首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Short-chain fatty acids (SCFAs) are the major by-products of bacterial fermentation of undigested dietary fibers in the large intestine. SCFAs, mostly propionate and butyrate, inhibit proliferation and induce apoptosis in colon cancer cells, but clinical trials had mixed results regarding the anti-tumor activities of SCFAs. Herein we demonstrate that propionate and butyrate induced autophagy in human colon cancer cells to dampen apoptosis whereas inhibition of autophagy potentiated SCFA induced apoptosis. Colon cancer cells, after propionate treatment, exhibited extensive characteristics of autophagic proteolysis: increased LC3-I to LC3-II conversion, acidic vesicular organelle development, and reduced p62/SQSTM1 expression. Propionate-induced autophagy was associated with decreased mTOR activity and enhanced AMP kinase activity. The elevated AMPKα phosphorylation was associated with cellular ATP depletion and overproduction of reactive oxygen species due to mitochondrial dysfunction involving the induction of MPT and loss of Δψ. In this context, mitochondria biogenesis was initiated to recover cellular energy homeostasis. Importantly, when autophagy was prevented either pharmacologically (3-MA or chloroquine) or genetically (knockdown of ATG5 or ATG7), the colon cancer cells became sensitized toward propionate-induced apoptosis through activation of caspase-7 and caspase-3. The observations indicate that propionate-triggered autophagy serves as an adaptive strategy for retarding mitochondria-mediated apoptotic cell death, whereas application of an autophagy inhibitor (Chloroquine) is expected to enhance the therapeutic efficacy of SCFAs in inducing colon tumor cell apoptosis.  相似文献   

2.
赵萍  王攀  王筱冰 《生命科学》2011,(4):329-334
程序性细胞死亡(programmed cell death,PCD)是指由基因控制的细胞自主的有序性死亡方式,涉及一系列基因的激活、表达以及调控等。目前,经典细胞凋亡被称为Ⅰ型PCD,而自噬性细胞死亡称为Ⅱ型PCD,坏死样程序性细胞死亡则被称为Ⅲ型PCD,它们在肿瘤的发生、发展及治疗过程中起非常重要的作用。该文结合国内外最新研究进展主要针对不同细胞死亡模式及其相互作用、关键作用蛋白,细胞自噬与肿瘤发生,细胞自噬、凋亡与肿瘤治疗作一简要综述,并展望发展前景,提出在肿瘤治疗中如何利用不同死亡模式的协同作用最大限度地发挥其临床应用价值。  相似文献   

3.
Short-chain fatty acids (SCFAs) have been demonstrated to induce differentiation and/or apoptosis in colon cancer cells. A close correlation between tissue transglutaminase (tTG) expression and differentiation and/or apoptosis has been suggested in many cell lineages. However, the effects of SCFAs on tTG expression in colon cancer cells have not yet been reported. In this report, the relationship between cytosolic tTG levels and differentiation state was investigated in six human colon cancer cell lines. Effects of four kinds of SCFAs (acetate, propionate, n-butyrate, and isobutyrate) on the expression of tTG then were investigated in association with their effects on apoptosis induction. High expression of tTG protein and mRNA were found in SW480 and WiDr cell lines, which exhibited well differentiated phenotypes. tTG expression was hardly detectable in the less differentiated cell lines COLO201, COLO320DM, and CW-2. However, n-butyrate and propionate significantly increased cytosolic tTG levels at concentrations above 0.5 mM in these less differentiated colon cancer cells. n-Butyrate and propionate induced growth suppression and apoptosis in these cell lines at concentrations that can induce tTG expression. Acetate and isobutyrate did not induce tTG expression or growth suppression at concentrations up to 8 mM. In conclusion, tTG induction by propionate and n-butyrate was suggested to be closely linked to their differentiation- and apoptosis-inducing effects in colon cancer cells. These findings may explain the mechanisms by which dietary fiber show preventive effects against colon carcinogenesis.  相似文献   

