首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Ciguatoxins are a family of marine toxins composed of transfused polycyclic ethers. It has not yet been clarified at the atomic level on the pathogenic mechanism of these toxins or the interaction between a polycyclic ether compounds and a protein. Using the crystal structures of anti-ciguatoxin antibody 10C9 Fab in ligand-free form and in complexes with ABCD-ring (CTX3C-ABCD) and ABCDE-ring (CTX3C-ABCDE) fragments of the antigen CTX3C at resolutions of 2.6, 2.4, and 2.3 angstroms, respectively, we elucidated the mechanism of the interaction between the polycyclic ethers and the antibody. 10C9 Fab has an extraordinarily large and deep binding pocket at the center of the variable region, where CTX3C-ABCD or CTX3C-ABCDE binds longitudinally in the pocket via hydrogen bonds and van der Waals interactions. Upon antigen-antibody complexation, 10C9 Fab adjusts to the antigen fragments by means of rotational motion in the variable region. In addition, the antigen fragment lacking the E-ring induces a large motion in the constant region. Consequently, the thermostability of 10C9 Fab is enhanced by 10 degrees C upon complexation with CTX3C-ABCDE but not with CTX3C-ABCD. The crystal structures presented in this study also show that 10C9 Fab recoginition of CTX3C antigens requires molecular rearrangements over the entire antibody structure. These results further expand the fundamental understanding of the mechanism by which ladder-like polycyclic ethers are recognized and may be useful for the design of novel therapeutic agents by antibodies, marine toxins, or new diagnostic reagents for the detection and targeting of members of the polycyclic ether family.  相似文献   

2.
The Fv fragment, a univalent antigen-binding unit with a molecular weight of 25,000, has successfully been prepared in high yield by limited proteolysis with clostripain of a short-chain mouse IgG2a anti-dansyl monoclonal antibody in which the entire CH1 domain is deleted [Igarashi, T., Sato, M., Takio, K., Tanaka, T., Nakanishi, M., & Arata, Y. (1990) Biochemistry 29, 5727-5733]. The Fv fragment obtained is stable at room temperature and retains its full antigen-binding capability. It has been shown that selective deuterium labeling of the Fv fragment, which is half the size of the Fab fragment, provides 1H NMR spectral data at a sufficient resolution for a detailed structural analysis of the antigen-combining site. NOESY spectra of an Fv analogue, in which all aromatic protons except for His C2'-H and Tyr C3',5'-H had been deuterated, were measured in the presence of varying amounts of dansyl-L-lysine. On the basis of the NOESY data obtained, it was possible to assign all the ring proton resonances for the dansyl group that is bound to the Fv fragment. It was also possible to obtain information about His and Tyr residues of the Fv fragment in the absence and presence of the antigen. On the basis of the NMR data obtained, we have shown that at least two Tyr residues along with one of the amide groups are directly involved in antigen binding. The mode of interaction of the dansyl ring with these residues in the Fv fragment has briefly been discussed.  相似文献   

3.
The Lewis X trisaccharide is pivotal in mediating specific cell-cell interactions. Monoclonal antibody 291-2G3-A, which was generated from mice infected with schistosomes, has been shown to recognize the Lewis X trisaccharide. Here we describe the structure of the Fab fragment of 291-2G3-A, with Lewis X, to 1.8 A resolution. The crystallographic analysis revealed that the antigen binding site is a rather shallow binding pocket, and residues from all six complementary determining regions of the antibody contact all sugar residues. The high specificity of the binding pocket does not result in high affinity; the K(D) determined by isothermal calorimetry is 11 microM. However, this affinity is in the same range as for other sugar-antibody complexes. The detailed understanding of the antibody-Lewis X interaction revealed by the crystal structure may be helpful in the design of better diagnostic tools for schistosomiasis and for studying Lewis X-mediated cell-cell interactions by antibody interference.  相似文献   

