitate a revision of the current linear tumor progression model.  相似文献   

5.
Varshaver  N. B. 《Molecular Biology》2002,36(2):251-258
The history of somatic cell genetics from the late 1950s to the present day is considered. Studies in this field provided for the elucidation of numerous basic and applied problems, including spontaneous mutagenesis, gene mapping with somatic cell hybrids, and genetic mechanisms of carcinogenesis (e.g., cell protooncogenes, oncogenes, and tumor suppressor genes were revealed). The knocking-out technique allowed the effects of various genes to be analyzed.  相似文献   

6.
The history of somatic cell genetics from the late 1950s to the present day is considered. Studies in this field provided for the elucidation of numerous fundamental and applied problems, including spontaneous mutagenesis, gene mapping with somatic cell hybrids, and genetic mechanisms of carcinogenesis (e.g., cell protooncogenes, oncogenes, and tumor suppressor genes were revealed). The knocking-out technique allowed the effects of various genes to be analyzed.  相似文献   

7.
Brain tumors are becoming a major cause of death. The classification of brain tumors has gone through restructuring with regard to some criteria such as the presence or absence of a specific genetic alteration in the 2016 central nervous system World Health Organization update. Two categories of genes with a leading role in tumorigenesis and cancer induction include tumor suppressor genes and oncogenes; tumor suppressor genes are inactivated through a variety of mechanisms that result in their loss of function. As for the oncogenes, overexpression and amplification are the most common mechanisms of alteration. Important cell cycle genes such as p53, ATM, cyclin D2, and Rb have shown altered expression patterns in different brain tumors such as meningioma and astrocytoma. Some genes in signaling pathways have a role in brain tumorigenesis. These pathways include hedgehog, EGFR, Notch, hippo, MAPK, PI3K/Akt, and WNT signaling. It has been shown that telomere length in some brain tumor samples is shortened compared to that in normal cells. As the shortening of telomere length triggers chromosome instability early in brain tumors, it could lead to initiation of cancer. On the other hand, telomerase activity was positive in some brain tumors. It is suggestive that telomere length and telomerase activity are important diagnostic markers in brain tumors. This review focuses on brain tumors with regard to the status of oncogenes, tumor suppressors, cell cycle genes, and genes in signaling pathways as well as the role of telomere length and telomerase in brain tumors.  相似文献   

8.
In recent decades we have been given insight into the process that transforms a normal cell into a malignant cancer cell. It has been recognised that malignant transformation occurs through successive mutations in specific cellular genes, leading to the activation of oncogenes and inactivation of tumor suppressor genes. The further study of these genes has generated much of its excitement from the convergence of experiments addressing the genetic basis of cancer, together with cellular pathways that normally control important cellular regulatory programmes. In the present review the context in which oncogenes such as proliferation, cell death/apoptosis, differentiation and senescence will be described, as well as how these cellular programmes become deregulated in cancer due to mutations.  相似文献   

9.
Molecular insights into breast cancer from transgenic mouse models.   总被引:2,自引:0,他引:2  
We desperately need to know more of the biological details of the onset and progression of breast cancer. The disease is of startlingly high incidence (approaching 1 in 9 women), our current therapies for the disease are inadequate once it has metastasized, and the disease is characterized by excessive morbidity and mortality. Most of the growth and differentiation of the mammary gland occurs relatively late in life: during sexual maturation, and then cyclically during pregnancy and lactation. Normal as well as malignant growth is regulated by endocrine hormones as well as by local tissue factors, such as polypeptide growth factors. Cancer seems to progress as hyperplastic ductal or lobular epithelial growth, acquiring progressive genetic changes (including those of oncogenes and tumor suppressor genes) leading to clonal outgrowths of progressively more malignant cells. The nature of proliferative controls and the relevant genetic changes are the subjects of the current review.  相似文献   

10.
The multifactorial process of carcinogenesis involves mutations in oncogenes, or tumor suppressor genes, as well as the influence of environmental etiological factors. Common DNA polymorphisms in low penetrance genes have emerged as genetic factors that seem to modulate an individual’s susceptibility to malignancy. Genetic studies, which lead to a true association, are expected to increase understanding of the pathogenesis of each malignancy and to be a powerful tool for prevention and prognosis in the future. Here, we review the findings of genetic association studies of gene polymorphisms in gynecologic cancer with special reference to glutathione-S-transferase, FAS/CD95 and p53 genes including our recent research results.  相似文献   

