首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Biosynthetic pathway evolution needs to consider the evolution of a group of genes that code for enzymes catalysing the multiple chemical reaction steps leading to the final end product. Tryptophan biosynthetic pathway has five chemical reaction steps that are highly conserved in diverse microbial genomes, though the genes of the pathway enzymes show considerable variations in arrangements, operon structure (gene fusion and splitting) and regulation. We use a combined bioinformatic and statistical analyses approach to address the question if the pathway genes from different microbial genomes, belonging to a wide range of groups, show similar evolutionary relationships within and between them. Our analyses involved detailed study of gene organization (fusion/splitting events), base composition, relative synonymous codon usage pattern of the genes, gene expressivity, amino acid usage, etc. to assess inter- and intra-genic variations, between and within the pathway genes, in diverse group of microorganisms. We describe these genetic and genomic variations in the tryptophan pathway genes in different microorganisms to show the similarities across organisms, and compare the same genes across different organisms to find the possible variability arising possibly due to horizontal gene transfers. Such studies form the basis for moving from single gene evolution to pathway evolutionary studies that are important steps towards understanding the systems biology of intracellular pathways.  相似文献   

3.
The application of strand displacement amplification (SDA) is demonstrated for whole genome amplification from nanograms to micrograms for DNA isolated from small plant cell colonies. Secondary digest amplified fragment length polymorphism (SD-AFLP) analysis confirmed that the amplified genome is a representative of the entire genome. This approach allows the amplification of DNA isolated from small cell colonies of putative somatic hybrids for rapid molecular confirmation of the hybrid status of fusion products.  相似文献   

4.
Incorporation data, collected judiciously from a biosynthetic tracer experiment, can be processed to yield a considerable body of detailed information  相似文献   

5.
alpha-Synuclein affects the MAPK pathway and accelerates cell death   总被引:9,自引:0,他引:9  
Insoluble alpha-synuclein accumulates in Parkinson's disease, diffuse Lewy body disease, and multiple system atrophy. However, the relationship between its accumulation and pathogenesis is still unclear. Recently, we reported that overexpression of alpha-synuclein affects Elk-1 phosphorylation in cultured cells, which is mainly performed by mitogen-activated protein kinases (MAPKs). We further examined the relationship between MAPK signaling and the effects of alpha-synuclein expression on ecdysone-inducible neuro2a cell lines and found that cells expressing alpha-synuclein had less phosphorylated MAPKs. Moreover, they showed significant cell death when the concentration of serum in the culture medium was reduced. Under normal serum conditions, the addition of the MAPK inhibitor U0126 also caused cell death in alpha-synuclein-expressing cells. Transfection of constitutively active MEK-1 resulted in MAPK phosphorylation in alpha-synuclein-expressing cells and improved cell viability even under reduced serum conditions. Thus, we conclude that alpha-synuclein regulates the MAPK pathway by reducing the amount of available active MAPK. Our findings suggest a mechanism for pathogenesis and thus offer therapeutic insight into synucleinopathies.  相似文献   

6.
The biosynthesis of the phosphoglycolipid antibiotic moenomycin A attracts the attention of researchers hoping to develop new moenomycin‐based antibiotics against multidrug resistant Gram‐positive infections. There is detailed understanding of most steps of this biosynthetic pathway in Streptomyces ghanaensis (ATCC14672), except for the ultimate stage, where a single pentasaccharide intermediate is converted into a set of unusually modified final products. Here we report that only one gene, moeH5, encoding a homologue of the glutamine amidotransferase (GAT) enzyme superfamily, is responsible for the observed diversity of terminally decorated moenomycins. Genetic and biochemical evidence support the idea that MoeH5 is a novel member of the GAT superfamily, whose homologues are involved in the synthesis of various secondary metabolites as well as K and O antigens of bacterial lipopolysaccharide. Our results provide insights into the mechanism of MoeH5 and its counterparts, and give us a new tool for the diversification of phosphoglycolipid antibiotics.  相似文献   

7.
Metabolic oligosaccharide engineering has been employed to introduce fluorine-containing groups onto mammalian cell surfaces. Incubation of HeLa, Jurkat, and HL60 cells in culture with fluorinated sialic acid and mannosamine analogues resulted in cell-surface presentation of fluorinated glycans. Metabolic conversion of fluorinated precursors was detected and quantified by DMB-derivatization and HPLC ESI-MS analysis. Between 7% and 72% of total membrane-associated sialosides were fluorinated, depending on the precursor used and the cell type. Fluorination of mammalian cell surfaces provides a means for introducing a bioorthogonal surface for modulating noncovalent interactions such as those involved in cell adhesion.  相似文献   