4.
We have characterized and crystallized a human lambda I light-chain dimer, Bence-Jones protein Loc, which has variable (V) region antigenic determinants characteristic for the lambda I subgroup and constant (C) region determinants of the C lambda I gene Mcg. The crystal structure was determined to 3-A resolution; the R factor is 0.27. The angle formed by the twofold axes of the V and C domains, the "elbow bend", is 97 degrees, the smallest found so far for an antibody fragment. The antigen-binding site formed by the two V domains of the Loc light chain differs significantly from those of other immunoglobulin molecules (light-chain dimers and Fab fragments) for which X-ray crystallographic data are available. Whereas, in other antibody fragments, the V domains are related by a local twofold axis, a local twofold screw axis with a translational component of 3.5 A relates the V domains in protein Loc. In contrast to the classic antigen binding "pocket" formed by V domain interactions in the previously characterized antibody structures, the V region associations in protein Loc result in a central protrusion in the binding site, with grooves on two sides of the protrusion. The structure of protein Loc indicates that immunoglobulins are physically capable of forming a more diverse spectrum of antigen-binding sites than has been heretofore apparent. Moreover, the unusual protruding nature of the binding site may be analogous to structures required for some anti-idiotypic antibodies. Further, the complementarity-determining residues form parts of two independent grooves.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Crystal structures of the 64M-2 antibody Fab fragment complexed with DNA photoproducts of dT(6-4)T and dTT(6-4)TT, and of the 64M-3 Fab fragment complexed with dT(6-4)T were determined. The 5'-thymine base of the bound dT(6-4)T ligand is in a half-chair conformation, and its base plane is nearly perpendicular to the planar 3'-pyrimidone base. The 64M-2 and 64M-3 Fabs have a common structure suitable for accommodating the dT(6-4)T ligand. In each of the antigen binding sites of the 64M-2 and 64M-3 Fabs, basic residues of His 35H and Arg 95H are located at the bottom of the binding pocket, and are hydrogen-bonded to the base moieties of dT(6-4)T. Two water molecules are involved in the interactions that intervene between the base moieties and the binding site. Aromatic residues of Trp 33H and Tyr 100iH form a side-wall of the pocket and are in van der Waals interactions with the base moieties. The Trp 33H side-chain is placed in parallel to the 3'-pyrimidone base, and the Tyr 100iH side-chain is nearly perpendicular to the 5'-thymine base. His 27dL, Tyr 32L, Leu 93L, and Ser 58H forming another side-wall are located in the vicinity of the sugar-phosphate backbone. In the 64M-2 Fab complex with dTT(6-4)TT, 5'- and 3'-side phosphate groups are also involved in interaction with Fab residues.  相似文献   

6.
The monoclonal antibody 1696, directed against the HIV-1 protease, displays strong inhibitory effects toward the catalytic activity of the enzyme of both the HIV-1 and HIV-2 isolates. This antibody cross-reacts with peptides that include the N-terminus of the enzyme, a region that is well conserved in sequence among different viral strains and which, furthermore, is crucial for homodimerization to the active enzymatic form. This observation, as well as antigen-binding studies in the presence of an active site inhibitor, suggest that 1696 inhibits the HIV protease by destabilizing its active homodimeric form. To characterize further how the antibody 1696 inhibits the HIV-1 and HIV-2 proteases, we have solved the crystal structure of its Fab fragment by molecular replacement and refined it at 3.0 A resolution. The antigen binding site has a deep cavity at its center, which is lined mainly by acidic and hydrophobic residues, and is large enough to accommodate several antigen residues. The structure of the Fab 1696 could form a starting basis for the design of alternative HIV protease-inhibiting molecules of broad specificity.  相似文献   

7.
Li Y  Li H  Smith-Gill SJ  Mariuzza RA 《Biochemistry》2000,39(21):6296-6309
Antigen-antibody complexes provide useful models for studying the structure and energetics of protein-protein interactions. We report the cloning, bacterial expression, and crystallization of the antigen-binding fragment (Fab) of the anti-hen egg white lysozyme (HEL) antibody HyHEL-63 in both free and antigen-bound forms. The three-dimensional structure of Fab HyHEL-63 complexed with HEL was determined to 2.0 A resolution, while the structure of the unbound antibody was determined in two crystal forms, to 1.8 and 2.1 A resolution. In the complex, 19 HyHEL-63 residues from all six complementarity-determining regions (CDRs) of the antibody contact 21 HEL residues from three discontinuous polypeptide segments of the antigen. The interface also includes 11 bound water molecules, 3 of which are completely buried in the complex. Comparison of the structures of free and bound Fab HyHEL-63 reveals that several of the ordered water molecules in the free antibody-combining site are retained and that additional waters are added upon complex formation. The interface waters serve to increase shape and chemical complementarity by filling cavities between the interacting surfaces and by contributing to the hydrogen bonding network linking the antigen and antibody. Complementarity is further enhanced by small (<3 A) movements in the polypeptide backbones of certain antibody CDR loops, by rearrangements of side chains in the interface, and by a slight shift in the relative orientation of the V(L) and V(H) domains. The combining site residues of complexed Fab HyHEL-63 exhibit reduced temperature factors compared with those of the free Fab, suggesting a loss in conformational entropy upon binding. To probe the relative contribution of individual antigen residues to complex stabilization, single alanine substitutions were introduced in the epitope of HEL recognized by HyHEL-63, and their effects on antibody affinity were measured using surface plasmon resonance. In agreement with the crystal structure, HEL residues at the center of the interface that are buried in the complex contribute most to the binding energetics (DeltaG(mutant) - DeltaG(wild type) > 3.0 kcal/mol), whereas the apparent contributions of solvent-accessible residues at the periphery are much less pronounced (<1.5 kcal/mol). In the latter case, the mutations may be partially compensated by local rearrangements in solvent structure that help preserve shape complementarity and the interface hydrogen bonding network.  相似文献   

