首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Susceptibility to osteoporotic fracture is influenced by genetic factors that can be dissected by whole-genome linkage analysis in experimental animal crosses. The aim of this study was to characterize quantitative trait loci (QTLs) for biomechanical and two-dimensional dual-energy X-ray absorptiometry (DXA) phenotypes in reciprocal F2 crosses between diabetic GK and normo-glycemic F344 rat strains and to identify possible co-localization with previously reported QTLs for bone size and structure. The biomechanical measurements of rat tibia included ultimate force, stiffness and work to failure while DXA was used to characterize tibial area, bone mineral content (BMC) and areal bone mineral density (aBMD). F2 progeny (108 males, 98 females) were genotyped with 192 genome-wide markers followed by sex- and reciprocal cross-separated whole-genome QTL analyses. Significant QTLs were identified on chromosome 8 (tibial area; logarithm of odds (LOD) = 4.7 and BMC; LOD = 4.1) in males and on chromosome 1 (stiffness; LOD = 5.5) in females. No QTLs showed significant sex-specific interactions. In contrast, significant cross-specific interactions were identified on chromosome 2 (aBMD; LOD = 4.7) and chromosome 6 (BMC; LOD = 4.8) for males carrying F344mtDNA, and on chromosome 15 (ultimate force; LOD = 3.9) for males carrying GKmtDNA, confirming the effect of reciprocal cross on osteoporosis-related phenotypes. By combining identified QTLs for biomechanical-, size- and qualitative phenotypes (pQCT and 3D CT) from the same population, overlapping regions were detected on chromosomes 1, 3, 4, 6, 8 and 10. These are strong candidate regions in the search for genetic risk factors for osteoporosis.  相似文献   

2.

Background

Reading disability (RD) is a common neurodevelopmental disorder with genetic basis established in families segregating “pure” dyslexia. RD commonly occurs in neurodevelopmental disorders including Rolandic Epilepsy (RE), a complex genetic disorder. We performed genomewide linkage analysis of RD in RE families, testing the hypotheses that RD in RE families is genetically heterogenenous to pure dyslexia, and shares genetic influences with other sub-phenotypes of RE.

Methods

We initially performed genome-wide linkage analysis using 1000 STR markers in 38 US families ascertained through a RE proband; most of these families were multiplex for RD. We analyzed the data by two-point and multipoint parametric LOD score methods. We then confirmed the linkage evidence in a second US dataset of 20 RE families. We also resequenced the SEMA3C gene at the 7q21 linkage locus in members of one multiplex RE/RD pedigree and the DISC1 gene in affected pedigrees at the 1q42 locus.

Results

In the discovery dataset there was suggestive evidence of linkage for RD to chromosome 7q21 (two-point LOD score 3.05, multipoint LOD 3.08) and at 1q42 (two-point LOD 2.87, multipoint LOD 3.03). Much of the linkage evidence at 7q21 derived from families of French-Canadian origin, whereas the linkage evidence at 1q42 was well distributed across all the families. There was little evidence for linkage at known dyslexia loci. Combining the discovery and confirmation datasets increased the evidence at 1q42 (two-point LOD = 3.49, multipoint HLOD = 4.70), but decreased evidence at 7q21 (two-point LOD = 2.28, multipoint HLOD  = 1.81), possibly because the replication sample did not have French Canadian representation.

Discussion

Reading disability in rolandic epilepsy has a genetic basis and may be influenced by loci at 1q42 and, in some populations, at 7q21; there is little evidence of a role for known DYX loci discovered in “pure” dyslexia pedigrees. 1q42 and 7q21 are candidate novel dyslexia loci.  相似文献   

3.
Zhu W  Fan Z  Zhang C  Guo Z  Zhao Y  Zhou Y  Li K  Xing Z  Chen G  Liang Y  Jin L  Xiao J 《PloS one》2008,3(8):e3021

Background

Pubertal timing in mammals is triggered by reactivation of the hypothalamic-pituitary-gonadal (HPG) axis and modulated by both genetic and environmental factors. Strain-dependent differences in vaginal opening among inbred mouse strains suggest that genetic background contribute significantly to the puberty timing, although the exact mechanism remains unknown.

