共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
4.
Wen-Qing Jia Zhi Jing Xin Liu Xiao-Yan Feng Ya-Ya Liu Shu-Qing Wang 《Journal of biomolecular structure & dynamics》2013,31(13):3496-3512
The thiazolidinedione class PPARγ agonists as antidiabetic agents are restricted in clinical use because of the side effects such as edema, weight gain, and heart failure. The single and selective agonism of PPARγ is the main cause of side effects. The multi-target cooperative PPARα/γ dual agonist development is a hot topic in the antidiabetic medicinal chemistry field. Saroglitazar is the first approved PPARα/γ dual agonist, available in India for the treatment of diabetic dyslipidemia. It got rid of these side effects. With the aim of finding more protent PPARα/γ dual agonists, the scaffold hopping was used to replace α-o phenylpropionic acid skeleton of saroglitazar with L-tyrosine skeleton. Then, the structural modification was carried out designing 72 compounds. Considering the importance of chirality, opposite configuration of 72 compounds was also studied. 12 compounds with better -cdocker energy were screened by molecular docking. Subsequently, the pharmacokinetic properties and toxicity evaluated by ADMET prediction, 11 of them showed better properties. Comp#L-17-1 and comp#L-3-1 were regarded as representatives to study the binding stability by molecular dynamics (MD) simulations. The MD simulation results of comp#L-17-1-PPARs (α, γ) and comp#L-3-1-PPARs (α, γ) provided structure reference for the research and development of novel PPARα/γ dual agonists. 相似文献
5.
Background
PPARγ plays a key role in adipocyte biology, and Rosiglitazone (Rosi), a thiazolidinedione (TZD)/PPARγ agonist, is a potent insulin-sensitizing agent. Recent evidences demonstrate that adipose tissue inflammation links obesity with insulin resistance and that the insulin-sensitizing effects of TZDs result, in part, from their anti-inflammatory properties. However the underlying mechanisms are unclear.Methodology and Principal Findings
In this study, we establish a link between free fatty acids (FFAs) and PPARγ in the context of obesity-associated inflammation. We show that treatment of adipocytes with FFAs, in particular Arachidonic Acid (ARA), downregulates PPARγ protein and mRNA levels. Furthermore, we demonstrate that the downregulation of PPARγ by ARA requires the activation the of Endoplamsic Reticulum (ER) stress by the TLR4 pathway. Knockdown of adipocyte PPARγ resulted in upregulation of MCP1 gene expression and secretion, leading to enhanced macrophage chemotaxis. Rosi inhibited these effects. In a high fat feeding mouse model, we show that Rosi treatment decreases recruitment of proinflammatory macrophages to epididymal fat. This correlates with decreased chemokine and decreased chemokine receptor expression in adipocytes and macrophages, respectively.Conclusions and Significance
In summary, we describe a novel link between FAs, the TLR4/ER stress pathway and PPARγ, and adipocyte-driven recruitment of macrophages. We thus both describe an additional potential mechanism for the anti-inflammatory and insulin-sensitizing actions of TZDs and an additional detrimental property associated with the activation of the TLR4 pathway by FA. 相似文献6.
Huntington's disease (HD) is associated with expansion of polyglutamine tract in a protein named huntingtin (htt) that is expressed in virtually all body tissues. Thus mutated htt (HD-htt) might affect all organs, although clinical manifestations of HD are associated with selective loss of corticostriatal neurons of the brain. In this work we studied how HD-htt affects mitochondria in human peripheral blood cells. We compared various functions of mitochondria isolated from cultured lymphoblastoid cells derived from three HD patients with juvenile onset of the disease (HD-LBM) and three age-matched control (C-LBM) individuals. Respiratory parameters in different metabolic states, with succinate and glutamate plus malate were the same for all control and HD cell lines. State 4 membrane potential in HD-LBM was slightly lower than in C-LBM. The calcium retention capacity (CRC) of mitochondria was estimated using simultaneously several methods to register permeability transition (PT). We found that LBM do not undergo swelling upon Ca2+-induced PT, and do not increase CRC in the presence of ADP + oligomycin. Although each cell line had different CRC values, qualitatively PT was different in C-LBM and HD-LBM. With C-LBM cyclosporin A (CsA) increased CRC significantly, while with HD-LBM CsA was ineffective. In C-LBM depolarization of mitochondria and a large pore opening (PT) always occurred simultaneously. In HD-LBM depolarization occurred at 20-50% lower Ca2+ loads than PT. We suggest that HD-htt promotes low H+ conductance of the mitochondria by interacting with proteins at the contacts sites without directly promoting PT or hampering mitochondrial oxidative phosphorylation. 相似文献
7.
