首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

Nitric oxide-independent soluble guanylyl cyclase (sGC) activators reactivate the haem-oxidized enzyme in vascular diseases. This study was undertaken to investigate the anti-platelet mechanisms of the haem-independent sGC activator BAY 60-2770 in human washed platelets. The hypothesis that sGC oxidation potentiates the anti-platelet activities of BAY 60-2770 has been tested.

Methods

Human washed platelet aggregation and adhesion assays, as well as flow cytometry for αIIbβ3 integrin activation and Western blot for α1 and β1 sGC subunits were performed. Intracellular calcium levels were monitored in platelets loaded with a fluorogenic calcium-binding dye (FluoForte).

Results

BAY 60-2770 (0.001–10 µM) produced significant inhibition of collagen (2 µg/ml)- and thrombin (0.1 U/ml)-induced platelet aggregation that was markedly potentiated by the sGC inhibitor ODQ (10 µM). In fibrinogen-coated plates, BAY 60-2770 significantly inhibited platelet adhesion, an effect potentiated by ODQ. BAY 60-2770 increased the cGMP levels and reduced the intracellular Ca2+ levels, both of which were potentiated by ODQ. The cell-permeable cGMP analogue 8-Br-cGMP (100 µM) inhibited platelet aggregation and Ca2+ levels in an ODQ-insensitive manner. The cAMP levels remained unchanged by BAY 60-2770. Collagen- and thrombin-induced αIIbβ3 activation was markedly inhibited by BAY 60-2770 that was further inhibited by ODQ. The effects of sodium nitroprusside (3 µM) were all prevented by ODQ. Incubation with ODQ (10 µM) significantly reduced the protein levels of α1 and β1 sGC subunits, which were prevented by BAY 60-2770.

Conclusion

The inhibitory effects of BAY 60-2770 on aggregation, adhesion, intracellular Ca2+ levels and αIIbβ3 activation are all potentiated in haem-oxidizing conditions. BAY 60-2770 prevents ODQ-induced decrease in sGC protein levels. BAY 60-2770 could be of therapeutic interest in cardiovascular diseases associated with thrombotic complications.  相似文献   

2.
Exposure of rat pulmonary artery smooth muscle cells (rPASMC) to cytokines leads to nitric oxide (NO) production by NO synthase 2 (NOS2). NO stimulates cGMP synthesis by soluble guanylate cyclase (sGC), a heterodimer composed of alpha(1)- and beta(1)-subunits. Prolonged exposure of rPASMC to NO decreases sGC subunit mRNA and protein levels. The objective of this study was to determine whether levels of NO produced endogenously by NOS2 are sufficient to decrease sGC expression in rPASMC. Interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) increased NOS2 mRNA levels and decreased sGC subunit mRNA levels. Exposure of rPASMC to IL-1beta and TNF-alpha for 24 h decreased sGC subunit protein levels and NO-stimulated sGC enzyme activity. L-N(6)-(1-iminoethyl)lysine (NOS2 inhibitor) or 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (sGC inhibitor) partially prevented the cytokine-mediated decrease in sGC subunit mRNA levels. However, cytokines also decreased sGC subunit mRNA levels in PASMC derived from NOS2-deficient mice. These results demonstrate that levels of NO and cGMP produced in cytokine-exposed PASMC are sufficient to decrease sGC subunit mRNA levels. In addition, cytokines can decrease sGC subunit mRNA levels via NO-independent mechanisms.  相似文献   

3.
Neurotoxic effects of ammonia are mediated by increased accumulation of nitric oxide (NO), which combines with free radicals to form a highly toxic compound, peroxynitrite. Previous experiments in vivo and in vitro have suggested that this phenomenon engages neuron-derived NO and is coupled to changes in the accumulation of cGMP. The present study accounted for the facts that: (i) astrocytes, not neurons are the morphological target of ammonia, and (ii) both NO-dependent, soluble (sGC) and NO-independent, particulate guanylate cyclase (pGC) mediate cGMP production in the cells. Neocortical rat astrocytes were treated for 1 or 24 h with 5 mM ammonium chloride ("ammonia") and then subjected to: (i) cGMP measurement, and (ii) mRNA and/or protein expression analysis of alpha1 and beta1 subunits of sGC and two pGC forms: pGC-A and pGC-B. Treatment with ammonia for 1h increased accumulation of cGMP and sGCbeta1 mRNA expression, without producing significant changes in the protein expression. This was followed by a decrease of cGMP level at 24 h treatment, associated with a decreased expression of sGCbeta1 and sGCalpha1 mRNA and sGCbeta1 protein. Expression of pGC-A and pGC-B mRNA was elevated in ammonia-treated astrocytes after 24 h. Accordingly, increased cGMP accumulation was noted in the presence of a specific sGC inhibitor (ODQ). The results show that ammonia affects cGMP production in astrocytes, and that this may involve not only sGC but also pGC.  相似文献   

4.

