首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelial lipase (EL) is a new member of the triglyceride lipase family, the genes of which play a central role in dietary fat absorption, energy homeostasis, and plasma lipoprotein metabolism. One physiologic role of EL is thought to be hydrolysis of high-density lipoprotein (HDL) phospholipid, although the precise function of endothelial lipase has yet to be fully clarified. Furthermore, genetic variation in EL has been suggested to influence serum HDL-C levels. In the present study, we detected two common single nucleotide polymorphisms in the EL gene associated with serum HDL cholesterol levels in healthy school-aged children. Our data support the hypothesis that variations in the EL gene are one of the genetic determinants of serum HDL-C levels.  相似文献   

2.
The intake of tomatoes and tomato products, which constitute the main dietary source of the red pigment lycopene (LYC), has been associated with a reduced risk of prostate cancer and cardiovascular disease, suggesting a protective role of this carotenoid. However, LYC bioavailability displays high interindividual variability. This variability may lead to varying biological effects following LYC consumption. Based on recent results obtained with two other carotenoids, we assumed that this variability was due, at least in part, to several single nucleotide polymorphisms (SNPs) in genes involved in LYC and lipid metabolism. Thus, we aimed at identifying a combination of SNPs significantly associated with the variability in LYC bioavailability. In a postprandial study, 33 healthy male volunteers consumed a test meal containing 100 g tomato puree, which provided 9.7 mg all-trans LYC. LYC concentrations were measured in plasma chylomicrons (CM) isolated at regular time intervals over 8 h postprandially. For the study 1885 SNPs in 49 candidate genes, i.e., genes assumed to play a role in LYC bioavailability, were selected. Multivariate statistical analysis (partial least squares regression) was used to identify and validate the combination of SNPs most closely associated with postprandial CM LYC response. The postprandial CM LYC response to the meal was notably variable with a CV of 70%. A significant (P=0.037) and validated partial least squares regression model, which included 28 SNPs in 16 genes, explained 72% of the variance in the postprandial CM LYC response. The postprandial CM LYC response was also positively correlated to fasting plasma LYC concentrations (r=0.37, P<0.05). The ability to respond to LYC is explained, at least partly, by a combination of 28 SNPs in 16 genes. Interindividual variability in bioavailability apparently affects the long-term blood LYC status, which could ultimately modulate the biological response following LYC supplementation.  相似文献   

3.
Thyroid-stimulating hormone (TSH) controls thyroid growth and hormone secretion through binding to its G protein-coupled receptor (TSHR) and production of cyclic AMP (cAMP). Serum TSH is a sensitive indicator of thyroid function, and overt abnormalities in thyroid function lead to common endocrine disorders affecting approximately 10% of individuals over a life span. By genotyping 362,129 SNPs in 4,300 Sardinians, we identified a strong association (p = 1.3 x 10(-11)) between alleles of rs4704397 and circulating TSH levels; each additional copy of the minor A allele was associated with an increase of 0.13 muIU/ml in TSH. The single-nucleotide polymorphism (SNP) is located in intron 1 of PDE8B, encoding a high-affinity cAMP-specific phosphodiesterase. The association was replicated in 4,158 individuals, including additional Sardinians and two genetically distant cohorts from Tuscany and the Old Order Amish (overall p value = 1.9 x 10(-20)). In addition to association of TSH levels with SNPs in PDE8B, our genome scan provided evidence for association with PDE10A and several biologically interesting candidates in a focused analysis of 24 genes. In particular, we found evidence for association of TSH levels with SNPs in the THRB (rs1505287, p = 7.3 x 10(-5)), GNAQ (rs10512065, p = 2.0 x 10(-4)), TG (rs2252696, p = 2.2 x 10(-3)), POU1F1 (rs1976324, p = 3.9 x 10(-3)), PDE4D (rs27178, p = 8.3 x 10(-3)), and TSHR (rs4903957, p = 8.6 x 10(-3)) loci. Overall, the results suggest a primary effect of PDE8B variants on cAMP levels in the thyroid. This would affect production of T4 and T3 and feedback to alter TSH release by the pituitary. PDE8B may thus provide a candidate target for the treatment of thyroid dysfunction.  相似文献   