Xin Liu Zhi Jing Wen-Qing Jia Shu-Qing Wang Wei-Ren Xu 《Journal of biomolecular structure & dynamics》2018,36(11):2988-3002
PPARα and PPARγ have been the most widely studied Peroxisome proliferator-activated receptor (PPAR) subtypes due to their important roles in regulating glucose, lipids, and cholesterol metabolism. By combining the lowering serum triglyceride levels benefit of PPARα agonists (such as fibrates) with the glycemic advantages of the PPARγ agonists (such as TZD), the dual PPAR agonists approach can both improve the metabolic effects and minimize the side effects caused by either agent alone, and hence, has become a promising strategy for designing effective drugs against type-2 diabetes. In this study, by means of virtual screening, ADMET prediction and molecular dynamics (MD) simulations techniques, one compound-ASN15761007 with high binding score, low toxicity were gained. It was observed by MD simulations that ASN15761007 not only possessed the same function as AZ242 did in activating PPARα and BRL did in activating PPARγ, but also had more favorable conformation for binding to the two receptors. Our results provided an approach to rapidly produce novel PPARα/γ dual agonists which might be a potential lead compound to develop against insulin resistance and hyperlipidemia. 相似文献
8.
9.
Seong H. Choi Ki Y. Chung Bradley J. Johnson Gwang W. Go Kyoung H. Kim Chang W. Choi Stephen B. Smith 《The Journal of nutritional biochemistry》2013,24(3):539-543
We hypothesized that preadipocyte differentiation would be depressed by differentiating myoblasts, whereas preadipocytes would promote adipogenic gene expression in myoblasts in a co-culture system. We also determined the effects of arginine, a biological precursor of nitric oxide, and/or trans-10, cis-12 conjugated linoleic acid (CLA) on adipogenic gene expression during differentiation of bovine preadipocytes and myoblasts. Bovine semimembranosus satellite cells (BSC) and subcutaneous preadipocytes were isolated from crossbred steers and cultured with 10% fetal bovine serum (FBS)/Dulbecco's modified Eagle medium (DMEM) and 1% antibiotics during the 3-day proliferation period. After proliferation, BSC and preadipocytes were treated for 3 days with 3% horse serum/DMEM and 5% FBS/DMEM with antibiotics, respectively. Media also contained 100 μM oleic acid, 10 μg/ml insulin, 1 μg/ml pioglitazone and 1 μg/ml dexamethasone. Subsequently, the differentiating myoblasts and adipocytes were cultured in their respective media with 5 mM arginine and/or 40 μM trans-10, cis-12 CLA for 4 days. Finally, myoblasts and adipocytes were single- or co-cultured for 2 h singly or in combination. Arginine stimulated SCD gene expression, whereas CLA depressed SCD gene expression in adipocytes and myoblasts (P=.002). Co-culture of adipocytes and myoblasts elicited an increase in C/EBPβ and PPARγ gene expression in differentiated myoblasts (P≤.01) and an increase in GPR43 gene expression in adipocytes (P=.01). Expression of AMPKα and CPT1ß was unaffected by co-culture, although SCD gene expression tended (P=.12) to be depressed by co-culture. These experiments demonstrated that co-culture of adipocytes with myoblasts increased adipogenic gene expression in the myoblastic cells. 相似文献
10.
Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone that exerts insulinotropic and growth and survival effects on pancreatic β-cells. Additionally, there is increasing evidence supporting an important role for GIP in the regulation of adipocyte metabolism. In the current study we examined the molecular mechanisms involved in the regulation of GIP receptor (GIPR) expression in 3T3-L1 cells. GIP acted synergistically with insulin to increase neutral lipid accumulation during progression of 3T3-L1 preadipocytes to the adipocyte phenotype. Both GIPR protein and mRNA expression increased during 3T3-L1 cell differentiation, and this increase was associated with upregulation of nuclear levels of sterol response element binding protein 1c (SREBP-1c) and peroxisome proliferator-activated receptor γ (PPARγ), as well as acetylation of histones H3/H4. The PPARγ receptor agonists LY171883 and rosiglitazone increased GIPR expression in differentiated 3T3-L1 adipocytes, whereas the antagonist GW9662 ablated expression. Additionally, both PPARγ and acetylated histones H3/H4 were shown to bind to a region of the GIPR promoter containing the peroxisome proliferator response element (PPRE). Knockdown of PPARγ in differentiated 3T3-L1 adipocytes, using RNA interference, reduced GIPR expression, supporting a functional regulatory role. Taken together, these studies show that GIP and insulin act in a synergistic manner on 3T3-L1 cell development and that adipocyte GIPR expression is upregulated through a mechanism involving interactions between PPARγ and a GIPR promoter region containing an acetylated histone region. 相似文献
11.
Ya-Ya Liu Xiao-Yan Feng Wen-Qing Jia Zhi Jing Wei-Ren Xu 《Journal of biomolecular structure & dynamics》2020,38(9):2672-2685
AbstractPeroxisome proliferator-activated receptors (PPARs) are considered important targets for the treatment of Type 2 diabetes (T2DM). To accelerate the discovery of PPAR α/γ dual agonists, the comparative molecular field analysis (CoMFA) were performed for PPARα and PPARγ, respectively. Based on the molecular alignment, highly predictive CoMFA model for PPARα was obtained with a cross-validated q2 value of 0.741 and a conventional r2 of 0.975 in the non-cross-validated partial least-squares (PLS) analysis, while the CoMFA model for PPARγ with a better predictive ability was shown with q2 and r2 values of 0.557 and 0.996, respectively. Contour maps derived from the 3D-QSAR models provided information on main factors towards the activity. Then, we carried out structural optimization and designed several new compounds to improve the predicted biological activity. To investigate the binding modes of the predicted compounds in the active site of PPARα/γ, a molecular docking simulation was carried out. Molecular dynamic (MD) simulations indicated that the predicted ligands were stable in the active site of PPARα/γ. Therefore, combination of the CoMFA and structure-based drug design results could be used for further structural alteration and synthesis and development of novel and potent dual agonists. Abbreviations DM diabetes mellitus T2DM type 2 diabetes PPARs peroxisome proliferator-activated receptors LBDD ligand based drug design 3D-QSAR three-dimensional quantitative structure activity relationship CoMFA comparative molecular field analysis PLS partial least square LOO leave-one-out q2 cross-validated correlation coefficient ONC optimal number of principal components r2 non-cross-validated correlation coefficient SEE standard error of estimate F the Fischer ratio r2pred predictive correlation coefficient DBD DNA binding domain MD molecular dynamics RMSD root-mean-square deviation RMSF root mean square fluctuations Communicated by Ramaswamy H. Sarma 相似文献
12.
Agustin Casimiro-Garcia Christopher F. Bigge Jo Ann Davis Teresa Padalino James Pulaski Jeffrey F. Ohren Patrick McConnell Christopher D. Kane Lori J. Royer Kimberly A. Stevens Bruce Auerbach Wendy Collard Christine McGregor Kun Song 《Bioorganic & medicinal chemistry》2009,17(20):7113-7125
The synthesis of a new series of phenylpropanoic acid derivatives incorporating an heteroaryl group at the α-position and their evaluation for binding and activation of PPARα and PPARγ are presented in this report. Among the new compounds, (S)-3-{4-[3-(5-methyl-2-phenyl-oxazol-4-yl)-propyl]-phenyl}-2-1,2,3-triazol-2-yl-propionic acid (17j), was identified as a potent human PPARα/γ dual agonist (EC50 = 0.013 and 0.061 μM, respectively) with demonstrated oral bioavailability in rat and dog. 17j was shown to decrease insulin levels, plasma glucose, and triglycerides in the ZDF female rat model. In the human apolipoprotein A-1/CETP transgenic mouse model 17j produced increases in hApoA1 and HDL-C and decreases in plasma triglycerides. The increased potency for binding and activation of both PPAR subtypes observed with 17j when compared to previous analogs in this series was explained based on results derived from crystallographic and modeling studies. 相似文献
13.