Background

A potential role for coagulation factors in pulmonary arterial hypertension has been recently described, but the mechanism of action is currently not known. Here, we investigated the interactions between thrombin and the nitric oxide-cGMP pathway in pulmonary endothelial cells and experimental pulmonary hypertension.

Principal Findings

Chronic treatment with the selective thrombin inhibitor melagatran (0.9 mg/kg daily via implanted minipumps) reduced right ventricular hypertrophy in the rat monocrotaline model of experimental pulmonary hypertension. In vitro, thrombin was found to have biphasic effects on key regulators of the nitric oxide-cGMP pathway in endothelial cells (HUVECs). Acute thrombin stimulation led to increased expression of the cGMP-elevating factors endothelial nitric oxide synthase (eNOS) and soluble guanylate cyclase (sGC) subunits, leading to increased cGMP levels. By contrast, prolonged exposition of pulmonary endothelial cells to thrombin revealed a characteristic pattern of differential expression of the key regulators of the nitric oxide-cGMP pathway, in which specifically the factors contributing to cGMP elevation (eNOS and sGC) were reduced and the cGMP-hydrolyzing PDE5 was elevated (qPCR and Western blot). In line with the differential expression of key regulators of the nitric oxide-cGMP pathway, a reduction of cGMP by prolonged thrombin stimulation was found. The effects of prolonged thrombin exposure were confirmed in endothelial cells of pulmonary origin (HPAECs and HPMECs). Similar effects could be induced by activation of protease-activated receptor-1 (PAR-1).

Conclusion

These findings suggest a link between thrombin generation and cGMP depletion in lung endothelial cells through negative regulation of the nitric oxide-cGMP pathway, possibly mediated via PAR-1, which could be of relevance in pulmonary arterial hypertension.  相似文献   

5.
Soluble guanylyl cyclase (sGC) is the major physiological receptor for nitric oxide (NO) throughout the central nervous system. Three different subunits form the α11 and α21 heterodimeric enzymes that catalyze the reaction of GTP to the second messenger cGMP. Both forms contain a prosthetic heme group which binds NO and mediates activation by NO. A number of studies have shown that NO/cGMP signaling plays a major role in neuronal cell differentiation during development of the central nervous system. In the present work, we studied regulation and expression of sGC in brain of rats during postnatal development using biochemical methods. We consistently observed a surprising decrease in cerebral NO sensitive enzyme activity in adult animals in spite of stable expression of sGC subunits. Total hemoprotein heme content was decreased in cerebrum of adult animals, likely because of an increase in heme oxygenase activity. But the loss of sGC activity was not simply because of heme loss in intact heterodimeric enzymes. This was shown by enzyme activity determinations with cinaciguat which can be used to test heme occupancy in intact heterodimers. A reduction in heterodimerization in cerebrum of adult animals was demonstrated by co‐precipitation analysis of sGC subunits. This explained the observed decrease in NO sensitive guanylyl cyclase activity in cerebrum of adult animals. We conclude that differing efficiencies in heterodimer formation may be an important reason for the lack of correlation between sGC protein expression and sGC activity that has been described previously. We suggest that heterodimerization of sGC is a regulated process that changes during cerebral postnatal development because of still unknown signaling mechanisms.  相似文献   