Methodology/Principal Findings

We performed a genome-wide scanning for linkage in reciprocal crosses between two strains, C3H/HeJ (C3H) and C57BL6/J (B6), which differed significantly in the pubertal timing. Vaginal opening (VO) was used to characterize pubertal timing in female mice, and the age at VO of all female mice (two parental strains, F1 and F2 progeny) was recorded. A genome-wide search was performed in 260 phenotypically extreme F2 mice out of 464 female progeny of the F1 intercrosses to identify quantitative trait loci (QTLs) controlling this trait. A QTL significantly associated was mapped to the DXMit166 marker (15.5 cM, LOD = 3.86, p<0.01) in the reciprocal cross population (C3HB6F2). This QTL contributed 2.1 days to the timing of VO, which accounted for 32.31% of the difference between the original strains. Further study showed that the QTL was B6-dominant and explained 10.5% of variation to this trait with a power of 99.4% at an alpha level of 0.05.The location of the significant ChrX QTL found by genome scanning was then fine-mapped to a region of ∼2.5 cM between marker DXMit68 and rs29053133 by generating and phenotyping a panel of 10 modified interval-specific congenic strains (mISCSs).

Conclusions/Significance

Such findings in our study lay a foundation for positional cloning of genes regulating the timing of puberty, and also reveal the fact that chromosome X (the sex chromosome) does carry gene(s) which take part in the regulative pathway of the pubertal timing in mice.  相似文献   

4.
Gong YB  Zheng JL  Jin B  Zhuo DX  Huang ZQ  Qi H  Zhang W  Duan W  Fu JT  Wang CJ  Mao ZB 《PloS one》2012,7(4):e35311

Background

Candida albicans is a human commensal that is also responsible for chronic gastritis and peptic ulcerous disease. Little is known about the genetic profiles of the C. albicans strains in the digestive tract of dyspeptic patients. The aim of this study was to evaluate the prevalence, diversity, and genetic profiles among C. albicans isolates recovered from natural colonization of the digestive tract in the dyspeptic patients.

Methods and Findings

Oral swab samples (n = 111) and gastric mucosa samples (n = 102) were obtained from a group of patients who presented dyspeptic symptoms or ulcer complaints. Oral swab samples (n = 162) were also obtained from healthy volunteers. C. albicans isolates were characterized and analyzed by multilocus sequence typing. The prevalence of Candida spp. in the oral samples was not significantly different between the dyspeptic group and the healthy group (36.0%, 40/111 vs. 29.6%, 48/162; P > 0.05). However, there were significant differences between the groups in the distribution of species isolated and the genotypes of the C. albicans isolates. C. albicans was isolated from 97.8% of the Candida-positive subjects in the dyspeptic group, but from only 56.3% in the healthy group (P < 0.001). DST1593 was the dominant C. albicans genotype from the digestive tract of the dyspeptic group (60%, 27/45), but not the healthy group (14.8%, 4/27) (P < 0.001).

Conclusions

Our data suggest a possible link between particular C. albicans strain genotypes and the host microenvironment. Positivity for particular C. albicans genotypes could signify susceptibility to dyspepsia.  相似文献   

5.

Background

Genome wide linkage studies (GWLS) have provided evidence for loci controlling visceral leishmaniasis on Chromosomes 1p22, 6q27, 22q12 in Sudan and 6q27, 9p21, 17q11-q21 in Brazil. Genome wide studies from the major focus of disease in India have not previously been reported.

