首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

To identify changes in brain activation patterns in bipolar disorder (BD) and unipolar depression (UD) patients.

Methodology/Principal Findings

Resting-state fMRI scans of 16 healthy controls, 17 BD and 16 UD patients were obtained. T-test of normalized regional homogeneity (ReHo) was performed in a voxel-by-voxel manner. A combined threshold of á = 0.05, minimum cluster volume of V = 10503 mm3 (389 voxels) were used to determine ReHo differences between groups. In UD group, fMRI revealed ReHo increases in the left middle occipital lobe, right inferior parietal lobule, right precuneus and left convolution; and ReHo decreases in the left parahippocampalgyrus, right precentralgyrus, left postcentralgyrus, left precentralgyrus and left cingulated. In BD group, ReHo increases in the right insular cortex, left middle frontal gyrus, left precuneus, left occipital lobe, left parietal, left superior frontal gyrus and left thalamus; and ReHo decreases in the right anterior lobe of cerebellum, pons, right precentralgyrus, left postcentralgyrus, left inferior frontal gyrus, and right cingulate. There were some overlaps in ReHo profiles between UD and BD groups, but a marked difference was seen in the thalamus of BD.

Conclusions/Significance

The resting-state fMRI and ReHo mapping are a promising tool to assist the detection of functional deficits and distinguish clinical and pathophysiological signs of BD and UD.  相似文献   

2.
Resting-state functional magnetic resonance imaging (fMRI) has been used to detect the alterations of spontaneous neuronal activity in various neurological and neuropsychiatric diseases, but rarely in hemifacial spasm (HFS), a nervous system disorder. We used resting-state fMRI with regional homogeneity (ReHo) analysis to investigate changes in spontaneous brain activity of patients with HFS and to determine the relationship of these functional changes with clinical features. Thirty patients with HFS and 33 age-, sex-, and education-matched healthy controls were included in this study. Compared with controls, HFS patients had significantly decreased ReHo values in left middle frontal gyrus (MFG), left medial cingulate cortex (MCC), left lingual gyrus, right superior temporal gyrus (STG) and right precuneus; and increased ReHo values in left precentral gyrus, anterior cingulate cortex (ACC), right brainstem, and right cerebellum. Furthermore, the mean ReHo value in brainstem showed a positive correlation with the spasm severity (r = 0.404, p = 0.027), and the mean ReHo value in MFG was inversely related with spasm severity in HFS group (r = -0.398, p = 0.028). This study reveals that HFS is associated with abnormal spontaneous brain activity in brain regions most involved in motor control and blinking movement. The disturbances of spontaneous brain activity reflected by ReHo measurements may provide insights into the neurological pathophysiology of HFS.  相似文献   

3.
In order to further the insight into the explanation of changed performance in mental transformation under microgravity, we discuss the change of performance in mental transformation and its relationship with altered regional homogeneity (ReHo) in resting-state brain by using simulated weightlessness model. Twelve male subjects with age between 24 and 31 received resting-state fMRI scan and mental transformation test both in normal condition and immediately after 72 hours −6° head down tilt (HDT). A paired sample t-test was used to test the difference of behavior performance and brain activity between these two conditions. Compare with normal condition, subjects showed a changed performance in mental transformation with short term simulated microgravity and appeared to be falling. Meanwhile, decreased ReHo were found in right inferior frontal gyrus (IFG) and left inferior parietal lobule (IPL) after 72 hours −6° HDT, while increased ReHo were found in bilateral medial frontal gyrus (MFG) and left superior frontal gyrus (SFG) (P<0.05, corrected). Particularly, there was a significant correlation between ReHo values in left IPL and velocity index of mental transformation. Our findings indicate that gravity change may disrupt the function of right IFG and left IPL in the resting-state, among of which functional change in left IPL may contribute to changed abilities of mental transformation. In addition, the enhanced activity of the bilateral MFG and decreased activity of right IFG found in the current study maybe reflect a complementation effect on inhibitory control process.  相似文献   