8.
The crystal structure of the complex between neuraminidase from influenza virus (subtype N9 and isolated from an avian source) and the antigen-binding fragment (Fab) of monoclonal antibody NC41 has been refined by both least-squares and simulated annealing methods to an R-factor of 0.191 using 31,846 diffraction data in the resolution range 8.0 to 2.5 A. The resulting model has a root-mean-square deviation from ideal bond-length of 0.016 A. One fourth of the tetrameric complex comprises the crystallographic model, which has 6577 non-hydrogen atoms and consists of 389 protein residues and eight carbohydrate residues in the neuraminidase, 214 residues in the Fab light chain, and 221 residues in the heavy chain. One putative Ca ion buried in the neuraminidase, and 73 water molecules, are also included. A remarkable shape complementarity exists between the interacting surfaces of the antigen and the antibody, although the packing density of atoms at the interface is somewhat looser than in the interior of a protein. Similarly, there is a high degree of chemical complementarity between the antigen and antibody, mediated by one buried salt-link, two solvated salt-links and 12 hydrogen bonds. The antibody-binding site on neuraminidase is discontinuous and comprises five chain segments and 19 residues in contact, whilst 33 neuraminidase residues in eight segments have 899 A2 of surface area buried by the interaction (to a 1.7 A probe), including two hexose units. Seventeen residues in NC41 Fab lying in five of the six complementarity determining regions (CDRs) make contact with the neuraminidase and 36 antibody residues in seven segments have 916 A2 of buried surface area. The interface is more extensive than those of the three lysozyme-Fab complexes whose crystal structures have been determined, as judged by buried surface area and numbers of contact residues. There are only small differences (less than 1.5 A) between the complexed and uncomplexed neuraminidase structures and, at this resolution and accuracy, those differences are not unequivocal. The main-chain conformations of five of the CDRs follow the predicted canonical structures. The interface between the variable domains of the light and heavy chains is not as extensive as in other Fabs, due to less CDR-CDR interaction in NC41. The first CDR on the NC41 Fab light chain is positioned so that it could sterically hinder the approach of small as well as large substrates to the neuraminidase active-site pocket, suggesting a possible mechanism for the observed inhibition of enzyme activity by the antibody.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Shotgun scanning combinatorial mutagenesis was used to study the antigen-binding site of Fab2C4, a humanized monoclonal antibody fragment that binds to the extracellular domain of the human oncogene product ErbB2. Essentially all the residues in the Fab2C4 complementarity determining regions (CDRs) were alanine-scanned using phage-displayed libraries that preferentially allowed side-chains to vary as the wild-type or alanine. A separate homolog-scan was performed using libraries that allowed side-chains to vary only as the wild-type or a similar amino acid residue. Following binding selections to isolate functional clones, DNA sequencing was used to determine the wild-type/mutant ratios at each varied position, and these ratios were used to assess the contributions of each side-chain to antigen binding. The alanine-scan revealed that most of the side-chains that contribute to antigen binding are located in the heavy chain, and the Fab2C4 three-dimensional structure revealed that these residues fall into two groups. The first group consists of solvent-exposed residues which likely make energetically favorable contacts with the antigen and thus comprise the functional-binding epitope. The second group consists of buried residues with side-chains that pack against other CDR residues and apparently act as scaffolding to maintain the functional epitope in a binding-competent conformation. The homolog-scan involved subtle mutations, and as a result, only a subset of the side-chains that were intolerant to alanine substitutions were also intolerant to homologous substitutions. In particular, the 610 A2 functional epitope surface revealed by alanine-scanning shrunk to only 369 A2 when mapped with homologous substitutions, suggesting that this smaller subset of side-chains may be involved in more precise contacts with the antigen. The results validate shotgun scanning as a rapid and accurate method for determining the functional contributions of individual side-chains involved in protein-protein interactions.  相似文献   