11.
Cancer is traditionally viewed as a disease of abnormal cell proliferation controlled by a series of mutations. Mutations typically affect oncogenes or tumor suppressor genes thereby conferring growth advantage. Genomic instability facilitates mutation accumulation. Recent findings demonstrate that activation of oncogenes and inactivation of tumor suppressor genes, as well as genomic instability, can be achieved by epigenetic mechanisms as well. Unlike genetic mutations, epimutations do not change the base sequence of DNA and are potentially reversible. Similar to genetic mutations, epimutations are associated with specific patterns of gene expression that are heritable through cell divisions. Knudson's hypothesis postulates that inactivation of tumor suppressor genes requires two hits, with the first hit occurring either in somatic cells (sporadic cancer) or in the germline (hereditary cancer) and the second one always being somatic. Studies on hereditary and sporadic forms of colorectal carcinoma have made it evident that, apart from genetic mutations, epimutations may serve as either hit or both. Furthermore, recent next-generation sequencing studies show that epigenetic genes, such as those encoding histone modifying enzymes and subunits for chromatin remodeling systems, are themselves frequent targets of somatic mutations in cancer and can act like tumor suppressor genes or oncogenes. This review discusses genetic vs. epigenetic origin of cancer, including cancer susceptibility, in light of recent discoveries. Situations in which mutations and epimutations occur to serve analogous purposes are highlighted.  相似文献   

12.
Hypoxia-inducible factor 1 (HIF-1) controls oxygen delivery (via angiogenesis) and metabolic adaptation to hypoxia (via glycolysis). HIF-1 consists of a constitutively expressed HIF-1β subunit and an oxygen- and growth-factor-regulated HIF-1α subunit. In xenografts, tumor growth and angiogenesis are correlated with HIF-1 expression. In human cancers, HIF-1α is overexpressed as a result of intratumoral hypoxia and genetic alterations affecting key oncogenes and tumor suppressor genes. HIF-1α overexpression in biopsies of brain, breast, cervical, esophageal, oropharyngeal and ovarian cancers is correlated with treatment failure and mortality. Increased HIF-1 activity promotes tumor progression, and inhibition of HIF-1 could represent a novel approach to cancer therapy.  相似文献   

13.
Chromosomal approaches to oncogenes and oncogenesis   总被引:1,自引:0,他引:1  
P C Nowell  C M Croce 《FASEB journal》1988,2(15):3054-3060
Cytogenetic studies are providing clues to the growth regulatory genes involved in human carcinogenesis and to mechanisms that alter their function. Investigations of chromosome translocations in B and T cell lymphomas and in chronic myelogenous leukemia have demonstrated the effects on protooncogenes of transposition within the genome, with or without structural change in the gene. These studies have also provided evidence for many previously unidentified human oncogenes. Similarly, the recognition through cytogenetics of gene amplification units in aggressive forms of certain tumors has helped to define another important type of somatic genetic change in neoplasia, again involving both known and previously unknown oncogenes. The observation of nonrandom chromosomal deletions in other malignancies has contributed to the delineation of an additional major class of tumorigenic genes, called suppressor genes, which appear to have a significant role in inherited malignancies and are now being actively sought in many common cancers. Finally, chromosome studies have helped to demonstrate the clonal nature of most neoplasms and the importance, in tumor progression, of sequential somatic genetic changes within the neoplastic clone. This latter phenomenon appears to depend primarily on acquired genetic lability in the tumor cell population. Karyotypic data are providing leads to its basis, as well as to the significance in carcinogenesis of constitutional chromosomal fragility and of specific fragile sites within the genome of different individuals.  相似文献   

14.
Cancer stem cells--old concepts, new insights   总被引:2,自引:0,他引:2  
Cancer has long been viewed as an exclusively genetic disorder. The model of carcinogenesis, postulated by Nowell and Vogelstein, describes the formation of a tumor by the sequential accumulation of mutations in oncogenes and tumor suppressor genes. In this model, tumors are thought to consist of a heterogeneous population of cells that continue to acquire new mutations, resulting in a highly dynamic process, with clones that out compete others due to increased proliferative or survival capacity. However, novel insights in cancer stem cell research suggest another layer of complexity in the process of malignant transformation and preservation. It has been reported that only a small fraction of the cancer cells in a malignancy have the capacity to propagate the tumor upon transplantation into immuno-compromised mice. Those cells are termed 'cancer stem cells' (CSC) and can be selected based on the expression of cell surface markers associated with immature cell types. In this review, we will critically discuss these novel insights in CSC-related research. Where possible we integrate these results within the genetic model of cancer and illustrate that the CSC model can be considered an extension of the classic genetic model rather than a contradictory theory. Finally, we discuss some of the most controversial issues in this field.  相似文献   

15.
The classical somatic mutation theory (SMT) of carcinogenesis and metastasis postulates that malignant transformation occurs in cells that accumulate a sufficient amount of mutations in the appropriate oncogenes and/or tumor suppressor genes. These mutations result in cell-autonomous activation of the mutated cell and a growth advantage relative to neighboring cells. However, the SMT cannot completely explain many characteristics of carcinomas. Contrary to the cell-centered view of the SMT with respect to carcinogenesis, recent research has revealed evidence that the tumor microenvironment plays a role in carcinogenesis as well. In this review, we present a new model that accommodates the role of the tumor microenvironment in carcinogenesis and complements the classical SMT. Our "feedback" model emphasizes the role of an altered spatiotemporal communication between epithelial and stromal cells during carcinogenesis: a dysfunctional intracellular signaling in tumorigenic epithelial cells leads to inappropriate cellular responses to stimuli from associated stromal or inflammatory cells. Thus, a positive feedback loop of the information flow between parenchymal and stromal cells results. This constant communication between the stromal cells and the tumor cells causes a perpetually activated state of tumor cells analogous to resonance disaster.  相似文献   

