首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Lin Y  Page DC 《Developmental biology》2005,288(2):309-316
Genes of the DAZ family play critical roles in germ cell development in mammals and other animals. In mice, Dazl mRNA is first observed at embryonic day 11.5 (E11.5), but previous studies using Dazl-deficient mice of mixed genetic background have largely emphasized postnatal spermatogenic defects. Using an inbred C57BL/6 background, we show that Dazl is required for embryonic development and survival of XY germ cells. By E14.5, expression of germ cell markers (Mvh, Oct4, Dppa3/Stella, GCNA and MVH protein) was reduced in XY Dazl-/- gonads. By E15.5, most remaining germ cells in XY Dazl-/- embryos exhibited apoptotic morphology, and XY Dazl-/- gonads contained increased numbers of TUNEL-positive cells. The rare XY Dazl-/- germ cells that persisted until birth maintained a nuclear morphology that resembled that of wildtype germ cells at E12.5-E13.5, a critical developmental period when XY germ cells lose pluripotency and commit to a spermatogonial fate. We propose that Dazl is required as early as E12.5-E13.5, shortly after its expression is first detected, and that inbred Dazl-/- mice of C57BL/6 background provide a reproducible standard for exploring Dazl's roles in embryonic germ cell development.  相似文献   

6.
The kidney, the metanephros, is formed by reciprocal interactions between the metanephric mesenchyme and the ureteric bud, the latter of which is derived from the Wolffian duct that elongates in the rostral-to-caudal direction. Sall1 expressed in the metanephric mesenchyme is essential for ureteric bud attraction in kidney development. Sall4, another member of the Sall gene family, is required for maintenance of embryonic stem cells and establishment of induced pluripotent stem cells, and is thus considered to be one of the stemness genes. Sall4 is also a causative gene for Okihiro syndrome and is essential for the formation of many organs in both humans and mice. However, its expression and role in kidney development remain unknown, despite the essential role of Sall1 in the metanephric mesenchyme. Here, we report that mouse Sall4 is expressed transiently in the Wolffian duct-derived lineage, and is nearly complementary to Sall1 expression. While Sall4 expression is excluded from the Wolffian duct at embryonic (E) day 9.5, Sall4 is expressed in the Wolffian duct weakly in the mesonephric region at E10.5 and more abundantly in the caudal metanephric region where ureteric budding occurs. Sall4 expression is highest at E11.5 in the Wolffian duct and ureteric bud, but disappears by E13.5. We further demonstrate that Sall4 deletion in the Wolffian duct and ureteric bud does not cause any apparent kidney phenotypes. Therefore, Sall4 is expressed transiently in the caudal Wolffian duct and the ureteric bud, but is dispensable for kidney development in mice.  相似文献   

7.
Septation of the single tubular embryonic outflow tract into two outlet segments in the heart requires the precise integration of proliferation, differentiation and apoptosis during remodeling. Lack of proper coordination between these processes would result in a variety of congenital cardiac defects such as those seen in the retinoid X receptor alpha knockout (Rxra(-/-)) mouse. Rxra(-/-) embryos exhibit lethality between embryonic day (E) 13.5 and 15.5 and harbor a variety of conotruncal and aortic sac defects making it an excellent system to investigate the molecular and morphogenic causes of these cardiac malformations. At E12.5, before the embryonic lethality, we found no qualitative difference between wild type and Rxra(-/-) proliferation (BrdU incorporation) in outflow tract cushion tissue but a significant increase in apoptosis as assessed by both TUNEL labeling in paraffin sections and caspase activity in trypsin-dispersed hearts. Additionally, E12.5 embryos demonstrated elevated levels of transforming growth factor beta2 (TGFbeta2) protein in multiple cell lineages in the heart. Using a whole-mouse-embryo culture system, wild-type E11.5 embryos treated with TGFbeta2 protein for 24 hours displayed enhanced apoptosis in both the sinistroventralconal cushion and dextrodorsalconal cushion in a manner analogous to that observed in the Rxra(-/-). TGFbeta2 protein treatment also led to malformations in both the outflow tract and aortic sac. Importantly, Rxra(-/-) embryos that were heterozygous for a null mutation in the Tgfb2 allele exhibited a partial restoration of the elevated apoptosis and of the malformations. This was evident at both E12.5 and E13.5. The data suggests that elevated levels of TGFbeta2 can (1) contribute to abnormal outflow tract morphogenesis by enhancing apoptosis in the endocardial cushions and (2) promote aortic sac malformations by interfering with the normal development of the aorticopulmonary septum.  相似文献   