8.
Cultivation-independent surveys of ribosomal RNA genes have revealed the existence of novel microbial lineages, many with no known cultivated representatives. Ribosomal RNA-based analyses, however, often do not provide significant information beyond phylogenetic affiliation. Analysis of large genome fragments recovered directly from microbial communities represents one promising approach for characterizing uncultivated microbial species better. To assess further the utility of this approach, we constructed large-insert bacterial artificial chromosome (BAC) libraries from the genomic DNA of planktonic marine microbial assemblages. The BAC libraries we prepared had average insert sizes of 80 kb, with maximal insert sizes > 150 kb. A rapid screening method assessing the phylogenetic diversity and representation in the library was developed and applied. In general, representation in the libraries agreed well with previous culture-independent surveys based on polymerase chain reaction (PCR)amplified rRNA fragments. A significant fraction of the genome fragments in the BAC libraries originated from as yet uncultivated microbial species, thought to be abundant and widely distributed in the marine environment. One entire BAC insert, derived from an uncultivated, surface-dwelling euryarchaeote, was sequenced completely. The planktonic euryarchaeal genome fragment contained some typical archaeal genes, as well as unique open reading frames (ORFs) suggesting novel function. In total, our results verify the utility of BAC libraries for providing access to the genomes of as yet uncultivated microbial species. Further analysis of these BAC libraries has the potential to provide significant insight into the genomic potential and ecological roles of many indigenous microbial species, cultivated or not.  相似文献   

9.
A new biosynthetic pathway, which can produce both vitamin B12 and large amounts of porphyrins from isopropanol, was identified in Arthrobacter hyalinus using carbon-13 stable isotope tracer techniques and carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopy. Studies on the incorporation of [2-13C]isopropanol, [1- or 2-13C]sodium acetate, l-[1-13C]glutamate, and [1-, 2-, 3-, 4-, 5-13C]5-aminolevulinic acid into uroporphyrinogen III showed that isopropanol was metabolized into uroporphyrinogen III through acetyl CoA and that 5-aminolevulinic acid was produced from l-glutamic acid and not via Shemin's pathway.  相似文献   

10.
Caffeine (1,3,7-trimethylxanthine) is a secondary metabolite produced by certain plant species and an important component of coffee (Coffea arabica and Coffea canephora) and tea (Camellia sinensis). Here we describe the structures of two S-adenosyl-l-methionine-dependent N-methyltransferases that mediate caffeine biosynthesis in C. canephora 'robusta', xanthosine (XR) methyltransferase (XMT), and 1,7-dimethylxanthine methyltransferase (DXMT). Both were cocrystallized with the demethylated cofactor, S-adenosyl-L-cysteine, and substrate, either xanthosine or theobromine. Our structures reveal several elements that appear critical for substrate selectivity. Serine-316 in XMT appears central to the recognition of XR. Likewise, a change from glutamine-161 in XMT to histidine-160 in DXMT is likely to have catalytic consequences. A phenylalanine-266 to isoleucine-266 change in DXMT is also likely to be crucial for the discrimination between mono and dimethyl transferases in coffee. These key residues are probably functionally important and will guide future studies with implications for the biosynthesis of caffeine and its derivatives in plants.  相似文献   

11.
Whole genome amplification methods facilitate the detection and characterization of microbial communities in low biomass environments. We examined the extent to which the actual community structure is reliably revealed and factors contributing to bias. One widely used [multiple displacement amplification (MDA)] and one new primer‐free method [primase‐based whole genome amplification (pWGA)] were compared using a polymerase chain reaction (PCR)‐based method as control. Pyrosequencing of an environmental sample and principal component analysis revealed that MDA impacted community profiles more strongly than pWGA and indicated that this related to species GC content, although an influence of DNA integrity could not be excluded. Subsequently, biases by species GC content, DNA integrity and fragment size were separately analysed using defined mixtures of DNA from various species. We found significantly less amplification of species with the highest GC content for MDA‐based templates and, to a lesser extent, for pWGA. DNA fragmentation also interfered severely: species with more fragmented DNA were less amplified with MDA and pWGA. pWGA was unable to amplify low molecular weight DNA (< 1.5 kb), whereas MDA was inefficient. We conclude that pWGA is the most promising method for characterization of microbial communities in low‐biomass environments and for currently planned astrobiological missions to Mars.  相似文献   