4.
Immunoglobulin E (IgE) provides important information on the humoral immune status, and the IgE level is routinely detected in clinical practice. There are many diseases associated with IgE, such as atopic disease, autoimmune diseases, and so on. IgE is a genetically complex trait, but comprehensive genetic assessment of the variability in serum IgE levels is lacking. Previous genome-wide association studies (GWAS) on total serum IgE levels have identified FCER1A as the susceptibility locus; however, the candidate gene association study in southern Chinese patients reported no association. Given the genetic difference in different populations, we firstly conducted this two-stage GWAS in a Chinese population of 3,495 men, including 1,999 unrelated subjects in the first stage and 1,496 independent individuals replicated in the second stage. In the first stage, we totally identified three single nucleotide polymorphisms (SNPs) which reached a P value of 1.0?×?10?5. Rs17090302 on chromosome 3 and Rs28708846 on chromosome 13 are intergenic. Rs432085 from chromosome 3p28 is located in the gene CCDC50. When the two-stage data was combined, none of the SNPs reached the genome-wide significant level. Collectively, we did not identify novel loci associated with the serum IgE level in Chinese males, but we hypothesized that CCDC50 was a candidate gene in regulation on IgE level.  相似文献   

5.
Atopy is an immune disorder in which a Th2 dominant mechanism leads to high IgE levels and the clinical disorder asthma. It has been postulated that the Th1 cytokine IFNgamma, acting through its heterodimeric receptors, IFNgammaR1 and IFNgammaR2, in the induction/proliferation of Th1 cells, might suppress the Th2 responses that may underlie atopic asthma. However, neither murine nor human variants of IFNgamma associate with atopy. Several dysfunctional mutations have been identified in IFNgamma receptor genes (IFNGR1 and IFNGR2) in relation to severe and selective infections with poorly pathogenic organisms. However, little is known about common polymorphisms and their functional role in atopy. To test whether such variants of IFNGR1 and IFNGR2 relate to atopic asthma, we conducted a genetic association study in both British (n = 300) and Japanese (n = 200) populations. An intronic variant of IFNGR1 showed marginal association with total serum IgE levels in the British population compared with those with total IgE levels <30 IU/ml and those with >120-500 IU/ml [odds ratio = 2.00 (95% CI 1. 00-4.07), P = 0.048]. A coding variant, Gln64Arg of the IFNGR2, also associated with total serum IgE levels in the British population [chi(2) = 5.08, P = 0.024]. Further genetic and functional analyses are needed to clarify the role of variants of IFNgamma receptor genes in atopic immune disorder among different ethnic groups.  相似文献   

6.
Genome-wide association (GWA) studies have identified many candidate genes that are associated with blood lipid and lipoprotein concentrations. In this study, we want to know whether the results from European for lipid-related single-nucleotide polymorphisms (SNPs) are generalizable to Chinese children. We genotyped seven SNPs in Chinese school-age children (n = 3,503) and assessed the associations of these SNPs with lipids profiles and dyslipidemia. After false discovery rate correction, of the seven SNPs, six (rs2144300, p ~ 9.30 × 10?3; rs1260333, p ~ 6.20 × 10?11; rs1260326, p ~ 8.73 × 10?11; rs10105606, p ~ 0.010; rs1748195, p ~ 0.016 and rs964184, p ~ 2.33 × 10?13) showed strong association with triglycerides. Three SNPs (rs1260333, p ~ 3.30 × 10?3; rs1260326, p ~ 4.39 × 10?3 and rs2954029, p ~ 6.36 × 10?4) showed strong association with total cholesterol. Two SNPs (rs10105606, p ~ 6.66 × 10?4 and rs1748195, p ~ 2.55 × 10?3) showed strong association with high density lipoprotein cholesterol. Four SNPs (rs1260333, p ~ 0.017; rs1260326, p ~ 0.013; rs2954029, p ~ 1.09 × 10?3 and rs964184, p ~ 5.51 × 10?3) showed strong association with low density lipoprotein cholesterol. There were significant associations between rs1260333 (OR is 0.82, 95 % CI 0.74–0.92, p ~ 3.96 × 10?4), rs1260326 (OR is 0.82, 95 % CI 0.74–0.92, p ~ 5.31 × 10?4), and rs964184 (OR is 1.36, 95 % CI 1.20–1.55, p ~ 1.89 × 10?6) and dyslipidemia. These SNPs generated strong combined effects on lipid profiles and dyslipidemia. Our study demonstrates that SNPs associated with lipids from European GWA studies also play roles in Chinese children, which broadened the understanding of lipids metabolism.  相似文献   