8.
Six1 is required for the early organogenesis of mammalian kidney   总被引:12,自引:0,他引:12  
  相似文献   

9.
Recent work indicates that thyroid hormone receptor-associated protein 220 (TRAP220), a subunit of the multiprotein TRAP coactivator complex, is essential for embryonic survival. We have generated TRAP220 conditional null mice that are hypomorphic and express the gene at reduced levels. In contrast to TRAP220 null mice, which die at embryonic d 11.5 (E11.5), hypomorphic mice survive until E13.5. The reduced expression in hypomorphs results in hepatic necrosis, defects in hematopoiesis, and hypoplasia of the ventricular myocardium, similar to that observed in TRAP220 null embryos at an earlier stage. The embryonic lethality of null embryos at E11.5 is due to placental insufficiency. Tetraploid aggregation assays partially rescues embryonic development until E13.5, when embryonic loss occurs due to hepatic necrosis coupled with poor myocardial development as observed in hypomorphs. These findings demonstrate that, for normal placental function, there is an absolute requirement for TRAP220 in extraembryonic tissues at E11.5, with an additional requirement in embryonic tissues for hepatic and cardiovascular development thereafter.  相似文献   

10.
Avian kidneys have loopless and looped nephrons; a countercurrent multiplier mechanism operates in the latter by NaCl recycling. We identified an aquaporin-2 (AQP2) homolog in apical/subapical regions of cortical and medullary collecting duct (CD) cells in kidneys of Japanese quail (q), Coturnix japonica. We investigated whether undernutrition during the embryonic/maturation period retards kidney and AQP2 development in quail and programs impaired volume regulation in adults. Protocols included 1) time course and 2) effects of 5-10% egg white withdrawal (EwW) or 48-h post-hatch food deprivation (FD) on nephron growth and qAQP2 mRNA expression, and 3) effects of EwW and FD on qAQP2 mRNA responses to 72-h water deprivation in adults. In metanephric kidneys, qAQP2 mRNA is expressed in medullary CDs at embryonic day 10; distribution and intensity increase during maturation. The number and size of glomeruli continue to increase after birth, whereas nephrogenic zones decrease. In EwW embryos, qAQP2 mRNA expression is initially delayed, then restored; birth weight and hatching rate are lower than in controls. Adults from EwW embryos and FD chicks have fewer (P < 0.01) glomeruli. Water deprivation reduces body weight more in EwW birds than in controls. The results suggest that qAQP2 evolved in metanephric kidneys and that undernutrition may retard nephrogenesis, leading to impaired adult water homeostasis.  相似文献   

11.
Collectrin/tmem27 encodes a transmembrane protein that plays a critical role in amino-acid transport. Originally described as being expressed only in collecting ducts, it has subsequently also been shown to also be expressed in the S1 segment of the proximal tubule of mammalian metanephric nephrons. In this report we describe the expression of collectrin in the simple embryonic kidney of amphibians, the pronephros. Each pronephros contains a single large nephron with a proximo-distal segmentation very similar to that of mammalian metanephric nephrons. Analysis of collectrin expression in pronephroi at a variety of embryonic stages indicates that this gene is expressed at very high levels throughout the pronephric system, including proximal and distal segments and the Wolffian duct. Expression in the pronephros commences at Xenopus embryonic stage 28 which corresponds to when epithelialization begins within the pronephric mesenchyme. Like the Na+K+ATPase/atp1a1, another highly expressed pronephric marker, collectrin is also expressed in the cloaca but not in the cloacal derived posterior segment of the Wolffian duct, the rectal diverticulum. Unlike the Na+K+ATPase, which is expressed at lower levels in proximal portions of the pronephric nephron, expression of collectrin is even throughout all of the pronephric epithelia. This expression domain extends far beyond that shown to express amino-acid transporters and indicates collectrin may function in facilitating additional transport processes. Its high level of expression and broad distribution make it an excellent marker with which to examine pronephric kidney development.  相似文献   