4.
Programmed cell death (PCD), referring to apoptosis, autophagy and programmed necrosis, is proposed to be death of a cell in any pathological format, when mediated by an intracellular program. These three forms of PCD may jointly decide the fate of cells of malignant neoplasms; apoptosis and programmed necrosis invariably contribute to cell death, whereas autophagy can play either pro‐survival or pro‐death roles. Recent bulk of accumulating evidence has contributed to a wealth of knowledge facilitating better understanding of cancer initiation and progression with the three distinctive types of cell death. To be able to decipher PCD signalling pathways may aid development of new targeted anti‐cancer therapeutic strategies. Thus in this review, we present a brief outline of apoptosis, autophagy and programmed necrosis pathways and apoptosis‐related microRNA regulation, in cancer. Taken together, understanding PCD and the complex interplay between apoptosis, autophagy and programmed necrosis may ultimately allow scientists and clinicians to harness the three types of PCD for discovery of further novel drug targets, in the future cancer treatment.  相似文献   

5.
Autophagy, a lysosomal degradation pathway for cellular constituents and organelles, is an adaptive and essential process required for cellular homeostasis. Although autophagy functions as a survival mechanism in response to cellular stressors such as nutrient or growth factor deprivation, it can also lead to a non-apoptotic form of programmed cell death (PCD) called autophagy-induced cell death or autophagy-associated cell death (type II PCD). Current evidence suggests that cell death through autophagy can be induced as an alternative to apoptosis (type I PCD), with therapeutic purpose in cancer cells that are resistant to apoptosis. Thus, modulating autophagy is of great interest in cancer research and therapy. Natural polyphenolic compounds that are present in our diet, such as rottlerin, genistein, quercetin, curcumin, and resveratrol, can trigger type II PCD via various mechanisms through the canonical (Beclin-1 dependent) and non-canonical (Beclin-1 independent) routes of autophagy. The capacity of these compounds to provide a means of cancer cell death that enhances the effects of standard therapies should be taken into consideration for designing novel therapeutic strategies. This review focuses on the autophagy- and cell death-inducing effects of these polyphenolic compounds in cancer.  相似文献   

6.
7.
The short-chain and n-3 polyunsaturated fatty acids exhibit anticancer properties, and they may mutually interact within the colon. However, the molecular mechanisms of their action in colon cancer cells are still not fully understood. Our study focused on the mechanisms responsible for the diverse effects of sodium butyrate (NaBt), in particular when interacting with docosahexaenoic acid (DHA), in distinct colon cancer cell types, in which NaBt either induces cell differentiation or activates programmed cell death involving mitochondrial pathway. NaBt activated autophagy both in HT-29 cells, which are sensitive to induction of differentiation, and in nondifferentiating HCT-116 cells. However, autophagy supported cell survival only in HT-29 cells. Combination of NaBt with DHA-promoted cell death, especially in HCT-116 cells and after longer time intervals. The inhibition of autophagy both attenuated differentiation and enhanced apoptosis in HT-29 cells treated with NaBt and DHA, but it had no effect in HCT-116 cells. NaBt, especially in combination with DHA, activated PPARγ in both cell types. PPARγ silencing decreased differentiation and increased apoptosis only in HT-29 cells, therefore we verified the role of caspases in apoptosis, differentiation and also PPARγ activity using a pan-caspase inhibitor. In summary, our data suggest that diverse responses of colon cancer cells to fatty acids may rely on their sensitivity to differentiation, which may in turn depend on distinct engagement of autophagy, caspases and PPARγ. These results contribute to understanding of mechanisms underlying differential effects of NaBt, when interacting with other dietary fatty acids, in colon cancer cells.  相似文献   

8.
《Autophagy》2013,9(6):660-661
Eukaryotic elongation factor-2 (eEF-2) kinase, also known as calmodulin-dependent protein kinase III, is a unique calcium/calmodulin-dependent enzyme. eEF-2 kinase can act as a negative regulator of protein synthesis and a positive regulator of autophagy under environmental or metabolic stresses. Akt, a key downstream effector of the PI3K signaling pathway that regulates cell survival and proliferation, is an attractive therapeutic target for anticancer treatment. Akt inhibition leads to activation of both apoptosis, type I programmed cell death and autophagy, a cellular degradation process via lysosomal machinery (also termed type II programmed cell death). However, the underlying mechanisms that dictate functional relationship between autophagy and apoptosis in response to Akt inhibition remain to be delineated. Our recent study demonstrated that inhibition of eEF-2 kinase can suppress autophagy but promote apoptosis in tumor cells subjected to Akt inhibition, indicating a role of eEF-2 kinase as a controller in the crosstalk between autophagy and apoptosis. Furthermore, inhibition of eEF-2 kinase can reinforce the efficacy of a novel Akt inhibitor, MK-2206, against human glioma. These findings may help optimize the use of Akt inhibitors in the treatment of cancer and other diseases.  相似文献   