Methods and Findings

We undertook a GWLS in India in which a primary ∼10 cM (515 microsatellites) scan was carried out in 58 multicase pedigrees (74 nuclear families; 176 affected, 353 total individuals) and replication sought in 79 pedigrees (102 nuclear families; 218 affected, 473 total individuals). The primary scan provided evidence (≥2 adjacent markers allele-sharing LOD≥0.59; nominal P≤0.05) for linkage on Chromosomes 2, 5, 6, 7, 8, 10, 11, 20 and X, with peaks at 6p25.3-p24.3 and 8p23.1-p21.3 contributed to largely by 31 Hindu families and at Xq21.1-q26.1 by 27 Muslim families. Refined mapping confirmed linkage across all primary scan families at 2q12.2-q14.1 and 11q13.2-q23.3, but only 11q13.2-q23.3 replicated (combined LOD = 1.59; P = 0.0034). Linkage at 6p25.3-p24.3 and 8p23.1-p21.3, and at Xq21.1-q26.1, was confirmed by refined mapping for primary Hindu and Muslim families, respectively, but only Xq21.1-q26.1 replicated across all Muslim families (combined LOD 1.49; P = 0.0045). STRUCTURE and SMARTPCA did not identify population genetic substructure related to religious group. Classification and regression tree, and spatial interpolation, analyses confirm geographical heterogeneity for linkages at 6p25.3-p24.3, 8p23.1-p21.3 and Xq21.1-q26.1, with specific clusters of families contributing LOD scores of 2.13 (P = 0.0009), 1.75 (P = 0.002) and 1.84 (P = 0.001), respectively.

Conclusions

GWLS has identified novel loci that show geographical heterogeneity in their influence on susceptibility to VL in India.  相似文献   

6.
7.
Altered mitochondrial DNA (mtDNA) levels have been associated with common diseases in humans. We investigated the genetic mechanism that controls mtDNA levels using genome-wide linkage analyses in families from the Genetic Analysis of Idiopathic Thrombophilia Project (GAIT). We measure mtDNA levels by quantitative real-time PCR in 386 subjects from 21 extended Spanish families. A variance component linkage method using 485 microsatellites was conducted to evaluate linkage and to detect quantitative trait loci (QTLs) involved in the control of mtDNA levels. The heritalibility of mtDNA levels was 0.33 (p = 1.82e-05). We identified a QTL on Chromosome 2 (LOD = 2.21) using all of the subjects, independently on their sex. When females and males were analysed separately, three QTLs were identified. Females showed the same QTL on Chromosome 2 (LOD = 3.09), indicating that the QTL identified in the analysis using all of the subjects was a strong female QTL, and another one on Chromosome 3 (LOD = 2.67), whereas in males a QTL was identified on Chromosome 1 (LOD = 2.81). These QTLs were fine-mapped to find associations with mtDNA levels. The most significant SNP association was for the rs10888838 on Chromosome 1 in males. This SNP mapped to the gene MRPL37, involved in mitochondrial protein translation. The rs2140855 on Chromosome 2 showed association in the analysis using all of the subjects. It was near the gene CMPK2, which encodes a mitochondrial enzyme of the salvage pathway of deoxyribonucleotide synthesis. Our results provide evidence of a sex-specific genetic mechanism for the control of mtDNA levels and provide a framework to identify new genes that influence mtDNA levels.  相似文献   

8.
This study aimed to characterize the population structure of Mycobacterium tuberculosis in Pskov oblast in northwestern Russia, to view it in the geographical context, to compare drug resistance properties across major genetic families. Ninety M. tuberculosis strains from tuberculosis (TB) patients, permanent residents in Pskov oblast were subjected to LAM-specific IS6110-PCR and spoligotyping, followed by comparison with SITVITWEB and MIRU-VNTRplus databases. The Beijing genotype (n = 40) was found the most prevalent followed by LAM (n = 18), T (n = 13), Haarlem (n = 10), Ural (n = 5), and Manu2 (n = 1); the family status remained unknown for 3 isolates. The high rate of Beijing genotype and prevalence of LAM family are similar to those in the other Russian settings. A feature specific for M. tuberculosis population in Pskov is a relatively higher rate of Haarlem and T types. Beijing strains were further typed with 12-MIRU (followed by comparison with proprietary global database) and 3 hypervariable loci QUB-3232, VNTR-3820, VNTR-4120. The 12-MIRU typing differentiated 40 Beijing strains into 14 types (HGI = 0.82) while two largest types were M2 (223325153533) prevalent throughout former USSR and M11 (223325173533) prevalent in Russia and East Asia. The use of 3 hypervariable loci increased a discrimination of the Beijing strains (18 profiles, HGI = 0.89). Both major families Beijing and LAM had similar rate of MDR strains (62.5 and 55.6%, respectively) that was significantly higher than in other strains (21.9%; P = 0.001 and 0.03, respectively). The rpoB531 mutations were more frequently found in Beijing strains while LAM drug resistant strains mainly harbored rpoB516 and inhA −15 mutations. Taken together with a high rate of multidrug resistance among Beijing strains from new TB cases (79.3% versus 44.4% in LAM), these findings suggest the critical impact of the Beijing genotype on the current situation with MDR-TB in the Pskov region in northwestern Russia.  相似文献   