6.
Objectives: 17β‐oestradiol interacts with growth factors to modulate lactotroph cell population. However, contribution of isoforms of the oestrogen receptor in these activities is not fully understood. In the present study, we have established participation of α and β oestrogen receptors in effects of 17β‐oestradiol on lactotroph proliferation induced by insulin and shown involvement of the NO/sGC/cGMP pathway. Materials and methods: Cell cultures were prepared from anterior pituitaries of female rats to evaluate lactotroph cell proliferation using bromodeoxyuridine (BrdUrd) detection, protein expression by western blotting and cGMP by enzyme immunoassay. Results: In serum‐free conditions, 17β‐oestradiol and α and β oestrogen receptor agonists (PPT and DPN) failed to increase numbers of lactotroph cells undergoing mitosis. Co‐incubation of 17β‐oestradiol/insulin and PPT/insulin significantly decreased lactotroph mitogenic activity promoted by insulin alone. Both ICI 182780 and NOS inhibitors (L‐NMMA and L‐NAME) induced reversal of the anti‐proliferative effect promoted by 17β‐oestradiol/insulin and PPT/insulin. Moreover, 17β‐oestradiol, PPT and insulin increased sGC α1 protein expression and inhibited β1, whereas co‐incubation of 17β‐oestradiol/insulin or PPT/insulin induced increases of the two isoforms α1 and β1. 17β‐oestradiol and insulin reduced cGMP production, while 17β‐oestradiol/insulin co‐incubation increased this cyclic nucleotide. Conclusions: Our results suggest that 17β‐oestradiol is capable of arresting lactotroph proliferation induced by insulin through ER α with participation of the signalling NO/sGC/cGMP pathway.  相似文献   

7.
Soluble guanylyl cyclase (sGC) is a key enzyme of the *NO/cGMP pathway. Many cardiovascular disorders are associated with reduced *NO-mediated effects, while vascular superoxide (O(2)*(-)) production is increased. Both radicals rapidly react to peroxynitrite. We investigated whether peroxynitrite affects the activity and protein expression of sGC in intact vascular preparations. Catalytic sGC activity and expression of the sGC-beta(1) subunit was measured by conversion of radiolabeled GTP and western blot, respectively, using cytosolic extracts from rat aorta that had been incubated for 4 h with *NO/O(2)*(-) systems (devoid of free *NO) generating either 0.13 microM or 7.5 microM peroxynitrite/min. Incubation of rat aorta with 0.13 microM peroxynitrite/min had no effect. In striking contrast, incubation with 7.5 microM peroxynitrite/min resulted in a shift of the concentration-response curve obtained with a *NO donor (p =.0004) and a reduction of maximal specific activity from 3579 +/- 495 to 2422 +/- 265 pmol cGMP/mg/min (p =.036). The expression of the sGC-beta(1) subunit was unchanged. Exposure of aorta to the O(2)*(-) component had no effect, while exposure to the *NO-component reduced sGC expression to 58.8 +/- 7% (p <.001) and maximal sGC activity from 4041 +/- 992 to 1429 +/- 491 pmol cGMP/mg/min (p =.031). These data suggest that continuous generation of extracellular peroxynitrite might interfere with the *NO/cGMP signaling in vascular cells.  相似文献   

8.
Bovine oocytes and blastocysts produced in vitro are frequently of lower quality and less cryotolerant than those produced in vivo, and greater accumulation of lipids in the cytoplasm has been pointed out as one of the reasons. In human adipocytes cGMP signaling through the activation of PKG appears to be involved in lipid metabolism, and components of this pathway have been detected in bovine cumulus-oocyte complexes (COCs). The aim of this study was to investigate the influence of this pathway on the lipid content in oocytes and expression of PLIN2 (a lipid metabolism-related gene) in cumulus cells. COCs were matured in vitro for 24 h with different stimulators of cGMP synthesis. The activation of soluble guanylyl cyclase (sGC) by Protoporphyrin IX reduced lipid content (22.7 FI) compared to control oocytes (36.45 FI; P <0.05). Stimulation of membrane guanylyl cyclase (mGC) with natriuretic peptides precursors A and C (NPPA and NPPC) had no effect (36.5 FI; P>0.05). When the PKG inhibitor KT5823 was associated with Protoporphyrin IX, its effect was reversed and lipid contents increased (52.71 FI; P<0.05). None of the stimulators of cGMP synthesis affected the expression of PLIN2 in cumulus cells. In conclusion, stimulation of sGC for cGMP synthesis promotes lipolytic activities in bovine oocytes matured in vitro and such effect is mediated by PKG. However, such effect may vary depending on the stimulus received and/or which synthesis enzyme was activated, as stimulation of mGC had no effects.  相似文献   

9.