9.
Cheng Y  Yan L  Ren X  Yang JM 《Autophagy》2011,7(6):660-661
Eukaryotic elongation factor-2 (eEF-2) kinase, also known as calmodulin-dependent protein kinase III, is a unique calcium/calmodulin-dependent enzyme. eEF-2 kinase can act as a negative regulator of protein synthesis and a positive regulator of autophagy under environmental or metabolic stresses. Akt, a key downstream effector of the PI3K signaling pathway that regulates cell survival and proliferation, is an attractive therapeutic target for anticancer treatment. Akt inhibition leads to activation of both apoptosis, type I programmed cell death and autophagy, a cellular degradation process via lysosomal machinery (also termed type II programmed cell death). However, the underlying mechanisms that dictate functional relationship between autophagy and apoptosis in response to Akt inhibition remain to be delineated. Our recent study demonstrated that inhibition of eEF-2 kinase can suppress autophagy but promote apoptosis in tumor cells subjected to Akt inhibition, indicating a role of eEF-2 kinase as a controller in the crosstalk between autophagy and apoptosis. Furthermore, inhibition of eEF-2 kinase can reinforce the efficacy of a novel Akt inhibitor, MK-2206, against human glioma. These findings may help optimize the use of Akt inhibitors in the treatment of cancer and other diseases.  相似文献   

10.
Colorectal cancer is the most abundant cause of cancer mortality in the Western world. Nutrition and the microbial flora are considered to have a marked influence on the risk of colorectal cancer, the formation of butyrate and other short-chain fatty acids (SCFAs) possibly playing a major role as chemopreventive products of microbial fermentation in the colon. In this study, we investigated the effects of butyrate, other SCFAs, and of a number of phenolic SCFA and trans-cinnamic acid derivatives formed during the intestinal degradation of polyphenolic constituents of fruits and vegetables on global histone deacetylase (HDAC) activity in nuclear extracts from colon carcinoma cell cultures using tert-butoxycarbonyl-lysine (acetylated)-4-amino-7-methylcoumarin (Boc-Lys(Ac)-AMC) as substrate. Inhibition of HDAC activity, e.g., by butyrate, is related to a suppression of malignant transformation and a stimulation of apoptosis of precancerous colonic cells. In nuclear extracts from HT-29 human colon carcinoma cells, butyrate was found to be the most potent HDAC inhibitor (IC(50)=0.09 mM), while other SCFAs such as propionate were less potent. In the same assay, p-coumaric acid (IC(50)=0.19 mM), 3-(4-OH-phenyl)-propionate (IC(50)=0.62 mM) and caffeic acid (IC(50)=0.85 mM) were the most potent HDAC inhibitors among the polyphenol metabolites tested. Interestingly, butyrate was also the most potent HDAC inhibitor in a whole-cell HeLa Mad 38-based reporter gene assay, while all polyphenol metabolites and all other SCFAs tested were much less potent; some were completely inactive. The findings suggest that butyrate plays an outstanding role as endogenous HDAC inhibitor in the colon, and that other SCFAs and HDAC-inhibitory polyphenol metabolites present in the colon seem to play a much smaller role, probably because of their limited levels, their marked cytotoxicity and/or their limited intracellular availability.  相似文献   

11.
《Autophagy》2013,9(3):353-365
The traditional treatments for fibrosarcoma have limited efficacy. Therefore, new therapeutic strategies and/or new adjuvant drugs still need to be explored. Accumulating evidence indicates that programmed cell death (PCD) is closely related to anticancer therapy. Many studies have shown that tumor cells treated with anticancer drugs experience the induction of type I PCD, apoptosis, and type II PCD, autophagy. In the present study, we investigated the anticancer effects of ionizing radiation (IR) combined with arsenic trioxide (ATO) in human fibrosarcoma cells in vitro and in xenograft tumors in SCID mice in vivo. We found that IR increased the population of HT1080 cells in the G2/M phase in a time-dependent manner within 9 h. IR treatment combined with ATO at this time point induced a significantly prolonged G2/M arrest and consequently enhanced cell death. Furthermore, damage of mitochondria membrane potential could be involved in the underlying mechanisms. The enhanced cytotoxic effect of combined treatment occurred due to the increased induction of more autophagy and apoptosis through the inhibition of Akt and the activation of ERK1/2 signaling pathways in HT1080 cells. The combined treatment of HT1080 cells pretreated with Z-VAD or 3-MA resulted in a significant reduction in AO-positive cells, apoptotic cells and cytotoxicity. In in vivo studies, the combination of IR and ATO significantly reduced the tumor volume in SCID mice that had received a subcutaneous injection of HT1080 cells. The data suggest that a combination of IR and ATO could be a new potential therapeutic strategy for the treatment of fibrosarcoma.  相似文献   