9.
The detection of multiple sex-specific blood pressure (BP) quantitative trait loci (QTLs) in independent total genome analyses of F2 (Dahl S x R)-intercross male and female rat cohorts confirms clinical observations of sex-specific disease cause and response to treatment among hypertensive patients, and mandate the identification of sex-specific hypertension genes/mechanisms. We developed and studied two congenic strains, S.R5A and S.R5B introgressing Dahl R-chromosome 5 segments into Dahl S chromosome 5 region spanning putative BP-f1 and BP-f2 QTLs. Radiotelemetric non-stressed 24-hour BP analysis at four weeks post-high salt diet (8% NaCl) challenge, identified only S.R5B congenic rats with lower SBP (−26.5 mmHg, P = 0.002), DBP (−23.7 mmHg, P = 0.004) and MAP (−25.1 mmHg, P = 0.002) compared with Dahl S female controls at four months of age confirming BP-f1 but not BP-f2 QTL on rat chromosome 5. The S.R5B congenic segment did not affect pulse pressure and relative heart weight indicating that the gene underlying BP-f1 does not influence arterial stiffness and cardiac hypertrophy. The results of our congenic analysis narrowed BP-f1 to chromosome 5 coordinates 134.9–141.5 Mbp setting up the basis for further fine mapping of BP-f1 and eventual identification of the specific gene variant accounting for BP-f1 effect on blood pressure.  相似文献   

10.
The rate of meiotic recombination varies markedly between species and among individuals. Classical genetic experiments demonstrated a heritable component to population variation in recombination rate, and specific sequence variants that contribute to recombination rate differences between individuals have recently been identified. Despite these advances, the genetic basis of species divergence in recombination rate remains unexplored. Using a cytological assay that allows direct in situ imaging of recombination events in spermatocytes, we report a large (∼30%) difference in global recombination rate between males of two closely related house mouse subspecies (Mus musculus musculus and M. m. castaneus). To characterize the genetic basis of this recombination rate divergence, we generated an F2 panel of inter-subspecific hybrid males (n = 276) from an intercross between wild-derived inbred strains CAST/EiJ (M. m. castaneus) and PWD/PhJ (M. m. musculus). We uncover considerable heritable variation for recombination rate among males from this mapping population. Much of the F2 variance for recombination rate and a substantial portion of the difference in recombination rate between the parental strains is explained by eight moderate- to large-effect quantitative trait loci, including two transgressive loci on the X chromosome. In contrast to the rapid evolution observed in males, female CAST/EiJ and PWD/PhJ animals show minimal divergence in recombination rate (∼5%). The existence of loci on the X chromosome suggests a genetic mechanism to explain this male-biased evolution. Our results provide an initial map of the genetic changes underlying subspecies differences in genome-scale recombination rate and underscore the power of the house mouse system for understanding the evolution of this trait.  相似文献   

11.
We identified mouse mammary tumor proviral loci in the AKR/J, C3H/HeJ, C57BL/6J, C57L/J, DBA/2J, and SWR/J inbred mouse strains and determined their segregation patterns in the AKXD, AKXL, BXD, BXH, and SWXL recombinant inbred strain sets. Two new Mtv loci, Mtv-29 and Mtv-30, were identified. Mtv-30 was genetically mapped to chromosome 12. Additionally, two previously identified Mtv loci, Mtv-14 and Mtv-23, were genetically mapped to chromosome 4 and chromosome 6, respectively.  相似文献   