María del Carmen González J. Christopher Corton Russell C. Cattley Emilio Herrera Carlos Bocos 《Biochimie》2009
Fibrates are peroxisome proliferator-activated receptor alpha (PPARα) ligands used to normalize lipid and glucose parameters and exert anti-inflammatory effects. The acute-phase response (APR) is an important inflammatory process. One of the most important acute-phase proteins in rats is α2-macroglobulin (A2Mg). Whereas normal adult rats present low serum levels, pregnant rats display high amounts. Therefore, we used pregnant rats to detect the effect of fenofibrate on hepatic A2Mg expression by RT-PCR and Northern blot. Virgin rats were used as controls. The expression of other APR genes, a known fibrate-responder gene, gamma-chain fibrinogen (γ-Fib), and one gene from the same family as A2Mg, complement component 3 (C3), were also measured in liver. In order to determine whether the fibrate-effects were mediated by PPARα, wild-type mice and PPARα-null mice were also used and treated with WY-14,643 (WY) or di-2-ethylhexyl phthalate (DEHP). Fenofibrate depressed A2Mg expression in virgin rats, but expression was decreased more sharply in pregnant rats. Expression of C3 and γ-Fib was diminished after treatment only in pregnant rats. On the other hand, WY, but not DEHP, reduced A2Mg and γ-Fib expression in the livers of wild-type mice, without any effect in PPARα-null mice. WY or DEHP did not affect C3 expression. Therefore, A2Mg expression is modified by PPARα agonists not only in pregnant rats under augmented APR protein synthesis, but also in virgin rats and mice under basal conditions. Interestingly, our results also identify A2Mg as a novel PPARα agonist-regulated gene. 相似文献
14.
15.
16.
Zhan L Zhang H Zhang Q Woods CG Chen Y Xue P Dong J Tokar EJ Xu Y Hou Y Fu J Yarborough K Wang A Qu W Waalkes MP Andersen ME Pi J 《Free radical biology & medicine》2012,53(4):758-768
The nuclear factor-E2-related factor 2 (NRF2) serves as a master regulator in cellular defense against oxidative stress and chemical detoxification. However, persistent activation of NRF2 resulting from mutations in NRF2 and/or downregulation of or mutations in its suppressor, Kelch-like ECH-associated protein 1 (KEAP1), is associated with tumorigenicity and chemoresistance of non-small-cell lung carcinomas (NSCLCs). Thus, inhibiting the NRF2-mediated adaptive antioxidant response is widely considered a promising strategy to prevent tumor growth and reverse chemoresistance in NSCLCs. Unexpectedly, stable knockdown of KEAP1 by lentiviral shRNA sensitized three independent NSCLC cell lines (A549, HTB-178, and HTB-182) to multiple chemotherapeutic agents, including arsenic trioxide (As(2)O(3)), etoposide, and doxorubicin, despite moderately increased NRF2 levels. In lung adenocarcinoma epithelial A549 cells, silencing of KEAP1 augmented the expression of peroxisome proliferator-activated receptor γ (PPARγ) and genes associated with cell differentiation, including E-cadherin and gelsolin. In addition, KEAP1-knockdown A549 cells displayed attenuated expression of the proto-oncogene cyclin D1 and markers for cancer stem cells (CSCs) and reduced nonadherent sphere formation. Moreover, deficiency of KEAP1 led to elevated induction of PPARγ in response to As(2)O(3). Pretreatment of A549 cells with PPARγ agonists activated PPARγ and augmented the cytotoxicity of As(2)O(3). A mathematical model was formulated to advance a hypothesis that differential regulation of PPARγ and detoxification enzymes by KEAP1 and NRF2 may underpin the observed landscape changes in chemosensitivity. Collectively, suppression of KEAP1 expression in human NSCLC cells resulted in sensitization to chemotherapeutic agents, which may be attributed to activation of PPARγ and subsequent alterations in cell differentiation and CSC abundance. 相似文献
17.