7.
8.
Pigment patterns of Danio fishes are a tractable system for assessing the developmental genetic bases for the evolution of adult form in vertebrates. These pigment patterns include multiple horizontal melanophore stripes in the zebrafish D. rerio, a complete absence of stripes in D. albolineatus, a few broad stripes in D. kerri, and a combination of stripes and spots in D. nigrofasciatus. Here we assess the genetics of pigment pattern development and evolution using interspecific hybrids. We first reconstruct the phylogenetic relationships of these species by analyzing mitochondrial 12S and 16S rDNA sequences. We find a clade comprising several small species of danio, and within this clade a sister taxon relationship between D. rerio and D. nigrofasciatus. We also find that the large bodied D. dangila is more closely related to the clade of small danios than other large bodied species. As a first step in evaluating the genetics of pigment pattern diversification in the group, we then examine the phenotypes of interspecific hybrids. Adult pigment patterns of hybrids between D. rerio and other danios are in many respects more similar to D. rerio than the heterospecific danio, demonstrating that alleles of pigment pattern genes in other species typically are recessive to D. rerio alleles. Furthermore, hybrids between two additional striped species (D. kerri, D. nigrofasciatus) and D. albolineatus suggest that striped patterns are dominant or semi-dominant over an absence of stripes. Together, these analyses support a model in which pigment pattern differences between D. rerio and other species result from gain-of-function alleles in D. rerio, or loss-of-function alleles in other danios. Finally, because several D. rerio pigment pattern mutants resemble heterospecific danios, we use interspecific complementation tests to assess potential roles for these loci in pigment pattern diversification. Crosses between other danios and most D. rerio pigment pattern mutants develop stripes, similar to control hybrids with wild-type D. rerio. These complementation phenotypes allow us to exclude most of these loci as having major effect roles in generating pigment pattern differences between species. In contrast, hybrids between fms mutant D. rerio and D. albolineatus fail to develop stripes, similar to D. albolineatus. This non-complementation phenotype identifies changes in fms, or the pathway in which it acts, as candidates for contributing to the evolutionary loss of stripes in D. albolineatus.  相似文献   

9.
Identification of genetic variants associated with glucocorticoids (GC) sensitivity of leukaemia cells may provide insight into potential drug targets and tailored therapy. In the present study, within 72 leukaemic cell lines derived from Japanese patients with B‐cell precursor acute lymphoblastic leukaemia (ALL), we conducted genome‐wide genotyping of single nucleotide polymorphisms (SNP) and attempted to identify genetic variants associated with GC sensitivity and NR3C1 (GC receptor) gene expression. IC50 measures for prednisolone (Pred) and dexamethasone (Dex) were available using an alamarBlue cell viability assay. IC50 values of Pred showed the strongest association with rs904419 (P = 4.34 × 10−8), located between the FRMD4B and MITF genes. The median IC50 values of prednisolone for cell lines with rs904419 AA (n = 13), AG (n = 31) and GG (n = 28) genotypes were 0.089, 0.139 and 297 µmol/L, respectively. For dexamethasone sensitivity, suggestive association was observed for SNP rs2306888 (P = 1.43 × 10−6), a synonymous SNP of the TGFBR3 gene. For NR3C1 gene expression, suggestive association was observed for SNP rs11982167 (P = 6.44 × 10−8), located in the PLEKHA8 gene. These genetic variants may affect GC sensitivity of ALL cells and may give rise to opportunities in personalized medicine for effective and safe chemotherapy in ALL patients.  相似文献   

10.
β-blockers and β-agonists are primarily used to treat cardiovascular diseases. Inter-individual variability in response to both drug classes is well recognized, yet the identity and relative contribution of the genetic players involved are poorly understood. This work is the first genome-wide association study (GWAS) addressing the values and susceptibility of cardiovascular-related traits to a selective β(1)-blocker, Atenolol (ate), and a β-agonist, Isoproterenol (iso). The phenotypic dataset consisted of 27 highly heritable traits, each measured across 22 inbred mouse strains and four pharmacological conditions. The genotypic panel comprised 79922 informative SNPs of the mouse HapMap resource. Associations were mapped by Efficient Mixed Model Association (EMMA), a method that corrects for the population structure and genetic relatedness of the various strains. A total of 205 separate genome-wide scans were analyzed. The most significant hits include three candidate loci related to cardiac and body weight, three loci for electrocardiographic (ECG) values, two loci for the susceptibility of atrial weight index to iso, four loci for the susceptibility of systolic blood pressure (SBP) to perturbations of the β-adrenergic system, and one locus for the responsiveness of QTc (p<10(-8)). An additional 60 loci were suggestive for one or the other of the 27 traits, while 46 others were suggestive for one or the other drug effects (p<10(-6)). Most hits tagged unexpected regions, yet at least two loci for the susceptibility of SBP to β-adrenergic drugs pointed at members of the hypothalamic-pituitary-thyroid axis. Loci for cardiac-related traits were preferentially enriched in genes expressed in the heart, while 23% of the testable loci were replicated with datasets of the Mouse Phenome Database (MPD). Altogether these data and validation tests indicate that the mapped loci are relevant to the traits and responses studied.  相似文献   