12.
13.
Optic nerve degeneration caused by glaucoma is a leading cause of blindness worldwide. Patients affected by the normal-pressure form of glaucoma are more likely to harbor risk alleles for glaucoma-related optic nerve disease. We have performed a meta-analysis of two independent genome-wide association studies for primary open angle glaucoma (POAG) followed by a normal-pressure glaucoma (NPG, defined by intraocular pressure (IOP) less than 22 mmHg) subgroup analysis. The single-nucleotide polymorphisms that showed the most significant associations were tested for association with a second form of glaucoma, exfoliation-syndrome glaucoma. The overall meta-analysis of the GLAUGEN and NEIGHBOR dataset results (3,146 cases and 3,487 controls) identified significant associations between two loci and POAG: the CDKN2BAS region on 9p21 (rs2157719 [G], OR = 0.69 [95%CI 0.63–0.75], p = 1.86×10−18), and the SIX1/SIX6 region on chromosome 14q23 (rs10483727 [A], OR = 1.32 [95%CI 1.21–1.43], p = 3.87×10−11). In sub-group analysis two loci were significantly associated with NPG: 9p21 containing the CDKN2BAS gene (rs2157719 [G], OR = 0.58 [95% CI 0.50–0.67], p = 1.17×10−12) and a probable regulatory region on 8q22 (rs284489 [G], OR = 0.62 [95% CI 0.53–0.72], p = 8.88×10−10). Both NPG loci were also nominally associated with a second type of glaucoma, exfoliation syndrome glaucoma (rs2157719 [G], OR = 0.59 [95% CI 0.41–0.87], p = 0.004 and rs284489 [G], OR = 0.76 [95% CI 0.54–1.06], p = 0.021), suggesting that these loci might contribute more generally to optic nerve degeneration in glaucoma. Because both loci influence transforming growth factor beta (TGF-beta) signaling, we performed a genomic pathway analysis that showed an association between the TGF-beta pathway and NPG (permuted p = 0.009). These results suggest that neuro-protective therapies targeting TGF-beta signaling could be effective for multiple forms of glaucoma.  相似文献   

14.
Most genome-wide association (GWA) studies have focused on populations of European ancestry with limited assessment of the influence of the sequence variants on populations of other ethnicities. To determine whether markers that we have recently shown to associate with Bone Mineral Density (BMD) in Europeans also associate with BMD in East-Asians we analysed 50 markers from 23 genomic loci in samples from Korea (n = 1,397) and two Chinese Hong Kong sample sets (n = 3,869 and n = 785). Through this effort we identified fourteen loci that associated with BMD in East-Asian samples using a false discovery rate (FDR) of 0.05; 1p36 (ZBTB40, P = 4.3×10−9), 1p31 (GPR177, P = 0.00012), 3p22 (CTNNB1, P = 0.00013), 4q22 (MEPE, P = 0.0026), 5q14 (MEF2C, P = 1.3×10−5), 6q25 (ESR1, P = 0.0011), 7p14 (STARD3NL, P = 0.00025), 7q21 (FLJ42280, P = 0.00017), 8q24 (TNFRSF11B, P = 3.4×10−5), 11p15 (SOX6, P = 0.00033), 11q13 (LRP5, P = 0.0033), 13q14 (TNFSF11, P = 7.5×10−5), 16q24 (FOXL1, P = 0.0010) and 17q21 (SOST, P = 0.015). Our study marks an early effort towards the challenge of cataloguing bone density variants shared by many ethnicities by testing BMD variants that have been established in Europeans, in East-Asians.  相似文献   