Context

Glucose and lipids stimulate the gut-hormones glucagon-like peptide (GLP)-1, GLP-2 and glucose-dependent insulinotropic polypeptide (GIP) but the effect of these on human postprandial lipid metabolism is not fully clarified.

Objective

To explore the responses of GLP-1, GLP-2 and GIP after a fat-rich meal compared to the same responses after an oral glucose tolerance test (OGTT) and to investigate possible relationships between incretin response and triglyceride-rich lipoprotein (TRL) response to a fat-rich meal.

Design

Glucose, insulin, GLP-1, GLP-2 and GIP were measured after an OGTT and after a fat-rich meal in 65 healthy obese (BMI 26.5–40.2 kg/m2) male subjects. Triglycerides (TG), apoB48 and apoB100 in TG-rich lipoproteins (chylomicrons, VLDL1 and VLDL2) were measured after the fat-rich meal.

Main Outcome Measures

Postprandial responses (area under the curve, AUC) for glucose, insulin, GLP-1, GLP-2, GIP in plasma, and TG, apoB48 and apoB100 in plasma and TG-rich lipoproteins.

Results

The GLP-1, GLP-2 and GIP responses after the fat-rich meal and after the OGTT correlated strongly (r = 0.73, p<0.0001; r = 0.46, p<0.001 and r = 0.69, p<0.001, respectively). Glucose and insulin AUCs were lower, but the AUCs for GLP-1, GLP-2 and GIP were significantly higher after the fat-rich meal than after the OGTT. The peak value for all hormones appeared at 120 minutes after the fat-rich meal, compared to 30 minutes after the OGTT. After the fat-rich meal, the AUCs for GLP-1, GLP-2 and GIP correlated significantly with plasma TG- and apoB48 AUCs but the contribution was very modest.

Conclusions

In obese males, GLP-1, GLP-2 and GIP responses to a fat-rich meal are greater than following an OGTT. However, the most important explanatory variable for postprandial TG excursion was fasting triglycerides. The contribution of endogenous GLP-1, GLP-2 and GIP to explaining the variance in postprandial TG excursion was minor.  相似文献   

10.
11.
12.
Carcinoembryonic antigen-related cell adhesion molecule 2 (CEACAM2) regulates food intake as demonstrated by hyperphagia in mice with the Ceacam2 null mutation (Cc2−/−). This study investigated whether CEACAM2 also regulates insulin secretion. Ceacam2 deletion caused an increase in β-cell secretory function, as assessed by hyperglycemic clamp analysis, without affecting insulin response. Although CEACAM2 is expressed in pancreatic islets predominantly in non-β-cells, basal plasma levels of insulin, glucagon and somatostatin, islet areas, and glucose-induced insulin secretion in pooled Cc2−/− islets were all normal. Consistent with immunofluorescence analysis showing CEACAM2 expression in distal intestinal villi, Cc2−/− mice exhibited a higher release of oral glucose-mediated GLP-1, an incretin that potentiates insulin secretion in response to glucose. Compared with wild type, Cc2−/− mice also showed a higher insulin excursion during the oral glucose tolerance test. Pretreating with exendin(9–39), a GLP-1 receptor antagonist, suppressed the effect of Ceacam2 deletion on glucose-induced insulin secretion. Moreover, GLP-1 release into the medium of GLUTag enteroendocrine cells was increased with siRNA-mediated Ceacam2 down-regulation in parallel to an increase in Ca2+ entry through L-type voltage-dependent Ca2+ channels. Thus, CEACAM2 regulates insulin secretion, at least in part, by a GLP-1-mediated mechanism, independent of confounding metabolic factors.  相似文献   

13.

Background

To examine the structural organisation of heterodimeric soluble guanylyl cyclase (sGC) Förster resonance energy transfer (FRET) was measured between fluorescent proteins fused to the amino- and carboxy-terminal ends of the sGC β1 and α subunits.

Methodology/Principal Findings

Cyan fluorescent protein (CFP) was used as FRET donor and yellow fluorescent protein (YFP) as FRET acceptor. After generation of recombinant baculovirus, fluorescent-tagged sGC subunits were co-expressed in Sf9 cells. Fluorescent variants of sGC were analyzed in vitro in cytosolic fractions by sensitized emission FRET. Co-expression of the amino-terminally tagged α subunits with the carboxy-terminally tagged β1 subunit resulted in an enzyme complex that showed a FRET efficiency of 10% similar to fluorescent proteins separated by a helix of only 48 amino acids. Because these findings indicated that the amino-terminus of the α subunits is close to the carboxy-terminus of the β1 subunit we constructed fusion proteins where both subunits are connected by a fluorescent protein. The resulting constructs were not only fluorescent, they also showed preserved enzyme activity and regulation by NO.