10.
Tyrosine is an important amino acid in protein-protein interaction hot spots. In particular, many Tyr residues are located in the antigen-binding sites of antibodies and endow high affinity and high specificity to these antibodies. To investigate the role of interfacial Tyr residues in protein-protein interactions, we performed crystallographic studies and thermodynamic analyses of the interaction between hen egg lysozyme (HEL) and the anti-HEL antibody HyHEL-10 Fv fragment. HyHEL-10 has six Tyr residues in its antigen-binding site, which were systematically mutated to Phe and Ala using site-directed mutagenesis. The crystal structures revealed several critical roles for these Tyr residues in the interaction between HEL and HyHEL-10 as follows: 1) the aromatic ring of Tyr-50 in the light chain (LTyr-50) was important for the correct ternary structure of variable regions of the immunoglobulin light chain and heavy chain and of HEL; 2) deletion of the hydroxyl group of Tyr-50 in the heavy chain (HTyr-50) resulted in structural changes in the antigen-antibody interface; and 3) the side chains of HTyr-33 and HTyr-53 may help induce fitting of the antibody to the antigen. Hot spot Tyr residues may contribute to the high affinity and high specificity of the antigen-antibody interaction through a diverse set of structural and thermodynamic interactions.  相似文献   

11.
Thermodynamic analysis is an effective tool in screening of lead-compounds for development of potential drug candidates. In most cases, a ligand achieve high affinity and specificity to a target protein by means of both favorable enthalpy and entropy terms, which can be reflected in binding profiles of Isothermal Titration Calorimetry (ITC). A favorable enthalpy change suggests the contribution of noncovalent contacts such as hydrogen bonding and van der Waals interaction between a ligand and its target protein. In general, optimization of binding enthalpy is more difficult than that of entropies in ligand-design; therefore, it is desirable to choose firstly a lead-compound based on its binding enthalpic gain. In this paper, we demonstrate the utility of thermodynamic approach to ligand screening using anti-ciguatoxin antibody 10C9 as a model of a target protein which possesses a large hydrophobic pocket. As a result of this screening, we have identified three compounds that could bind to the antigen-binding pocket of 10C9 with a few kcal/mol of favorable binding enthalpy. Comparison of their structure with the proper antigen ciguatoxin CTX3C revealed that 10C9 rigorously identifies their cyclic structure and a characteristic hydroxyl group. ITC measurement might be useful and powerful for a rational ligand screening and the optimization of the ligand; the enthalpic gain is an effective index for ligand-design studies.  相似文献   

12.
The three-dimensional structure of the Fab fragment of a monoclonal antibody (LNKB-2) to human interleukin-2 (IL-2) complexed with a synthetic antigenic nonapeptide, Ac-Lys-Pro-Leu-Glu-Glu-Val-Leu-Asn-Leu-OMe, has been determined at 3.0 A resolution. In the structure, four out of the six hypervariable loops of the Fab (complementarity determining regions [CDRs] L1, H1, H2, and H3) are involved in peptide association through hydrogen bonding, salt bridge formation, and hydrophobic interactions. The Tyr residues in the Fab antigen binding site play a major role in antigen-antibody recognition. The structures of the complexed and uncomplexed Fab were compared. In the antigen binding site the CDR-L1 loop of the antibody shows the largest structural changes upon peptide binding. The peptide adopts a mostly alpha-helical conformation similar to that in the epitope fragment 64-72 of the IL-2 antigen. The side chains of residues Leu 66, Val 69, and Leu 70, which are shielded internally in the IL-2 structure, are involved in interactions with the Fab in the complex studied. This indicates that antibody-antigen complexation involves a significant rearrangement of the epitope-containing region of the IL-2 with retention of the alpha-helical character of the epitope fragment.  相似文献   