15.
Crohn''s disease (CD) is a complex disorder resulting from the interaction of intestinal microbiota with the host immune system in genetically susceptible individuals. The largest meta-analysis of genome-wide association to date identified 71 CD–susceptibility loci in individuals of European ancestry. An important epidemiological feature of CD is that it is 2–4 times more prevalent among individuals of Ashkenazi Jewish (AJ) descent compared to non-Jewish Europeans (NJ). To explore genetic variation associated with CD in AJs, we conducted a genome-wide association study (GWAS) by combining raw genotype data across 10 AJ cohorts consisting of 907 cases and 2,345 controls in the discovery stage, followed up by a replication study in 971 cases and 2,124 controls. We confirmed genome-wide significant associations of 9 known CD loci in AJs and replicated 3 additional loci with strong signal (p<5×10−6). Novel signals detected among AJs were mapped to chromosomes 5q21.1 (rs7705924, combined p = 2×10−8; combined odds ratio OR = 1.48), 2p15 (rs6545946, p = 7×10−9; OR = 1.16), 8q21.11 (rs12677663, p = 2×10−8; OR = 1.15), 10q26.3 (rs10734105, p = 3×10−8; OR = 1.27), and 11q12.1 (rs11229030, p = 8×10−9; OR = 1.15), implicating biologically plausible candidate genes, including RPL7, CPAMD8, PRG2, and PRG3. In all, the 16 replicated and newly discovered loci, in addition to the three coding NOD2 variants, accounted for 11.2% of the total genetic variance for CD risk in the AJ population. This study demonstrates the complementary value of genetic studies in the Ashkenazim.  相似文献   

16.
Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10−8–1.2×10−43). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10−4). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10−3, n = 22,044), increased triglycerides (p = 2.6×10−14, n = 93,440), increased waist-to-hip ratio (p = 1.8×10−5, n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10−3, n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5×10−13, n = 96,748) and decreased BMI (p = 1.4×10−4, n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.  相似文献   

17.
Testosterone concentrations in men are associated with cardiovascular morbidity, osteoporosis, and mortality and are affected by age, smoking, and obesity. Because of serum testosterone''s high heritability, we performed a meta-analysis of genome-wide association data in 8,938 men from seven cohorts and followed up the genome-wide significant findings in one in silico (n = 871) and two de novo replication cohorts (n = 4,620) to identify genetic loci significantly associated with serum testosterone concentration in men. All these loci were also associated with low serum testosterone concentration defined as <300 ng/dl. Two single-nucleotide polymorphisms at the sex hormone-binding globulin (SHBG) locus (17p13-p12) were identified as independently associated with serum testosterone concentration (rs12150660, p = 1.2×10−41 and rs6258, p = 2.3×10−22). Subjects with ≥3 risk alleles of these variants had 6.5-fold higher risk of having low serum testosterone than subjects with no risk allele. The rs5934505 polymorphism near FAM9B on the X chromosome was also associated with testosterone concentrations (p = 5.6×10−16). The rs6258 polymorphism in exon 4 of SHBG affected SHBG''s affinity for binding testosterone and the measured free testosterone fraction (p<0.01). Genetic variants in the SHBG locus and on the X chromosome are associated with a substantial variation in testosterone concentrations and increased risk of low testosterone. rs6258 is the first reported SHBG polymorphism, which affects testosterone binding to SHBG and the free testosterone fraction and could therefore influence the calculation of free testosterone using law-of-mass-action equation.  相似文献   

18.
Zhang R  Lu S  Meng L  Min Z  Tian J  Valenzuela RK  Guo T  Tian L  Zhao W  Ma J 《PloS one》2012,7(1):e30237
Recently, two genome scan meta-analysis studies have found strong evidence for the association of loci on chromosome 8p with schizophrenia. The early growth response 3 (EGR3) gene located in chromosome 8p21.3 was also found to be involved in the etiology of schizophrenia. However, subsequent studies failed to replicate this finding. To investigate the genetic role of EGR3 in Chinese patients, we genotyped four SNPs (average interval ∼2.3 kb) in the chromosome region of EGR3 in 470 Chinese schizophrenia patients and 480 healthy control subjects. The SNP rs35201266 (located in intron 1 of EGR3) showed significant differences between cases and controls in both genotype frequency distribution (P = 0.016) and allele frequency distribution (P = 0.009). Analysis of the haplotype rs35201266-rs3750192 provided significant evidence for association with schizophrenia (P = 0.0012); a significant difference was found for the common haplotype AG (P = 0.0005). Furthermore, significant associations were also found in several other two-, and three-SNP tests of haplotype analyses. The meta-analysis revealed a statistically significant association between rs35201266 and schizophrenia (P = 0.0001). In summary, our study supports the association of EGR3 with schizophrenia in our Han Chinese sample, and further functional exploration of the EGR3 gene will contribute to the molecular basis for the complex network underlying schizophrenia pathogenesis.  相似文献   