4.
BackgroundTo investigate the relationships among regional activity abnormalities, clinical disease severity, and prognosis in cirrhotic patients with overt hepatic encephalopathy (OHE) using resting-state functional magnetic resonance imaging (rs-fMRI).MethodsRegional homogeneity (ReHo) values of 12 cirrhotic patients with OHE and 12 age- and sex-matched healthy volunteers were calculated from rs-fMRI. Two-sample t-test was performed on individual ReHo maps between the two groups. The relationships between ReHo variation, disease severity, and prognosis were analyzed.ResultsCirrhotic patients with OHE had significantly low ReHo values in the left middle cingulum, bilateral superior temporal, left inferior orbito-frontal, right calcarine, left inferior frontal gyrus, left post-central, left inferior temporal, and left lingual areas, and high ReHo in the right superior frontal, right inferior temporal, right caudate, and cerebellum. There was significant group difference in the right superior temporal lobe (p=0.016) and crus1 of the left cerebellum (p=0.015) between survivors and non-survivors in the OHE group. Worse Glasgow Coma Scale was associated with increased local connectivity in the left cerebellar crus I (r= -0.868, p=0.001).ConclusionsInformation on the functional activity of cirrhotic patients with OHE suggests the use of rs-fMRI with ReHo analysis as a non-invasive prognosticating modality.  相似文献   

5.
The objective of this study was to evaluate the brain function characteristics of carbon monoxide poisoning patients using resting-state functional magnetic resonance imaging (fMRI) method. For this purpose, 12 carbon monoxide poisoning patients and healthy controls were subjected to resting-state fMRI scans separately. A regional homogeneity (ReHo) approach was used to analyze the brain function in carbon monoxide poisoning patients. Compared with control group, the value of ReHo in carbon monoxide poisoning group showed distinct decrease in bilateral superior frontal gyrus, middle frontal gyrus, right cuneus, left middle temporal gyrus, right insula, and cerebellum. Therefore, it was concluded that the brain functions in carbon monoxide poisoning patients were abnormal under the resting-state. The cuneate lobe function may indicate the degree of brain hypoxia and strengthening the cerebellar function training may promote the rehabilitation process.  相似文献   

6.
The early detection of major depression in elderly individuals who are at risk of developing the disease is of prime importance when it comes to the prevention of geriatric depression. We used resting-state functional magnetic resonance imaging (fMRI) to examine changes in regional homogeneity (ReHo) of spontaneous activity in late-life subthreshold depression (StD), and we evaluated the sensitivity/specificity performance of these changes. Nineteen elderly individuals with StD and 18 elderly controls underwent a resting-state fMRI scan. The ReHo approach was employed to examine whether StD was related to alterations in resting-state neural activity, in the form of abnormal regional synchronization. Receiver operating characteristic curve analysis and the Fisher stepwise discriminant analysis were used to evaluate the sensitivity/specificity characteristics of the ReHo index in discriminating between the StD subjects and normal controls. The results demonstrated that, compared to controls, StD subjects display lower ReHo in the right orbitofrontal cortex (OFC), left dorsolateral prefrontal cortex (DLPFC), left postcentral gyrus (PCG), and left middle frontal and inferior temporal gyri, as well as higher ReHo in the bilateral insula and right DLPFC. The left PCG and the right DLPFC, OFC, and posterior insula, together reported a predictive accuracy of 91.9%. These results suggest that the regional activity coherence was changed in the resting brain of StD subjects, and that these alterations may serve as potential markers for the early detection of StD in late-life depression.  相似文献   