13.
The atomic structure of an antibody antigen-binding fragment (Fab) at 2.45 A resolution shows that polysaccharide antigen conformation and Fab structure dictated by combinatorial diversity and domain association are responsible for the fine specificity of the Brucella-specific antibody, YsT9.1. It discriminates the Brucella abortus A antigen from the nearly identical Brucella melitensis M antigen by forming a groove-type binding site, lined with tyrosine residues, that accommodates the rodlike A antigen but excludes the kinked structure of the M antigen, as envisioned by a model of the antigen built into the combining site. The variable-heavy (VH) and variable-light (VL) domains are derived from genes closely related to two used in previously solved structures, M603 and R19.9, respectively. These genes combine in YsT9.1 to form an antibody of totally different specificity. Comparison of this X-ray structure with a previously built model of the YsT9.1 combining site based on these homologies highlights the importance of VL:VH association as a determinant of specificity and suggests that small changes at the VL:VH interface, unanticipated in modeling, may cause significant modulation of binding-site properties.  相似文献   

14.
A series of vancomycin analogues and tracers were synthesized, and their binding interactions with an anti-vancomycin Fab fragment were evaluated under mass transport limiting conditions using surface plasmon resonance detection. Differences observed in binding interactions were utilized to define the vancomycin structural elements critical for antibody recognition. Major structural regions of vancomycin shown to play an important role in anti-vancomycin Fab fragment recognition include two sugar moieties and one chlorinated phenyl ring. The N-methylleucyl residue, the carboxy terminal residue, and residues in the peptide-binding region of vancomycin have minimal impact on the anti-vancomycin Fab fragment/vancomycin binding interaction. The selection of an antibody with such binding properties plays a critical role in the development of a vancomycin immunoassay that employs stable calibrators and controls.  相似文献   

15.
16.
Among catalytic antibodies, the well-characterized antibody 43C9 is unique in its ability to catalyze the difficult, but desirable, reaction of selective amide hydrolysis. The crystallographic structures that we present here for the single-chain variable fragment of the 43C9 antibody, both with and without the bound product p -nitrophenol, strongly support and extend the structural and mechanistic information previously provided by a three-dimensional computational model, together with extensive biochemical, kinetics, and mutagenesis results. The structures reveal an unexpected extended beta-sheet conformation of the third complementarity determining region of the heavy chain, which may be coupled to the novel indole ring orientation of the adjacent Trp H103. This unusual conformation creates an antigen-binding site that is significantly deeper than predicted in the computational model, with a hydrophobic pocket that encloses the p -nitrophenol product. Despite these differences, the previously proposed roles for Arg L96 in transition-state stabilization and for His L91 as the nucleophile that forms a covalent acyl-antibody intermediate are fully supported by the crystallographic structures. His L91 is now centered at the bottom of the antigen-binding site with the imidazole ring poised for nucleophilic attack. His L91, Arg L96, and the bound p -nitrophenol are linked into a hydrogen-bonding network by two well-ordered water molecules. These water molecules may mimic the positions of the phosphonamidate oxygen atoms of the antigen, which in turn mimic the transition state of the reaction. This network also contains His H35, suggesting that this residue may also stabilize the transition-states. A possible proton-transfer pathway from His L91 through two tyrosine residues may assist nucleophilic attack. Although transition-state stabilization is commonly observed in esterolytic antibodies, nucleophilic attack appears to be unique to 43C9 and accounts for the unusually high catalytic activity of this antibody.  相似文献   

17.
Bostrom J  Haber L  Koenig P  Kelley RF  Fuh G 《PloS one》2011,6(4):e17887
The antigen-binding site of Herceptin, an anti-human Epidermal Growth Factor Receptor 2 (HER2) antibody, was engineered to add a second specificity toward Vascular Endothelial Growth Factor (VEGF) to create a high affinity two-in-one antibody bH1. Crystal structures of bH1 in complex with either antigen showed that, in comparison to Herceptin, this antibody exhibited greater conformational variability, also called "structural plasticity". Here, we analyzed the biophysical and thermodynamic properties of the dual specific variants of Herceptin to understand how a single antibody binds two unrelated protein antigens. We showed that while bH1 and the affinity-improved bH1-44, in particular, maintained many properties of Herceptin including binding affinity, kinetics and the use of residues for antigen recognition, they differed in the binding thermodynamics. The interactions of bH1 and its variants with both antigens were characterized by large favorable entropy changes whereas the Herceptin/HER2 interaction involved a large favorable enthalpy change. By dissecting the total entropy change and the energy barrier for dual interaction, we determined that the significant structural plasticity of the bH1 antibodies demanded by the dual specificity did not translate into the expected increase of entropic penalty relative to Herceptin. Clearly, dual antigen recognition of the Herceptin variants involves divergent antibody conformations of nearly equivalent energetic states. Hence, increasing the structural plasticity of an antigen-binding site without increasing the entropic cost may play a role for antibodies to evolve multi-specificity. Our report represents the first comprehensive biophysical analysis of a high affinity dual specific antibody binding two unrelated protein antigens, furthering our understanding of the thermodynamics that drive the vast antigen recognition capacity of the antibody repertoire.  相似文献   