12.
13.
The number of nephrons, the functional units of the kidney, varies among individuals. A low nephron number at birth is associated with a risk of hypertension and the progression of renal insufficiency. The molecular mechanisms determining nephron number during embryogenesis have not yet been clarified. Germline knockout of bone morphogenetic protein 7 (Bmp7) results in massive apoptosis of the kidney progenitor cells and defects in early stages of nephrogenesis. This phenotype has precluded analysis of Bmp7 function in the later stage of nephrogenesis. In this study, utilization of conditional null allele of Bmp7 in combination with systemic inducible Cre deleter mice enabled us to analyze Bmp7 function at desired time points during kidney development, and to discover the novel function of Bmp7 to inhibit the precocious differentiation of the progenitor cells to nephron. Systemic knockout of Bmp7 in vivo after the initiation of kidney development results in the precocious differentiation of the kidney progenitor cells to nephron, in addition to the prominent apoptosis of progenitor cells. We also confirmed that in vitro knockout of Bmp7 in kidney explant culture results in the accelerated differentiation of progenitor population. Finally we utilized colony-forming assays and demonstrated that Bmp7 inhibits epithelialization and differentiation of the kidney progenitor cells. These results indicate that the function of Bmp7 to inhibit the precocious differentiation of the progenitor cells together with its anti-apoptotic effect on progenitor cells coordinately maintains renal progenitor pool in undifferentiated status, and determines the nephron number at birth.  相似文献   

14.
The TGFbeta superfamily plays diverse and essential roles in kidney development. Gdf11 and Bmp4 are essential for outgrowth and positioning of the ureteric bud, the inducer of metanephric mesenchyme. During nephrogenesis, Bmp7 is required for renewal of the mesenchyme progenitor population. Additionally, in vitro studies demonstrate inhibitory effects of BMPs and TGFbetas on collecting duct branching and growth. Here, we explore the predicted models of TGFbeta superfamily function by cell-specific inactivation of Smad4, a key mediator of TGFbeta signaling. Using a HoxB7cre transgene expressed in ureteric bud and collecting duct, we find that development of the collecting duct is Smad4 independent. By contrast, removal of Smad4 in nephrogenic mesenchyme using the Bmp7(cre/+) allele leads to disorganization of the nephrogenic mesenchyme and impairment of mesenchyme induction. Smad4-deficient metanephric mesenchyme does not display defects in inducibility in LiCl or spinal cord induction assays. However, in situ hybridization and lineage analysis of Smad4 null mesenchyme cells at E11.5 show that the nephrogenic mesenchyme does not aggregate tightly around the ureteric bud tips, but remains loosely associated, embedded within a population of cells expressing markers of both nephrogenic mesenchyme and peripheral stroma. We conclude that the failure of recruitment of nephrogenic mesenchyme leaves a primitive population of mesenchyme at the periphery of the kidney. This population is gradually depleted, and by E16.5 the periphery is composed of cells of stromal phenotype. This study uncovers a novel role for TGFbeta superfamily signaling in the recruitment and/or organization of the nephrogenic mesenchyme at early time-points of kidney development. Additionally, we present conclusive genetic lineage mapping of the collecting duct and nephrogenic mesenchyme.  相似文献   