The aim of the present study was to investigate the role of peroxisome proliferator-activated receptor γ (PPARγ) signal transduction pathway in the expression of ATP binding cassette transporter A1 (ABCA1) and acyl-CoA:cholesterol acyltransferase 1 (ACAT1) induced by visfatin and to discuss the mechanism of foam cell formation induced by visfatin. THP-1 monocytes were induced into macrophages by 160 nmol/L phorbol myristate acetate (PMA) for 48 h, and then the macrophages were exposed to visfatin and PPARγ activator rosiglitazone, respectively. The expressions of PPARγ, ABCA1 and ACAT1 mRNA and protein were determined by RT-PCR and Western blot respectively. The contents of total cholesterol (TC) and free cholesterol (FC) were detected by enzyme fluorescence analysis. The content of cholesterol ester (CE) was calculated by the difference between TC and FC. The results showed that visfatin decreased the mRNA and protein expressions of PPARγ and ABCA1, increased the mRNA and protein expressions of ACAT1, and increased the contents of FC and CE in a concentration-dependent manner. These above effects of visfatin were inhibited by rosiglitazone in a concentration-dependent manner. These results suggest that visfatin may down-regulate the ABCA1 expression and up-regulate the ACAT1 expression via PPARγ signal transduction pathway, which decreases the outflow of FC, increases the content of CE, and then induces foam cell formation. 相似文献
18.
Su Ho Han Jeong-A Park Yong-Sun Kim Ihn-Geun Choi 《Biochemical and biophysical research communications》2009,389(3):443-448
Defensins have a broad range of antimicrobial activity against bacteria, fungi, and viruses. The expression of human β-defensin-2 (hBD-2) is prevalently observed in epithelial cells and is induced by bacterial infection. Here, we have shown that the expression of the hBD-2 gene and release of hBD-2 protein into the medium is up-regulated in response to CpG-DNA in human B cell line RPMI 8226. The induction of hBD-2 was dependent on CG sequence and phosphorothioate backbone-modification. This was also confirmed in primary human lymphocytes. To shed light on the molecular mechanism involved in hBD-2 induction by CpG-DNA, we examined the contribution of the NF-κB signaling pathway in RPMI 8226 cells. Suppression of MyD88 function and inhibition of NF-κB nuclear localization blocked hBD-2 induction. The NF-κB pathway inhibitors also abolished hBD-2 induction. These results may contribute to a better understanding on the therapeutic effects of CpG-DNA against infectious diseases. 相似文献
19.
Functional analysis of the chicken PPARγ gene 5'-flanking region and C/EBPα-mediated gene regulation
Ding N Gao Y Wang N Li H 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2011,158(4):297-303
Peroxisome proliferator-activated receptor-γ (PPARγ) and CCAAT/enhancer binding protein-α (C/EBPα) are the master regulators of adipogenesis. The regulatory mechanism of PPARγ and C/EBPα gene expression is clear in mammals, however, little is known in chicken. The aim of the present study was to characterize chicken PPARγ promoter and investigate whether PPARγ could be regulated by C/EBPα in chickens. A 2-kb nucleotide sequence upstream of the start codon of chicken PPARγ gene was cloned and characterized by using bioinformatics and experimental approaches. This 2-kb promoter region exhibited strong promoter activity in DF1 cells. The reporter gene assay showed that the chicken C/EBPα could activate PPARγ gene promoter. Further study by electrophoretic mobility shift assay and mutational analysis revealed that the chicken C/EBPα could directly bind to and regulate the PPARγ gene promoter. Our results demonstrate that PPARγ can be directly regulated by C/EBPα in chickens. 相似文献