18.
Concentration-dependent reversible self-association (RSA) of monoclonal antibodies (mAbs) poses a challenge to their pharmaceutical development as viable candidates for subcutaneous delivery. While the role of the antigen-binding fragment (Fab) in initiating RSA is well-established, little evidence supports the involvement of the crystallizable fragment (Fc). In this report, a variety of biophysical tools, including hydrogen exchange mass spectrometry, are used to elucidate the protein interface of such non-covalent protein-protein interactions. Using dynamic and static light scattering combined with viscosity measurements, we find that an IgG1 mAb (mAb-J) undergoes RSA primarily through electrostatic interactions and forms a monomer-dimer-tetramer equilibrium. We provide the first direct experimental mapping of the interface formed between the Fab and Fc domains of an antibody at high protein concentrations. Charge distribution heterogeneity between the positively charged interface spanning complementarity-determining regions CDR3H and CDR2L in the Fab and a negatively charged region in CH3/Fc domain mediates the RSA of mAb-J. When arginine and NaCl are added, they disrupt RSA of mAb-J and decrease the solution viscosity. Fab-Fc domain interactions between mAb monomers may promote the formation of large transient antibody complexes that ultimately cause increases in solution viscosity. Our findings illustrate how limited specific arrangements of amino-acid residues can cause mAbs to undergo RSA at high protein concentrations and how conserved regions in the Fc portion of the antibody can also play an important role in initiating weak and transient protein-protein interactions.  相似文献   

19.
Alzheimer's disease is a progressive neurodegenerative disease characterized by extracellular deposits of β‐amyloid (Aβ) plaques. Aggregation of the Aβ42 peptide leading to plaque formation is believed to play a central role in Alzheimer's disease pathogenesis. Anti‐Aβ monoclonal antibodies can reduce amyloid plaques and could possibly be used for immunotherapy. We have developed a monoclonal antibody C706, which recognizes the human Aβ peptide. Here we report the crystal structure of the antibody Fab fragment at 1.7 Å resolution. The structure was determined in two crystal forms, P21 and C2. Although the Fab was crystallized in the presence of Aβ16, no peptide was observed in the crystals. The antigen‐binding site is blocked by the hexahistidine tag of another Fab molecule in both crystal forms. The poly‐His peptide in an extended conformation occupies a crevice between the light and heavy chains of the variable domain. Two consecutive histidines (His4–His5) stack against tryptophan residues in the central pocket of the antigen‐binding surface. In addition, they form hydrogen bonds to the acidic residues at the bottom of the pocket. The mode of his‐tag binding by C706 resembles the Aβ recognition by antibodies PFA1 and WO2. All three antibodies recognize the same immunodominant B‐cell epitope of Aβ. By similarity, residues Phe–Arg–His of Aβ would be a major portion of the C706 epitope. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The Fab fragment of the murine monoclonal antibody, MAK33, directed against human creatine kinase of the muscle-type, was crystallized and the three-dimensional structure was determined to 2.9 A. The antigen-binding surface of MAK33 shows a convex overall shape typical for immunoglobulins binding large antigens. The structure allows us to analyze the environment of cis-prolyl-peptide bonds whose isomerization is of key importance in the folding process. These residues seem to be involved with not only domain stability but also seem to play a role in the association of heavy and light chains, reinforcing the importance of beta-strand recognition in antibody assembly. The structure also allows the localization of segments of primary sequence postulated to represent binding sites for the ER-specific chaperone BiP within the context of the entire Fab fragment. These sequences are found primarily in beta-strands that are necessary for interactions between the individual domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号