Conclusions/Significance

Based on the ability of an amino-terminal fragment of the β1 subunit to inhibit activity of an heterodimer consisting only of the catalytic domains (αcatβcat), Winger and Marletta (Biochemistry 2005, 44:4083–90) have proposed a direct interaction of the amino-terminal region of β1 with the catalytic domains. In support of such a concept of “trans” regulation of sGC activity by the H-NOX domains our results indicate that the domains within sGC are organized in a way that allows for direct interaction of the amino-terminal regulatory domains with the carboxy-terminal catalytic region. In addition, we constructed “fluorescent-conjoined” sGC''s by fusion of the α amino-terminus to the β1 carboxy-terminus leading to a monomeric, fluorescent and functional enzyme complex. To our knowledge this represents the first example where a fluorescent protein links two different subunits of a higher ordered complex to yield a stoichometrically fixed functionally active monomer.  相似文献   

14.
15.
Glucagon-like peptide-2 (GLP-2) is a potent intestinotrophic/satiety hormone that acts through a G protein-coupled receptor. To determine whether or not GLP-2 has any effect on cellular proliferation on neural cells, we examined the effects of this peptide on cultured astrocytes from rat cerebral cortex. The expression of the GLP-2 receptor gene in both cerebral cortex and astrocytes was determined by RT-PCR and Southern blotting. Also, cells responded to GLP-2, producing cAMP in a dose-dependent manner (EC50 = 0.86 nm). GLP-2 also stimulated the DNA synthesis rate in rat astrocytes. When proliferation was assessed by measuring [3H]thymidine incorporation into DNA or staining cells with crystal violet, GLP-2 produced a dose-dependent increase in both parameters. Similarly, when the numbers of cells in different phases of the cell cycle were measured by flow cytometry, a dose-dependent decrease in those in the G0-G1 phase and an increase in those in the S and G2-M phases were observed after 24 h incubation with GLP-2. By contrast, the number of hypodiploid cells was not affected during the experimental time. Also, GLP-2 produced a significant increase in the mRNAs of c-fos and c-jun when gene expression was determined by Northern blotting. These results suggest that GLP-2 directly stimulates the proliferation of rat astrocytes; this may open new insights in the physiological role of this novel neuropeptide.  相似文献   

16.
The glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 is a long-acting analog of GLP-1, which stimulates insulin secretion and is clinically used in the treatment of type 2 diabetes. Previous studies have demonstrated that GLP-1 agonists and analogs serve as cardioprotective factors in various conditions. Disturbances in calcium cycling are characteristic of heart failure (HF); therefore, the aim of this study was to investigate the effect of exendin-4 (a GLP-1 mimetic) on the regulation of calcium handling and to identify the underlying mechanisms in an HF rat model after myocardial infarction (MI). Rats underwent surgical ligation of the left anterior descending coronary artery or sham surgery prior to infusion with vehicle, exendin-4, or exendin-4 and exendin9-39 for 4 weeks. Exendin-4 treatment decreased MI size, suppressed chamber dilation, myocyte hypertrophy, and fibrosis and improved in vivo heart function in the rats subjected to MI. Exendin-4 resulted in an increase in circulating GLP-1 and GLP-1R in ventricular tissues. Additionally, exendin-4 activated the eNOS/cGMP/PKG signaling pathway and inhibited the Ca2+/calmodulin-dependent kinase II (CaMKII) pathways. Myocytes isolated from exendin-4-treated hearts displayed higher Ca2+ transients, higher sarcoplasmic reticulum Ca2+ content, and higher l-type Ca2+ current densities than MI hearts. Exendin-4 treatment restored the protein expression of sarcoplasmic reticulum Ca2+ uptake ATPase (SERCA2a), phosphorylated phospholamban (PLB) and Cav1.2 and decreased the levels of phosphorylated ryanodine receptor (RyR). Moreover, the favorable effects of exendin-4 were significantly inhibited by exendin9-39 (a GLP-1 receptor antagonist). Exendin-4 treatment of an HF rat model after MI inhibited cardiac and cardiomyocytes progressive remodeling. In addition, Ca2+ handling and its molecular modulation were also improved by exendin-4 treatment. The beneficial effects of exendin-4 on cardiac remodeling may be mediated through activation of the eNOS/cGMP/PKG pathway.  相似文献   

17.