7.
X Lin  K Ding  Y Liu  X Yan  S Song  T Jiang 《PloS one》2012,7(8):e43373
Amblyopia, also known as lazy eye, usually occurs during early childhood and results in poor or blurred vision. Recent neuroimaging studies have found cortical structural/functional abnormalities in amblyopia. However, until now, it was still not known whether the spontaneous activity of the brain changes in amblyopia subjects. In the present study, regional homogeneity (ReHo), a measure of the homogeneity of functional magnetic resonance imaging signals, was used for the first time to investigate changes in resting-state local spontaneous brain activity in individuals with anisometropic amblyopia. Compared with age- and gender-matched subjects with normal vision, the anisometropic amblyopia subjects showed decreased ReHo of spontaneous brain activity in the right precuneus, the left medial prefrontal cortex, the left inferior frontal gyrus, and the left cerebellum, and increased ReHo of spontaneous brain activity was found in the bilateral conjunction area of the postcentral and precentral gyri, the left paracentral lobule, the left superior temporal gyrus, the left fusiform gyrus, the conjunction area of the right insula, putamen and the right middle occipital gyrus. The observed decreases in ReHo may reflect decreased visuo-motor processing ability, and the increases in ReHo in the somatosensory cortices, the motor areas and the auditory area may indicate compensatory plasticity in amblyopia.  相似文献   

8.
本文研究了在保留最大化内在功能连接条件下抑郁症患者脑网络效率的改变,并探索了改变的拓扑效率和抑郁症病理学之间的关系.为此,我们收集了20例抑郁症患者和20例在年龄、性别和教育水平相匹配的健康被试的静息态功能磁共振图像数据.图论分析显示,与健康对照组比较,抑郁症患者的节点效率减少在左海马旁回、右杏仁核,左颞横回和左颞极(颞中回)减少.减少的节点效率表明,在抑郁症患者脑网络中这些区域传送信息到其他区域的能力减弱.此外,发现局部效率降低在左内侧额上回、左眶部额上回、右回直肌、左杏仁核、右顶上回、左丘脑和左颞极(颞中回).并且发现左内侧额上回、左杏仁核、左丘脑与PHQ-9得分呈负相关.降低的局部效率表明抑郁症患者脑网络中这些区域的局部网络信息传送能力受到抑制.这些结果进一步确认在抑郁症患者中涉及情感信息处理的前额-丘脑-边缘区域被破坏.我们的发现为抑郁症病人的辅助诊断提供了新的潜在生物学标记物.  相似文献   

9.
《Endocrine practice》2019,25(4):320-327
Objective: Previous neuroimaging studies have shown that diabetic retinopathy (DR) is accompanied by abnormal spontaneous brain activity. The purpose of the current study was to investigate changes in brain neural homogeneity in patients with DR using regional homogeneity (ReHo).Methods: A total of 56 subjects were recruited, including 28 patients with DR (16 female and 12 male patients) and 28 healthy controls (HCs) (16 female and 12 male patients) approximately matched for age and sex. All subjects underwent resting-state functional magnetic resonance imaging scans. The ReHo method was applied to explore neural homogeneity in the brain. The patients with DR were distinguished from HCs following the construction of receiver operating characteristic curves. The ReHo method was applied to assess changes in synchronous neural activity.Results: Compared to HCs, the ReHo values in the left and right posterior lobes of the cerebellum in patients with DR were significantly increased, whereas ReHo values in the right anterior cingulate gyrus, right cuneus, bilateral precuneus, and left-middle frontal gyrus were significantly decreased. In addition, the ReHo value in the right cuneus showed a positive correlation with the best corrected visual acuity in patients with DR.Conclusion: Dysfunctional brain homology may reveal the pathological mechanisms underlying the visual pathways of patients with DR.Abbreviations: AUC = area under the curve; BA = Brodmann area; DR = diabetic retinopathy; fMRI = functional magnetic resonance imaging; HC = healthy control; MRI = magnetic resonance imaging; rs-fMRI = resting-state fMRI; ReHo = regional homogeneity; ROC = receiver operating characteristic  相似文献   