12.
Jurgenson CT  Burns KE  Begley TP  Ealick SE 《Biochemistry》2008,47(39):10354-10364
The structure of the protein complex CysM-CysO from a new cysteine biosynthetic pathway found in the H37Rv strain of Mycobacterium tuberculosis has been determined at 1.53 A resolution. CysM (Rv1336) is a PLP-containing beta-replacement enzyme and CysO (Rv1335) is a sulfur carrier protein with a ubiquitin-like fold. CysM catalyzes the replacement of the acetyl group of O-acetylserine by CysO thiocarboxylate to generate a protein-bound cysteine that is released in a subsequent proteolysis reaction. The protein complex in the crystal structure is asymmetric with one CysO protomer binding to one end of a CysM dimer. Additionally, the structures of CysM and CysO were determined individually at 2.8 and 2.7 A resolution, respectively. Sequence alignments with homologues and structural comparisons with CysK, a cysteine synthase that does not utilize a sulfur carrier protein, revealed high conservation of active site residues; however, residues in CysM responsible for CysO binding are not conserved. Comparison of the CysM-CysO binding interface with other sulfur carrier protein complexes revealed a similarity in secondary structural elements that contribute to complex formation in the ThiF-ThiS and MoeB-MoaD systems, despite major differences in overall folds. Comparison of CysM with and without bound CysO revealed conformational changes associated with CysO binding.  相似文献   

13.
In this study we report the development of a simple target-specific isothermal nucleic acid amplification technique, termed genome exponential amplification reaction (GEAR). Escherichia coli was selected as the microbial target to demonstrate the GEAR technique as a proof of concept. The GEAR technique uses a set of four primers; in the present study these primers targeted 5 regions on the 16S rRNA gene of E. coli. The outer forward and reverse Tab primer sequences are complementary to each other at their 5' end, whereas their 3' end sequences are complementary to their respective target nucleic acid sequences. The GEAR assay was performed at a constant temperature 60 °C and monitored continuously in a real-time PCR instrument in the presence of an intercalating dye (SYTO 9). The GEAR assay enabled amplification of as few as one colony forming units of E. coli per reaction within 30 min. We also evaluated the GEAR assay for rapid identification of bacterial colonies cultured on agar media directly in the reaction without DNA extraction. Cells from E. coli colonies were picked and added directly to GEAR assay mastermix without prior DNA extraction. DNA in the cells could be amplified, yielding positive results within 15 min.  相似文献   

14.
15.
SsfX3 is a GDSL family acyltransferase that transfers salicylate to the C-4 hydroxyl of a tetracycline intermediate in the penultimate step during biosynthesis of the anticancer natural product SF2575. The C-4 salicylate takes the place of the more common C-4 dimethylamine functionality, making SsfX3 the first acyltransferase identified to act on a tetracycline substrate. The crystal structure of SsfX3 was determined at 2.5 Å, revealing two distinct domains as follows: an N-terminal β-sandwich domain that resembles a carbohydrate-binding module, and a C-terminal catalytic domain that contains the atypical α/β-hydrolase fold found in the GDSL hydrolase family of enzymes. The active site lies at one end of a large open binding pocket, which is spatially defined by structural elements from both the N- and C-terminal domains. Mutational analysis in the putative substrate binding pocket identified residues from both domains that are important for binding the acyl donor and acceptor. Furthermore, removal of the N-terminal carbohydrate-binding module-like domain rendered the stand-alone α/β-hydrolase domain inactive. The additional noncatalytic module is therefore proposed to be required to define the binding pocket and provide sufficient interactions with the spatially extended tetracyclic substrate. SsfX3 was also demonstrated to accept a variety of non-native acyl groups. This relaxed substrate specificity toward the acyl donor allowed the chemoenzymatic biosynthesis of C-4-modified analogs of the immediate precursor to the bioactive SF2575; these were used to assay the structure activity relationships at the C-4 position.  相似文献   

16.
Microarray technology provides the opportunity to identify thousands of microbial genes or populations simultaneously, but low microbial biomass often prevents application of this technology to many natural microbial communities. We developed a whole-community genome amplification-assisted microarray detection approach based on multiple displacement amplification. The representativeness of amplification was evaluated using several types of microarrays and quantitative indexes. Representative detection of individual genes or genomes was obtained with 1 to 100 ng DNA from individual or mixed genomes, in equal or unequal abundance, and with 1 to 500 ng community DNAs from groundwater. Lower concentrations of DNA (as low as 10 fg) could be detected, but the lower template concentrations affected the representativeness of amplification. Robust quantitative detection was also observed by significant linear relationships between signal intensities and initial DNA concentrations ranging from (i) 0.04 to 125 ng (r2 = 0.65 to 0.99) for DNA from pure cultures as detected by whole-genome open reading frame arrays, (ii) 0.1 to 1,000 ng (r2 = 0.91) for genomic DNA using community genome arrays, and (iii) 0.01 to 250 ng (r2 = 0.96 to 0.98) for community DNAs from ethanol-amended groundwater using 50-mer functional gene arrays. This method allowed us to investigate the oligotrophic microbial communities in groundwater contaminated with uranium and other metals. The results indicated that microorganisms containing genes involved in contaminant degradation and immobilization are present in these communities, that their spatial distribution is heterogeneous, and that microbial diversity is greatly reduced in the highly contaminated environment.  相似文献   