Purpose

Carbon monoxide (CO) is an accepted cytoprotective molecule. The extent and mechanisms of protection in neuronal systems have not been well studied. We hypothesized that delivery of CO via a novel releasing molecule (CORM) would impart neuroprotection in vivo against ischemia-reperfusion injury (IRI)-induced apoptosis of retinal ganglion cells (RGC) and in vitro of neuronal SH-SY5Y-cells via activation of soluble guanylate-cyclase (sGC).

Methods

To mimic ischemic respiratory arrest, SH-SY5Y-cells were incubated with rotenone (100 nmol/L, 4 h) ± CORM ALF186 (10–100 µmol/L) or inactivated ALF186 lacking the potential of releasing CO. Apoptosis and reactive oxygen species (ROS) production were analyzed using flow-cytometry (Annexin V, mitochondrial membrane potential, CM-H2DCFDA) and Western blot (Caspase-3). The impact of ALF186± respiratory arrest on cell signaling was assessed by measuring expression of nitric oxide synthase (NOS) and soluble guanylate-cyclase (sGC) and by analyzing cellular cGMP levels. The effect of ALF186 (10 mg/kg iv) on retinal IRI in Sprague-Dawley rats was assessed by measuring densities of fluorogold-labeled RGC after IRI and by analysis of apoptosis-related genes in retinal tissue.

Results

ALF186 but not inactivated ALF186 inhibited rotenone-induced apoptosis (Annexin V positive cells: 25±2% rotenone vs. 14±1% ALF186+rotenone, p<0.001; relative mitochondrial membrane potential: 17±4% rotenone vs. 55±3% ALF186+rotenone, p<0.05). ALF186 increased cellular cGMP levels (33±5 nmol/L vs. 23±3 nmol/L; p<0.05) and sGC expression. sGC-inhibition attenuated ALF186-mediated protection (relative mitochondrial membrane potential: 55±3% ALF186+rotenone vs. 20±1% ODQ+ALF186+rotenone, p<0.05). ALF186 protected RGC in vivo (IRI 1255±327 RGC/mm2 vs. ALF186+IRI 2036±83; p<0.05) while sGC inhibition abolished the protective effects of ALF186 (ALF186+IRI 2036±83 RGC/mm2 vs. NS-2028+ALF186+IRI 1263±170, p<0.05).

Conclusions

The CORM ALF186 inhibits IRI-induced neuronal cell death via activation of sGC and may be a useful treatment option for acute ischemic insults to the retina and the brain.  相似文献   

18.

Background

Although evidence now suggests cGMP is a negative regulator of cardiac hypertrophy, the direct consequences of the soluble guanylyl cyclase (sGC) activator BAY 58-2667 on cardiac remodeling, independent of changes in hemodynamic load, has not been investigated. In the present study, we tested the hypothesis that the NO-independent sGC activator BAY 58-2667 inhibits cardiomyocyte hypertrophy in vitro. Concomitant impact of BAY 58-2667 on cardiac fibroblast proliferation, and insights into potential mechanisms of action, were also sought. Results were compared to the sGC stimulator BAY 41-2272.

Methods

Neonatal rat cardiomyocytes were incubated with endothelin-1 (ET1, 60nmol/L) in the presence and absence of BAY 41-2272 and BAY 58-2667 (0.01–0.3 µmol/L). Hypertrophic responses and its triggers, as well as cGMP signaling, were determined. The impact of both sGC ligands on basal and stimulated cardiac fibroblast proliferation in vitro was also determined.