10.
Recently, a large meta-analysis of five genome wide association studies (GWAS) identified a novel locus (rs2718058) adjacent to NME8 that played a preventive role in Alzheimer''s disease (AD). However, this link between the single nucleotide polymorphism (SNP) rs2718058 and the pathology of AD have not been mentioned yet. Therefore, this study assessed the strength of association between the NME8 rs2718058 genotypes and AD-related measures including the cerebrospinal fluid (CSF) amyloid beta, tau, P-tau concentrations, neuroimaging biomarkers and cognitive performance, in a large cohort from Alzheimer''s Disease Neuroimaging Initiative (ADNI) database. We used information of a total of 719 individuals, including 211 normal cognition (NC), 346 mild cognitive impairment (MCI) and 162 AD. Although we didn''t observe a positive relationship between rs2718058 and AD, it was significantly associated with several AD related endophenotypes. Among the normal cognitively normal participants, the minor allele G carriers showed significantly associated with higher CDRSB score than A allele carriers (P = 0.021). Occipital gyrus atrophy were significantly associated with NME8 genotype status (P = 0.002), with A allele carriers has more atrophy than the minor allele G carriers in AD patients; lateral ventricle (both right and left) cerebral metabolic rate for glucose (CMRgl) were significantly associated with NME8 genotype (P<0.05), with GA genotype had higher metabolism than GG and AA genotypes in MCI group; the atrophic right hippocampus in 18 months is significantly different between the three group, with GG and AA genotypes had more hippocampus atrophy than GA genotypes in the whole group. Together, our results are consistent with the direction of previous research, suggesting that NME8 rs2718058 appears to play a role in lowering the brain neurodegeneration.  相似文献   

11.

Background

Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI). However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo) analysis based on resting-state functional magnetic resonance imaging.

Methods

A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity.

Results

Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores.

Conclusion

Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as potential biomarkers for assessment of neuronal damage and the prediction of clinical outcomes in acute SCI.  相似文献   

12.

Aim

We sought to use a regional homogeneity (ReHo) approach as an index in resting-state functional magnetic resonance imaging (fMRI) to investigate the features of spontaneous brain activity within the default mode network (DMN) in patients suffering from bipolar depression (BD).

Methods

Twenty-six patients with BD and 26 gender-, age-, and education-matched healthy subjects participated in the resting-state fMRI scans. We compared the differences in ReHo between the two groups within the DMN and investigated the relationships between sex, age, years of education, disease duration, the Hamilton Rating Scale for Depression (HAMD) total score, and ReHo in regions with significant group differences.

Results

Our results revealed that bipolar depressed patients had increased ReHo in the left medial frontal gyrus and left inferior parietal lobe compared to healthy controls. No correlations were found between regional ReHo values and sex, age, and clinical features within the BD group.

Conclusions

Our findings indicate that abnormal brain activity is mainly distributed within prefrontal-limbic circuits, which are believed to be involved in the pathophysiological mechanisms underlying bipolar depression.  相似文献   

13.
The neural mechanisms underlying genetic risk for schizophrenia, a highly heritable psychiatric condition, are still under investigation. New schizophrenia risk genes discovered through genome-wide association studies (GWAS), such as neurogranin (NRGN), can be used to identify these mechanisms. In this study we examined the association of two common NRGN risk single nucleotide polymorphisms (SNPs) with functional and structural brain-based intermediate phenotypes for schizophrenia. We obtained structural, functional MRI and genotype data of 92 schizophrenia patients and 114 healthy volunteers from the multisite Mind Clinical Imaging Consortium study. Two schizophrenia-associated NRGN SNPs (rs12807809 and rs12541) were tested for association with working memory-elicited dorsolateral prefrontal cortex (DLPFC) activity and surface-wide cortical thickness. NRGN rs12541 risk allele homozygotes (TT) displayed increased working memory-related activity in several brain regions, including the left DLPFC, left insula, left somatosensory cortex and the cingulate cortex, when compared to non-risk allele carriers. NRGN rs12807809 non-risk allele (C) carriers showed reduced cortical gray matter thickness compared to risk allele homozygotes (TT) in an area comprising the right pericalcarine gyrus, the right cuneus, and the right lingual gyrus. Our study highlights the effects of schizophrenia risk variants in the NRGN gene on functional and structural brain-based intermediate phenotypes for schizophrenia. These results support recent GWAS findings and further implicate NRGN in the pathophysiology of schizophrenia by suggesting that genetic NRGN risk variants contribute to subtle changes in neural functioning and anatomy that can be quantified with neuroimaging methods.  相似文献   