19.
The cornea is a transparent structure that permits the refraction of light into the eye. Evidence from a range of studies indicates that central corneal thickness (CCT) is strongly genetically determined. Support for a genetic component comes from data showing significant variation in CCT between different human ethnic groups. Interestingly, these studies also appear to show that skin pigmentation may influence CCT. To validate these observations, we undertook the first analysis of CCT in an oculocutaneous albinism (OCA) and Ugandan cohort, populations with distinct skin pigmentation phenotypes. There was a significant difference in the mean CCT of the OCA, Ugandan and Australian-Caucasian cohorts (Ugandan: 517.3±37 µm; Caucasian: 539.7±32.8 µm, OCA: 563.3±37.2 µm; p<0.001). A meta-analysis of 53 studies investigating the CCT of different ethnic groups was then performed and demonstrated that darker skin pigmentation is associated with a thinner CCT (p<0.001). To further verify these observations, we measured CCT in 13 different inbred mouse strains and found a significant difference between the albino and pigmented strains (p = 0.008). Specific mutations within the melanin synthesis pathway were then investigated in mice for an association with CCT. Significant differences between mutant and wild type strains were seen with the nonagouti (p<0.001), myosin VA (p<0.001), tyrosinase (p = 0.025) and tyrosinase related protein (p = 0.001) genes. These findings provide support for our hypothesis that pigmentation is associated with CCT and identifies pigment-related genes as candidates for developmental determination of a non-pigmented structure.  相似文献   

20.
Identifying the genes that influence levels of pro-inflammatory molecules can help to elucidate the mechanisms underlying this process. We first conducted a two-stage genome-wide association scan (GWAS) for the key inflammatory biomarkers Interleukin-6 (IL-6), the general measure of inflammation erythrocyte sedimentation rate (ESR), monocyte chemotactic protein-1 (MCP-1), and high-sensitivity C-reactive protein (hsCRP) in a large cohort of individuals from the founder population of Sardinia. By analysing 731,213 autosomal or X chromosome SNPs and an additional ∼1.9 million imputed variants in 4,694 individuals, we identified several SNPs associated with the selected quantitative trait loci (QTLs) and replicated all the top signals in an independent sample of 1,392 individuals from the same population. Next, to increase power to detect and resolve associations, we further genotyped the whole cohort (6,145 individuals) for 293,875 variants included on the ImmunoChip and MetaboChip custom arrays. Overall, our combined approach led to the identification of 9 genome-wide significant novel independent signals—5 of which were identified only with the custom arrays—and provided confirmatory evidence for an additional 7. Novel signals include: for IL-6, in the ABO gene (rs657152, p = 2.13×10−29); for ESR, at the HBB (rs4910472, p = 2.31×10−11) and UCN119B/SPPL3 (rs11829037, p = 8.91×10−10) loci; for MCP-1, near its receptor CCR2 (rs17141006, p = 7.53×10−13) and in CADM3 (rs3026968, p = 7.63×10−13); for hsCRP, within the CRP gene (rs3093077, p = 5.73×10−21), near DARC (rs3845624, p = 1.43×10−10), UNC119B/SPPL3 (rs11829037, p = 1.50×10−14), and ICOSLG/AIRE (rs113459440, p = 1.54×10−08) loci. Confirmatory evidence was found for IL-6 in the IL-6R gene (rs4129267); for ESR at CR1 (rs12567990) and TMEM57 (rs10903129); for MCP-1 at DARC (rs12075); and for hsCRP at CRP (rs1205), HNF1A (rs225918), and APOC-I (rs4420638). Our results improve the current knowledge of genetic variants underlying inflammation and provide novel clues for the understanding of the molecular mechanisms regulating this complex process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号