Results

We now demonstrate that BAY 58-2667 (0.01–0.3 µmol/L) elicited concentration-dependent antihypertrophic actions, inhibiting ET1-mediated increases in cardiomyocyte 2D area and de novo protein synthesis, as well as suppressing ET1-induced cardiomyocyte superoxide generation. This was accompanied by potent increases in cardiomyocyte cGMP accumulation and activity of its downstream signal, vasodilator-stimulated phosphoprotein (VASP), without elevating cardiomyocyte cAMP. In contrast, submicromolar concentrations of BAY 58-2667 had no effect on basal or stimulated cardiac fibroblast proliferation. Indeed, only at concentrations ≥10 µmol/L was inhibition of cardiac fibrosis seen in vitro. The effects of BAY 58-2667 in both cell types were mimicked by BAY 41-2272.

Conclusions

Our results demonstrate that BAY 58-2667 elicits protective, cardiomyocyte-selective effects in vitro. These actions are associated with sGC activation and are evident in the absence of confounding hemodynamic factors, at low (submicromolar) concentrations. Thus this distinctive sGC ligand may potentially represent an alternative therapeutic approach for limiting myocardial hypertrophy.  相似文献   

19.
《Free radical research》2013,47(12):1479-1487
Abstract

The production of reactive oxygen species, including hydrogen peroxide (H2O2), is increased in diseased blood vessels. Although H2O2 leads to impairment of the nitric oxide (NO)/soluble guanylate cyclase (sGC)/cGMP signaling pathway, it is not clear whether this reactive molecule affects the redox state of sGC, a key determinant of NO bioavailability. To clarify this issue, mechanical responses of endothelium-denuded rat external iliac arteries to BAY 41-2272 (sGC stimulator), BAY 60-2770 (sGC activator), nitroglycerin (NO donor), acidified NaNO2 (exogenous NO) and 8-Br-cGMP (cGMP analog) were studied under exposure to H2O2. The relaxant response to BAY 41-2272 (pD2: 6.79?±?0.10 and 6.62?±?0.17), BAY 60-2770 (pD2: 9.57?±?0.06 and 9.34?±?0.15) or 8-Br-cGMP (pD2: 5.19?±?0.06 and 5.24?±?0.08) was not apparently affected by exposure to H2O2. In addition, vascular cGMP production stimulated with BAY 41-2272 or BAY 60-2770 in the presence of H2O2 was identical to that in its absence. On the other hand, nitroglycerin-induced relaxation was markedly attenuated by exposing the arteries to H2O2 (pD2: 8.73?±?0.05 and 8.30?±?0.05), which was normalized in the presence of catalase (pD2: 8.59?±?0.05). Likewise, H2O2 exposure impaired the relaxant response to acidified NaNO2 (pD2: 6.52?±?0.17 and 6.09?±?0.16). These findings suggest that H2O2 interferes with the NO-mediated action, but the sGC redox equilibrium and the downstream target(s) of cGMP are unlikely to be affected in the vasculature.  相似文献   

20.
Soluble guanylyl cylase (sGC) has been identified for being a receptor for the gaseous transmitters nitric oxide and carbon monoxide. Currently four subunits alpha1, alpha2, beta1, and beta2 have been characterized. Heterodimers of alpha and beta-subunits as well as homodimers of the beta2-subunit are known to constitute functional sGC which use GTP to form cGMP a potent signal molecule in a multitude of second messenger cascades. Since NO-cGMP signaling plays a pivotal role in neuronal development we analyzed the maturational expression pattern of the newly characterized alpha2-subunit of sGC within the brain of Wistar rats by means of RNase protection assay and immunohistochemistry. alpha2-subunit mRNA as well as immunoreactive alpha2-protein increased during postnatal cerebral development. Topographical analysis revealed a selective high expression of the alpha2-subunit in the choroid plexus and within developing sensory systems involving the olfactory and somatosensory system of the forebrain as well as parts of the auditory and visual system within the hindbrain. In cultured cortical neurons the alpha2-subunit was localized to the cell membrane, especially along neuronal processes. During the first 11 days of postnatal development several cerebral regions showed a distinct expression of the alpha2-subunit which was not paralleled by the alpha1/beta1-subunits especially within the developing thalamo-cortical circuitries of the somatosensory system. However, at later developmental stages all three subunits became more homogenously distributed among most cerebral regions, indicating that functional alpha1/beta1 and alpha2/beta1 heterodimers of sGC could be formed. Our findings indicate that the alpha2-subunit is an essential developmentally regulated constituent of cerebral sensory systems during maturation. In addition the alpha2-subunit may serve other functions than forming a functional heterodimer of sGC during the early phases of sensory pathway refinement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号