14.
Low frequency oscillations are essential in cognitive function impairment in schizophrenia. While functional connectivity can reveal the synchronization between distant brain regions, the regional abnormalities in task-independent baseline brain activity are less clear, especially in specific frequency bands. Here, we used a regional homogeneity (ReHo) method combined with resting-state functional magnetic resonance imaging to investigate low frequency spontaneous neural activity in the three different frequency bands (slow-5∶0.01–0.027 Hz; slow-4∶0.027–0.08 Hz; and typical band: 0.01–0.08 Hz) in 69 patients with schizophrenia and 62 healthy controls. Compared with controls, schizophrenia patients exhibited decreased ReHo in the precentral gyrus, middle occipital gyrus, and posterior insula, whereas increased ReHo in the medial prefrontal cortex and anterior insula. Significant differences in ReHo between the two bands were found in fusiform gyrus and superior frontal gyrus (slow-4> slow-5), and in basal ganglia, parahippocampus, and dorsal middle prefrontal gyrus (slow-5> slow-4). Importantly, we identified significant interaction between frequency bands and groups in the inferior occipital gyrus and caudate body. This study demonstrates that ReHo changes in schizophrenia are widespread and frequency dependent.  相似文献   

15.
We used resting-state functional magnetic resonance imaging (fMRI) to investigate changes in the thalamus functional connectivity in early and late stages of amnestic mild cognitive impairment. Data of 25 late stages of amnestic mild cognitive impairment (LMCI) patients, 30 early stages of amnestic mild cognitive impairment (EMCI) patients and 30 well-matched healthy controls (HC) were analyzed from the Alzheimer’s disease Neuroimaging Initiative (ADNI). We focused on the correlation between low frequency fMRI signal fluctuations in the thalamus and those in all other brain regions. Compared to healthy controls, we found functional connectivity between the left/right thalamus and a set of brain areas was decreased in LMCI and/or EMCI including right fusiform gyrus (FG), left and right superior temporal gyrus, left medial frontal gyrus extending into supplementary motor area, right insula, left middle temporal gyrus (MTG) extending into middle occipital gyrus (MOG). We also observed increased functional connectivity between the left/right thalamus and several regions in LMCI and/or EMCI including left FG, right MOG, left and right precuneus, right MTG and left inferior temporal gyrus. In the direct comparison between the LMCI and EMCI groups, we obtained several brain regions showed thalamus-seeded functional connectivity differences such as the precentral gyrus, hippocampus, FG and MTG. Briefly, these brain regions mentioned above were mainly located in the thalamo-related networks including thalamo-hippocampus, thalamo-temporal, thalamo-visual, and thalamo-default mode network. The decreased functional connectivity of the thalamus might suggest reduced functional integrity of thalamo-related networks and increased functional connectivity indicated that aMCI patients could use additional brain resources to compensate for the loss of cognitive function. Our study provided a new sight to understand the two important states of aMCI and revealed resting-state fMRI is an appropriate method for exploring pathophysiological changes in aMCI.  相似文献   