15.
16.
17.
Summary The aim of our study was to localize phenolsulphotransferase (PST) in the developing mesonephric and metanephric kidneys of the human embryo and fetus using immunohistochemical methods with an antibody preparation recognizing members of the human phenolsulphotransferase enzyme family. In embryonic and early fetal development of the metanephric kidney, PST is located primarily in derivatives of the ureteric bud such as the ureter, pelvis, calyces and collecting ducts. This predominance declines by mid-fetal life: first, as nephrons evolve and develop they become increasingly PST-immunoreactive such that in mature metanephric kidney, the proximal tubules are highly PST-reactive, with other elements of the nephron also immunopositive (albeit at lower reactivities) and secondly, with the formation of an immunonegative transitional epithelium in ureter, pelvis and calyces, the reactivity retained in collecting ducts is only a small proportion of the total. The distribution of PST immunoreactivity is relatively uniform in proximal tubular cells throughout development, in contrast to collecting ducts, where, in fetal life, this reactivity is displaced to apices and bases by intracellular glycogen deposits. Mesonephric kidney tubules and the mesonephric duct are PST-immunoreactive and although mesonephric immunopositivity overlaps with that in the developing metanephric kidney the renal contribution to sulphation is absent or low at a time when the developing conceptus is most vulnerable to the potential toxic effects of teratogens.  相似文献   

18.
19.
The hepatocyte growth factor (HGF) is a pleiotropic cytokine whose action is mediated by c-met, a glycoproteic receptor with tyrosine kinase activity which transduces its multiple biological activities including cell proliferation, motility and differentiation. During embryonic development HGF acts as a morphogenetic factor as previously demonstrated for metanephric and lung development. Recently, culturing male genital ridges, we demonstrated that HGF is able to support in vitro testicular cord formation. In the present paper we report the expression pattern of the HGF gene during embryonic testis development and the multiple roles exerted by this factor during the morphogenesis of this organ. Northern blot analysis reveals a positive signal in urogenital ridges isolated from 11.5 days post coitum (dpc) embryos and in testes isolated from 13.5 and 15.5 dpc male embryos. On the contrary HGF mRNA is undetectable in ovaries isolated from 13.5 and 15.5 dpc embryos. Moreover, we demonstrate that HGF is synthesized and secreted by the male gonad and is biologically active. These data indicate a male specific biological function of HGF during embryonic gonadal development. This hypothesis is supported by the in vitro demonstration that HGF acts as a migratory factor for male mesonephric cells which is a male specific event. In addition we demonstrate that during testicular development, HGF acts as a morphogenetic factor able to reorganize dissociated testicular cells which, under HGF stimulation, form a tridimensional network of cord-like structures. Finally, we demonstrate that HGF induces testicular cell proliferation in this way being responsible for the size increase of the testis. All together the data presented in this paper demonstrate that HGF is expressed during the embryonic development of the testis and clarify the multiple roles exerted by this factor during the morphogenesis of the male gonad.  相似文献   

20.
In the vertebrate embryo, development of the excretory system is characterized by the successive formation of three distinct kidneys: the pronephros, mesonephros, and metanephros. While tubulogenesis in the metanephric kidney is critically dependent on the signaling molecule Wnt-4, it is unknown whether Wnt signaling is equally required for the formation of renal epithelia in the other embryonic kidney forms. We therefore investigated the expression of Wnt genes during the pronephric kidney development in Xenopus. Wnt4 was found to be associated with developing pronephric tubules, but was absent from the pronephric duct. Onset of pronephric Wnt-4 expression coincided with mesenchyme-to-epithelium transformation. To investigate Wnt-4 gene function, we performed gain- and loss-of-function experiments. Misexpression of Wnt4 in the intermediate and lateral mesoderm caused abnormal morphogenesis of the pronephric tubules, but was not sufficient to initiate ectopic tubule formation. We used a morpholino antisense oligonucleotide-based gene knockdown strategy to disrupt Wnt-4 gene function. Xenopus embryos injected with antisense Wnt-4 morpholinos developed normally, but marker gene and morphological analysis revealed a complete absence of pronephric tubules. Pronephric duct development was largely unaffected, indicating that ductogenesis may occur normally in the absence of pronephric tubules. Our results show that, as in the metanephric kidney, Wnt-4 is critically required for tubulogenesis in the pronephric kidney, indicating that a common, evolutionary conserved gene regulatory network may control tubulogenesis in different vertebrate excretory organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号