12.
Apoptosis is a morphologically defined form of programmed cell death (PCD) that is mediated by the activation of members of the caspase family. Analysis of death-receptor signaling in lymphocytes has revealed that caspase-dependent signaling pathways are also linked to cell death by nonapoptotic mechanisms, indicating that apoptosis is not the only form of PCD. Under physiological and pathological conditions, cells demonstrate a high degree of flexibility in cell-death responses, as is reflected in the existence of a variety of mechanisms, including necrosis-like PCD, autophagy (or type II PCD), and accidental necrosis. In this review, we discuss recent data suggesting that canonical apoptotic pathways, including death-receptor signaling, control caspase-dependent and -independent cell-death pathways.  相似文献   

13.
During Chinese hamster ovary (CHO) cell culture for foreign protein production, cells are subjected to programmed cell death (PCD). A rapid death at the end of batch culture is accelerated by nutrient starvation. In this study, type II PCD, autophagy, as well as type I PCD, apoptosis, was found to take place in two antibody-producing CHO cell lines, Ab1 and Ab2, toward the end of batch culture when glucose and glutamine were limiting. The evidence of autophagy was observed from the accumulation of a common autophagic marker, a 16 kDa form of LC3-II during batch culture. Moreover, a significant percentage of the total cells (80% of Ab1 cells and 86% of Ab2 cells) showed autophagic vacuoles containing cytoplasmic material by transmission electron microscopy. An increased level of PARP cleavage and chromosomal DNA fragmentation supported that starvation-induced apoptosis also occurred simultaneously with autophagy.  相似文献   

14.
Upon nutrient depletion during recombinant Chinese hamster ovary (rCHO) cell batch culture, cells are subjected to apoptosis, type I programmed cell death (PCD), and autophagy which can be type II PCD or a cell survival mechanism. To investigate the effect of nutrient supplementation on the two PCDs and protein production in rCHO cells, an antibody-producing rCHO cell line was cultivated in batch and fed-batch modes. The feed medium containing glucose, amino acids, and vitamins was determined through flask culture tests and used in bioreactor cultures. In the bioreactor cultures, the nutrient feedings extended the culture longevity and enhanced antibody production. In addition, cells in the fed-batch culture showed delayed onset of both apoptosis and autophagy, compared with those in the batch culture. The inhibition of apoptosis was demonstrated by a decreased amount of cleaved caspase-7 protein and less fragmentation of chromosomal DNA. Concurrently, reduced LC3 conversion, from LC3-I to LC3-II, was observed in cells that received the feeds. Cultivation with pharmacological autophagy inducer (rapamycin) or inhibitor (bafilomycin A1) indicated that autophagy is necessary for the cells to survive under nutrient depletion. Taken together, the delayed and relieved cell death by nutrient supplementation could improve antibody production.  相似文献   

15.
MS-275 is a synthetic benzamide derivative of the histone deacetylase inhibitor and is currently in phase I/II clinical trials. Many reports have shown that the anti-tumor activity of MS-275 in several types of cancer is mainly attributable to its capacity to induce the apoptotic death of tumor cells. It remains unclear if autophagy is involved in MS-275 treatment of cancer cells. Here, we first show that MS-275 induces human colon cancer cell HCT116 autophagy as well as apoptosis. Short-term treatment (24h) induced HCT116 cells to undergo autophagy with dependence on intracellular reactive oxygen species production and ERK activation. The activated reactive oxygen species/ERK signal promoted Atg7 protein expression, which triggered MS-275-induced cancer cell autophagy. However, after prolonged treatment with MS-275 (over 48h), autophagic cells turned apoptotic, which was also dependent on reactive oxygen species generation. Interestingly, we found that p38 MAP kinase played a vital role in the switch from autophagy to apoptosis in MS-275-induced human colon cancer cells. High expression of p38 induced cell autophagy, but low expression resulted in apoptosis. In addition, observations in vivo are strongly consistent with the in vitro results. Therefore, these findings extend our understanding of the action of MS-275 in inducing cancer cell death and suggest that it may be a promising clinical chemotherapeutic agent with multiple effects.  相似文献   