16.
Persistent somatoform pain disorder (PSPD) is a mental disorder un-associated with any somatic injury and can cause severe somatosensory and emotional impairments in patients. However, so far, the neuro-pathophysiological mechanism of the functional impairments in PSPD is still unclear. The present study assesses the difference in regional spontaneous activity between PSPD and healthy controls (HC) during a resting state, in order to elucidate the neural mechanisms underlying PSPD. Resting-state functional Magnetic Resonance Imaging data were obtained from 13 PSPD patients and 23 age- and gender-matched HC subjects in this study. Kendall’s coefficient of concordance was used to measure regional homogeneity (ReHo), and a two-sample t-test was subsequently performed to investigate the ReHo difference between PSPD and HC. Additionally, the correlations between the mean ReHo of each survived area and the clinical assessments were further analyzed. Compared with the HC group, patients with PSPD exhibited decreased ReHo in the bilateral primary somatosensory cortex, posterior cerebellum, and occipital lobe, while increased ReHo in the prefrontal cortex (PFC) and default mode network (including the medial PFC, right inferior parietal lobe (IPL), and left supramarginal gyrus). In addition, significant positive correlations were found between the mean ReHo of both right IPL and left supramarginal gyrus and participants’ Self-Rating Anxiety Scale (SAS) scores, and between the mean ReHo of the left middle frontal gyrus and Visual Analogue Scale (VAS) scores. Our results suggest that abnormal spontaneous brain activity in specific brain regions during a resting state may be associated with the dysfunctions in pain, memory and emotional processing commonly observed in patients with PSPD. These findings help us to understand the neural mechanisms underlying PSPD and suggest that the ReHo metric could be used as a clinical marker for PSPD.  相似文献   

17.
There is accumulating evidence that the human leukocyte antigen (HLA) gene variants are associated with Alzheimer’s disease (AD). However, how they affect AD occurrence is still unknown. In this study, we firstly investigated the association of gene variants in HLA gene variants and brain structures on MRI in a large sample from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to explore the effects of HLA on AD pathogenesis. We selected hippocampus, hippocampus CA1 subregion, parahippocampus, posterior cingulate, precuneus, middle temporal, entorhinal cortex, and amygdala as regions of interest (ROIs). According to the previous association studies of HLA variants and AD, 12 SNPs in HLA were identified in the dataset following quality control measures. In total group analysis, our results showed that TNF-α SNPs at rs2534672 and rs2395488 were significantly positively associated with the volume of the left middle temporal lobe (rs2534672: P?=?0.00035, Pc?=?0.004; rs2395488: P?=?0.0038, Pc?=?0.023) at baseline. In the longitudinal study, HFE rs1800562 was remarkably correlated with the lower atrophy rate of right middle temporal lobe (P?=?0.0003, Pc?=?0.003) and RAGE rs2070600 was associated with the atrophy rate of right hippocampus substructure-CA1 over 2 years (P?=?0.003, Pc?=?0.035). Furthermore, we detected the above four associations in mild cognitive impairment (MCI) subgroup analysis, as well as the association of rs2534672 with the baseline volume of the left middle temporal lobe in normal cognition (NC) subgroup analysis. Our study provided preliminary evidences that HLA gene variants might participate in the structural alteration of AD associated brain regions, hence modulating the susceptibility of AD.  相似文献   

18.

Purpose

To investigate the pattern of spontaneous neural activity in patients with end-stage renal disease (ESRD) with and without neurocognitive dysfunction using resting-state functional magnetic resonance imaging (rs-fMRI) with a regional homogeneity (ReHo) algorithm.

Materials and Methods

rs-fMRI data were acquired in 36 ESRD patients (minimal nephro-encephalopathy [MNE], n = 19, 13 male, 37±12.07 years; non-nephro-encephalopathy [non-NE], n = 17, 11 male, 38±12.13 years) and 20 healthy controls (13 male, 7 female, 36±10.27 years). Neuropsychological (number connection test type A [NCT-A], digit symbol test [DST]) and laboratory tests were performed in all patients. The Kendall''s coefficient of concordance (KCC) was used to measure the regional homogeneity for each subject. The regional homogeneity maps were compared using ANOVA tests among MNE, non-NE, and healthy control groups and post hoc t -tests between each pair in a voxel-wise way. A multiple regression analysis was performed to evaluate the relationships between ReHo index and NCT-A, DST scores, serum creatinine and urea levels, disease and dialysis duration.