16.
Cancer results if regulatory mechanisms of cell birth and death are disrupted. Colorectal tumorigenesis is initiated by somatic or inherited mutations in the APC tumor suppressor gene pathway. Several additional genetic hits in other tumor suppressor genes and oncogenes drive the progression from polyps to malignant, invasive cancer. The majority of colorectal cancers present chromosomal instability, CIN, which is caused by mutations in genes that are required to maintain chromosomal stability. A major question in cancer genetics is whether CIN is an early event and thus a driving force of tumor progression. We present a new mathematical model of colon cancer initiation assuming a linear flow from stem cells to differentiated cells to apoptosis. We study the consequences of mutations in different cell types and calculate the conditions for CIN to precede APC inactivation. We find that early emergence of CIN is very likely in colorectal tumorigenesis.  相似文献   

17.
Cancer results if regulatory mechanisms of cell birth and death are disrupted. Colorectal tumorigenesis is initiated by somatic or inherited mutations in the APC tumor suppressor gene pathway. Several additional genetic hits in other tumor suppressor genes and oncogenes drive the progression from polyps to malignant, invasive cancer. The majority of colorectal cancers present chromosomal instability, CIN, which is caused by mutations in genes that are required to maintain chromosomal stability. A major question in cancer genetics is whether CIN is an early event and thus a driving force of tumor progression. We present a new mathematical model of colon cancer initiation assuming a linear flow from stem cells to differentiated cells to apoptosis. We study the consequences of mutations in different cell types and calculate the conditions for CIN to precede APC inactivation. We find that early emergence of CIN is very likely in colorectal tumorigenesis.  相似文献   

18.
Genome-wide profiling of gene amplification and deletion in cancer   总被引:3,自引:0,他引:3  
Kashiwagi H  Uchida K 《Human cell》2000,13(3):135-141
Accumulations of genetic changes in somatic cells induce phenotypic transformations leading to cancer. Among these genetic changes, gene amplification and deletion are most frequently observed in several kinds of cancers. Amplification of oncogene and/or deletion of tumor suppressor gene, together with dysfunction of the gene by point mutation, are the main causes of cancer. Genome-wide analysis of amplification and deletion of genes in cancers is basic to resolving the mechanisms of carcinogenesis. Comparative genomic hybridization (CGH) developed in 1992 has been utilized to identify DNA copy number abnormalities in various kind of cancers and several reports have shown its usefulness in screening of the genes involved in carcinogenesis, and also in the identification of prognostic factors in cancer. We have shown that 1q23 gain is associated with neuroblastomas that are resistant to aggressive treatment, and have poor prognosis, and 1q and 13q gains are possibly related to drug resistance in ovarian cancers. Recently, the "rough draft" of the human genome was reported and we are ready to utilize the vast information on genomic sequences in cancer research. Moreover, microarray technology enables us to analyze more than ten thousand genes at a time and revealed genetic abnormalities in cancers at a genome-wide level. By combination of microarray and CGH, a powerful screening method for oncogenes and tumor suppressor genes in cancers, called array-CGH, has been developed by several groups. In this article, we overview these genome-wide analytical methods, CGH and array-CGH, and discuss their potential in molecular characterization of cancers.  相似文献   

19.
Prostate cancer is one of the most common malignancies.The development and progression of prostate cancer are driven by a series of genetic and epigenetic events including gene amplification that activates oncogenes and chromosomal deletion that inactivates tumor suppressor genes.Whereas gene amplification occurs in human prostate cancer,gene deletion is more common,and a large number of chromosomal regions have been identified to have frequent deletion in prostate cancer,suggesting that tumor suppressor inactivation is more common than oncogene activation in prostatic carcinogenesis (Knuutila et al.,1998,1999;Dong,2001).Among the most frequently deleted chromosomal regions in prostate cancer,target genes such as NKX3-1 from 8p21,PTENfrom 10q23 andATBF1 from 16q22 have been identified by different approaches (He et al.,1997;Li et al.,1997;Sun et al.,2005),and deletion of these genes in mouse prostates has been demonstrated to induce and/or promote prostatic carcinogenesis.For example,knockout of Nkx3-1 in mice induces hyperplasia and dysplasia (Bhatia-Gaur et al.,1999;Abdulkadir et al.,2002) and promotes prostatic tumorigenesis (Abate-Shen et al.,2003),while knockout of Pten alone causes prostatic neoplasia (Wang et al.,2003).Therefore,gene deletion plays a causal role in prostatic carcinogenesis (Dong,2001).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号