11.
12.
13.
Aging is associated with changes in thyroid gland physiology. Age-related changes in the contribution of peripheral tissues to thyroid hormone serum levels have yet to be systematically assessed. Here, we investigated age-related alterations in the contributions of the liver and kidney to thyroid hormone homeostasis using 6-, 12-, and 24-mo-old male Wistar rats. A significant and progressive decline in plasma thyroxine occurred with age, but triiodothyronine (T(3)) was decreased only at 24 mo. This was associated with an unchanged protein level of the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) in the kidney and with a decreased MCT8 level in the liver at 24 mo. Hepatic type I deiodinase (D1) protein level and activity declined progressively with age. Renal D1 levels were decreased at both 12 and 24 mo but D1 activity was decreased only at 24 mo. In the liver, no changes occurred in thyroid hormone receptor (TR) TRalpha(1), whereas a progressive increase in TRbeta(1) occurred at both mRNA and total protein levels. In the kidney, both TRalpha(1) and TRbeta(1) mRNA and total protein levels were unchanged between 6 and 12 mo but increased at 24 mo. Interestingly, nuclear TRbeta1 levels were decreased in both liver and kidney at 12 and 24 mo, whereas nuclear TRalpha(1) levels were unchanged. Collectively, our data show differential age-related changes among hepatic and renal MCT8 and D1 and TR expressions, and they suggest that renal D1 activity is maintained with age to compensate for the decrease in hepatic T(3) production.  相似文献   

14.
For many complex traits, genetic variants have been found associated. However, it is still mostly unclear through which downstream mechanism these variants cause these phenotypes. Knowledge of these intermediate steps is crucial to understand pathogenesis, while also providing leads for potential pharmacological intervention. Here we relied upon natural human genetic variation to identify effects of these variants on trans-gene expression (expression quantitative trait locus mapping, eQTL) in whole peripheral blood from 1,469 unrelated individuals. We looked at 1,167 published trait- or disease-associated SNPs and observed trans-eQTL effects on 113 different genes, of which we replicated 46 in monocytes of 1,490 different individuals and 18 in a smaller dataset that comprised subcutaneous adipose, visceral adipose, liver tissue, and muscle tissue. HLA single-nucleotide polymorphisms (SNPs) were 10-fold enriched for trans-eQTLs: 48% of the trans-acting SNPs map within the HLA, including ulcerative colitis susceptibility variants that affect plausible candidate genes AOAH and TRBV18 in trans. We identified 18 pairs of unlinked SNPs associated with the same phenotype and affecting expression of the same trans-gene (21 times more than expected, P<10(-16)). This was particularly pronounced for mean platelet volume (MPV): Two independent SNPs significantly affect the well-known blood coagulation genes GP9 and F13A1 but also C19orf33, SAMD14, VCL, and GNG11. Several of these SNPs have a substantially higher effect on the downstream trans-genes than on the eventual phenotypes, supporting the concept that the effects of these SNPs on expression seems to be much less multifactorial. Therefore, these trans-eQTLs could well represent some of the intermediate genes that connect genetic variants with their eventual complex phenotypic outcomes.  相似文献   

15.
16.
17.
18.
Interleukin-15 (IL-15) is a potent proinflammatory cytokine that is now considered a key component of atherosclerosis. Proinflammatory gene polymorphisms lead to variations in the production and level of the proteins. In light of these findings, we hypothesized that variations in the gene coding for IL-15 influence the risk of coronary heart disease (CHD) by modulating the IL-15 levels. To test this hypothesis, we examined 5 single nucleotide polymorphisms (SNPs) in IL-15 gene and IL-15 levels in 102 patients with acute coronary syndrome (ACS), 102 patients with chronic ischemic stable CHD and 162 healthy control subjects. This study is the first report showing the influences of IL-15 gene variants and IL-15 levels on CHD. The five single nucleotide polymorphisms (SNPs) within the IL-15 gene, G367A, C267T, A14035T, C13687A, and A10504G were carried out by polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP). Serum IL-15 levels were significantly higher in both acute and chronic patients than in controls. Genetic variants of IL-15 gene and IL-15 levels were associated with CHD. In conclusion, our study supports the hypothesis that genetic variation in IL-15 gene and IL-15 levels influence the risk of CHD. Further studies are needed to confirm our hypothesis.  相似文献   

19.
  1. Download : Download high-res image (171KB)
  2. Download : Download full-size image
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号