Results

Compared with healthy controls, both MNE and non-NE patients showed decreased ReHo in the multiple areas of bilateral frontal, parietal and temporal lobes. Compared with the non-NE, MNE patients showed decreased ReHo in the right inferior parietal lobe (IPL), medial frontal cortex (MFC) and left precuneus (PCu). The NCT-A scores and serum urea levels of ESRD patients negatively correlated with ReHo values in the frontal and parietal lobes, while DST scores positively correlated with ReHo values in the bilateral PCC/precuneus, MFC and inferior parietal lobe (IPL) (all P<0.05, AlphaSim corrected). No significant correlations were found between any regional ReHo values and disease duration, dialysis duration and serum creatinine values in ESRD patients (all P>0.05, AlphaSim corrected).

Conclusion

Diffused decreased ReHo values were found in both MNE and non-NE patients. The progressively decreased ReHo in the default mode network (DMN), frontal and parietal lobes might be trait-related in MNE. The ReHo analysis may be potentially valuable for elucidating neurocognitive abnormalities of ESRD patients and detecting the development from non-NE to MNE.  相似文献   

19.
As patients with Parkinson’s disease (PD) are at high risk for comorbid depression, it is hypothesized that these two diseases are sharing common pathogenic pathways. Using regional homogeneity (ReHo) and functional connectivity approaches, we characterized human regional brain activity at resting state to examine specific brain networks in patients with PD and those with PD and depression (PDD). This study comprised 41 PD human patients and 25 normal human subjects. The patients completed the Hamilton Depression Rating Scale and were further divided into two groups: patients with depressive symptoms and non-depressed PD patients (nD-PD). Compared with the non-depressed patients, those with depressive symptoms exhibited significantly increased regional activity in the left middle frontal gyrus and right inferior frontal gyrus, and decreased ReHo in the left amygdala and bilateral lingual gyrus. Brain network connectivity analysis revealed decreased functional connectivity within the prefrontal-limbic system and increased functional connectivity in the prefrontal cortex and lingual gyrus in PDD compared with the nD-PD group. In summary, the findings showed regional brain activity alterations and disruption of the mood regulation network in PDD patients. The pathogenesis of PDD may be attributed to abnormal neural activity in multiple brain regions.  相似文献   

20.
We examined the genetic background of nonalcoholic fatty liver disease (NAFLD) in the Japanese population, by performing a genome-wide association study (GWAS). For GWAS, 392 Japanese NAFLD subjects and 934 control individuals were analyzed. For replication studies, 172 NAFLD and 1,012 control subjects were monitored. After quality control, 261,540 single-nucleotide polymorphisms (SNPs) in autosomal chromosomes were analyzed using a trend test. Association analysis was also performed using multiple logistic regression analysis using genotypes, age, gender and body mass index (BMI) as independent variables. Multiple linear regression analyses were performed to evaluate allelic effect of significant SNPs on biochemical traits and histological parameters adjusted by age, gender, and BMI. Rs738409 in the PNPLA3 gene was most strongly associated with NAFLD after adjustment (P = 6.8 × 10?14, OR = 2.05). Rs2896019, and rs381062 in the PNPLA3 gene, rs738491, rs3761472, and rs2143571 in the SAMM50 gene, rs6006473, rs5764455, and rs6006611 in the PARVB gene had also significant P values (<2.0 × 10?10) and high odds ratios (1.84–2.02). These SNPs were found to be in the same linkage disequilibrium block and were associated with decreased serum triglycerides and increased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in NAFLD patients. These SNPs were associated with steatosis grade and NAFLD activity score (NAS). Rs738409, rs2896019, rs738491, rs6006473, rs5764455, and rs6006611 were associated with fibrosis. Polymorphisms in the SAMM50 and PARVB genes in addition to those in the PNPLA3 gene were observed to be associated with the development and progression of NAFLD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号