17.
Single cell genomics is a powerful and increasingly popular tool for studying the genetic make-up of uncultured microbes. A key challenge for successful single cell sequencing and analysis is the removal of exogenous DNA from whole genome amplification reagents. We found that UV irradiation of the multiple displacement amplification (MDA) reagents, including the Phi29 polymerase and random hexamer primers, effectively eliminates the amplification of contaminating DNA. The methodology is quick, simple, and highly effective, thus significantly improving whole genome amplification from single cells.  相似文献   

18.
19.
Endogenous brassinosteroids (BRs) in tomato (Lycopersicon esculentum) seedlings are known to be composed of C27- and C28-BRs. The biosynthetic pathways of C27-BRs were examined using a cell-free enzyme solution prepared from tomato seedlings that yielded the biosynthetic sequences cholesterol --> cholestanol and 6-deoxo-28-norteasterone <--> 6-deoxo-28-nor-3-dehydroteasterone <--> 6-deoxo-28-nortyphasterol --> 6-deoxo-28-norcastasterone --> 28-norcastasterone (28-norCS). Arabidopsis CYP85A1 that was heterologously expressed in yeast mediated the conversion of 6-deoxo-28-norCS to 28-norCS. The same reaction was catalyzed by an enzyme solution from wild-type tomato but not by an extract derived from a tomato dwarf mutant with a defect in CYP85. Furthermore, exogenously applied 28-norCS restored the abnormal growth of the dwarf mutant. These findings indicate that the C-6 oxidation of 6-deoxo-28-norCS to 28-norCS in tomato seedlings is catalyzed by CYP85, just as in the conversion of 6-deoxoCS to CS. Additionally, the cell-free solution also catalyzed the C-24 methylation of 28-norCS to CS in the presence of NADPH and S-adenosylmethionine (SAM), a reaction that was clearly retarded in the absence of NADPH and SAM. Thus it seems that C27-BRs, in addition to C28-BRs, are important in the production of more active C28-BRs and CS, where a SAM-dependent sterol methyltransferase appears to biosynthetically connect C27-BRs to C28-BRs. Moreover, the tomato cell-free solution converted CS to 26-norCS and [2H6]CS to [2H3]28-norCS, suggesting that C-28 demethylation is an artifact due to an isotope effect. Although previous feeding experiments employing [2H6]CS suggested that 28-norCS was synthesized from CS in certain plant species, this is not supported in planta. Altogether, this study demonstrated for the first time, to our knowledge, that 28-norCS is not synthesized from CS but from cholesterol. In addition, CS and [2H6]CS were not converted into BL and [2H6]BL, respectively, confirming an earlier finding that the active BR in tomato seedlings is not BL but CS. In conclusion, the biosynthesis of 28-norBRs appears to play a physiologically important role in maintaining homeostatic levels of CS in tomato seedlings.  相似文献   

20.
Ethanolamine kinase (EKI) is the first committed step in phosphatidylethanolamine (PtdEtn) biosynthesis via the CDP-ethanolamine pathway. We identify a human cDNA encoding an ethanolamine-specific kinase EKI1 and the structure of the EKI1 gene located on chromosome 12. EKI1 overexpression in COS-7 cells results in a 170-fold increase in ethanolamine kinase-specific activity and accelerates the rate of [3H]ethanolamine incorporation into PtdEtn as a function of the ethanolamine concentration in the culture medium. Acceleration of the CDP-ethanolamine pathway does not result in elevated cellular PtdEtn levels, but rather the excess PtdEtn is degraded to glycerophosphoethanolamine. EKI1 has negligible choline kinase activity in vitro and does not influence phosphatidylcholine biosynthesis. Acceleration of the CDP-ethanolamine pathway also does not change the rate of PtdEtn formation via the decarboxylation of phosphatidylserine. The data demonstrate the existence of separate ethanolamine and choline kinases in mammals and show that ethanolamine kinase can be a rate-controlling step in PtdEtn biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号