16.
《Autophagy》2013,9(5):509-524
We investigated the cell-death mechanisms induced in esophageal cancer cells in response to the chemotherapeutic drugs, 5-fluorouracil (5-FU) and cisplatin. Chemosensitive cell lines exhibited apoptosis whereas chemoresistant populations exhibited autophagy and a morphology resembling type II programmed cell death (PCD). Cell populations that respond with autophagy are more resistant and will recover following withdrawal of the chemotherapeutic agents. Specific inhibition of early autophagy induction with siRNA targeted to Beclin 1 and ATG7 significantly enhanced the effect of 5-FU and reduced the recovery of drug-treated cells. Pharmacological inhibitors of autophagy were evaluated for their ability to improve chemotherapeutic effect. The PtdIns 3-kinase inhibitor 3-methyladenine did not enhance the cytotoxicity of 5-FU. Disruption of lysosomal activity with bafilomycin A1 or chloroquine caused extensive vesicular accumulation but did not improve chemotherapeutic effect. These observations suggest that an autophagic response to chemotherapy is a survival mechanism that promotes chemoresistance and recovery and that selective inhibition of autophagy regulators has the potential to improve chemotherapeutic regimes. Currently available indirect inhibitors of autophagy are, however, ineffective at modulating chemosensitivity in these esophageal cancer cell lines.  相似文献   

17.
Programmed cell death is an important process during development that serves to remove superfluous cells and tissues, such as larval organs during metamorphosis, supernumerary cells during nervous system development, muscle patterning and cardiac morphogenesis. Different kinds of cell death have been observed and were originally classified based on distinct morphological features: (1) type I programmed cell death (PCD) or apoptosis is recognized by cell rounding, DNA fragmentation, externalization of phosphatidyl serine, caspase activation and the absence of inflammatory reaction, (2) type II PCD or autophagy is characterized by the presence of large vacuoles and the fact that cells can recover until very late in the process and (3) necrosis is associated with an uncontrolled release of the intracellular content after cell swelling and rupture of the membrane, which commonly induces an inflammatory response. In this review, we will focus exclusively on developmental cell death by apoptosis and its role in tissue remodeling.  相似文献   

18.
We investigated the cell-death mechanisms induced in esophageal cancer cells in response to the chemotherapeutic drugs, 5-fluorouracil (5-FU) and cisplatin. Chemosensitive cell lines exhibited apoptosis whereas chemoresistant populations exhibited autophagy and a morphology resembling type II programmed cell death (PCD). Cell populations that respond with autophagy are more resistant and will recover following withdrawal of the chemotherapeutic agents. Specific inhibition of early autophagy induction with siRNA targeted to Beclin 1 and ATG7 significantly enhanced the effect of 5-FU and reduced the recovery of drug-treated cells. Pharmacological inhibitors of autophagy were evaluated for their ability to improve chemotherapeutic effect. The PtdIns 3-kinase inhibitor 3-methyladenine did not enhance the cytotoxicity of 5-FU. Disruption of lysosomal activity with bafilomycin A 1 or chloroquine caused extensive vesicular accumulation but did not improve chemotherapeutic effect. These observations suggest that an autophagic response to chemotherapy is a survival mechanism that promotes chemoresistance and recovery and that selective inhibition of autophagy regulators has the potential to improve chemotherapeutic regimes. Currently available indirect inhibitors of autophagy are, however, ineffective at modulating chemosensitivity in these esophageal cancer cell lines.  相似文献   

19.
Autophagy has been implicated in both cell survival and programmed cell death (PCD), and this may explain the apparently complex role of this catabolic process in tumourigenesis. Our previous studies have shown that caspases have little influence on Drosophila larval midgut PCD, whereas inhibition of autophagy severely delays midgut removal. To assess upstream signals that regulate autophagy and larval midgut degradation, we have examined the requirement of growth signalling pathways. Inhibition of the class I phosphoinositide-3-kinase (PI3K) pathway prevents midgut growth, whereas ectopic PI3K and Ras signalling results in larger cells with decreased autophagy and delayed midgut degradation. Furthermore, premature induction of autophagy is sufficient to induce early midgut degradation. These data indicate that autophagy and the growth regulatory pathways have an important relationship during midgut PCD. Despite the roles of autophagy in both survival and death, our findings suggest that autophagy induction occurs in response to similar signals in both scenarios.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号