首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Intranasal olfactory drug delivery provides a non-invasive method that bypasses the Blood-Brain-Barrier and directly delivers medication to the brain and spinal cord. However, a device designed specifically for olfactory delivery has not yet been found.

Methods

In this study, a new delivery method was proposed that utilized electrophoretic forces to guide drug particles to the olfactory region. The feasibility of this method was numerically evaluated in both idealized 2-D and anatomically accurate 3-D nose models. The influence of nasal airflow, electrode strength, and drug release position were also studied on the olfactory delivery efficiency.

Findings

Results showed that by applying electrophoretic forces, the dosage to the olfactory region was significantly enhanced. In both 2-D and 3-D cases, electrophoretic-guided delivery achieved olfactory dosages nearly two orders of magnitude higher than that without electrophoretic forces. Furthermore, releasing drugs into the upper half of the nostril (i.e., partial release) led to olfactory dosages two times higher than releasing drugs over the entire area of the nostril. By combining the advantages of pointed drug release and appropriate electrophoretic guidance, olfactory dosages of more than 90% were observed as compared to the extremely low olfactory dosage (<1%) with conventional inhaler devices.

Conclusion

Results of this study have important implications in developing personalized olfactory delivery protocols for the treatment of neurological disorders. Moreover, a high sensitivity of olfactory dosage was observed in relation to different pointed release positions, indicating the importance of precise particle guidance for effective olfactory delivery.  相似文献   

2.

Background

Gene transduction has been considered advantageous for the sustained delivery of proteins to specific target tissues. However, in the case of hard tissues, such as bone, local gene delivery remains problematic owing to anatomical accessibility limitations of the target sites.

Methodology/Principal Findings

Here, we evaluated the feasibility of exogenous gene transduction in the interior of bone via axonal transport following intramuscular administration of a nonviral vector. A high expression level of the transduced gene was achieved in the tibia ipsilateral to the injected tibialis anterior muscle, as well as in the ipsilateral sciatic nerve and dorsal root ganglia. In sciatic transection rats, the gene expression level was significantly lowered in bone.

Conclusions/Significance

These results suggest that axonal transport is critical for gene transduction. Our study may provide a basis for developing therapeutic methods for efficient gene delivery into hard tissues.  相似文献   

3.

Introduction

In vivo, most neurons in the main olfactory bulb exhibit robust spontaneous activity. This paper tests the hypothesis that spontaneous activity in olfactory receptor neurons drives much of the spontaneous activity in mitral and tufted cells via excitatory synapses.

Methods

Single units were recorded in vivo from the main olfactory bulb of a rat before, during, and after application of lidocaine to the olfactory nerve. The effect of lidocaine on the conduction of action potentials from the olfactory epithelium to the olfactory bulb was assessed by electrically stimulating the olfactory nerve rostral to the application site and monitoring the field potential evoked in the bulb.

Results

Lidocaine caused a significant decrease in the amplitude of the olfactory nerve evoked field potential that was recorded in the olfactory bulb. By contrast, the lidocaine block did not significantly alter the spontaneous activity of single units in the bulb, nor did it alter the field potential evoked by electrical stimulation of the lateral olfactory tract. Lidocaine block also did not change the temporal patters of action potential or their synchronization with respiration.

Conclusions

Spontaneous activity in neurons of the main olfactory bulb is not driven mainly by activity in olfactory receptor neurons despite the extensive convergence onto mitral and tufted cells. These results suggest that spontaneous activity of mitral and tufted is either an inherent property of these cells or is driven by centrifugal inputs to the bulb.  相似文献   

4.

Background

While hyperglycemia-induced oxidative stress damages peripheral neurons, technical limitations have, in part, prevented in vivo studies to determine the effect of hyperglycemia on the neurons in the central nervous system (CNS). While olfactory dysfunction is indicated in diabetes, the effect of hyperglycemia on olfactory receptor neurons (ORNs) remains unknown. In this study, we utilized manganese enhanced MRI (MEMRI) to assess the impact of hyperglycemia on axonal transport rates in ORNs. We hypothesize that (i) hyperglycemia induces oxidative stress and is associated with reduced axonal transport rates in the ORNs and (ii) hyperglycemia-induced oxidative stress activates the p38 MAPK pathway in association with phosphorylation of tau protein leading to the axonal transport deficits.

Research Design and Methods

T1-weighted MEMRI imaging was used to determine axonal transport rates post-streptozotocin injection in wildtype (WT) and superoxide dismutase 2 (SOD2) overexpressing C57Bl/6 mice. SOD2 overexpression reduces mitochondrial superoxide load. Dihydroethidium staining was used to quantify the reactive oxygen species (ROS), specifically, superoxide (SO). Protein and gene expression levels were determined using western blotting and Q-PCR analysis, respectively.

Results

STZ-treated WT mice exhibited significantly reduced axonal transport rates and significantly higher levels of ROS, phosphorylated p38 MAPK and tau protein as compared to the WT vehicle treated controls and STZ-treated SOD2 mice. The gene expression levels of p38 MAPK and tau remained unchanged.

Conclusion

Increased oxidative stress in STZ-treated WT hyperglycemic mice activates the p38 MAPK pathway in association with phosphorylation of tau and attenuates axonal transport rates in the olfactory system. In STZ-treated SOD-overexpressing hyperglycemic mice in which superoxide levels are reduced, these deficits are reversed.  相似文献   

5.

Purpose

The aim of this study was to assess whether migration of thallium-201 (201Tl) to the olfactory bulb were reduced in patients with olfactory impairments in comparison to healthy volunteers after nasal administration of 201Tl.

Procedures

10 healthy volunteers and 21 patients enrolled in the study (19 males and 12 females; 26–71 years old). The causes of olfactory dysfunction in the patients were head trauma (n = 7), upper respiratory tract infection (n = 7), and chronic rhinosinusitis (n = 7). 201TlCl was administered unilaterally to the olfactory cleft, and SPECT-CT was conducted 24 h later. Separate MRI images were merged with the SPECT images. 201Tl olfactory migration was also correlated with the volume of the olfactory bulb determined from MRI images, as well as with odor recognition thresholds measured by using T&T olfactometry.

Results

Nasal 201Tl migration to the olfactory bulb was significantly lower in the olfactory-impaired patients than in healthy volunteers. The migration of 201Tl to the olfactory bulb was significantly correlated with odor recognition thresholds obtained with T&T olfactometry and correlated with the volume of the olfactory bulb determined from MRI images when all subjects were included.

Conclusions

Assessment of the 201Tl migration to the olfactory bulb was the new method for the evaluation of the olfactory nerve connectivity in patients with impaired olfaction.  相似文献   

6.

Background

Newcastle disease (ND) is a highly contagious viral disease of poultry caused by pathogenic strains of the Newcastle disease virus (NDV). Live NDV vaccines are administered by drinking water, eyedrops or coarse aerosol spray. To further enhance mucosal immune responses, chitosan nanoparticles were developed for the mucosal delivery of a live NDV vaccine.

Methodology/Principal Findings

A lentogenic live-virus vaccine (strain LaSota) against NDV encapsulated in chitosan nanoparticles were developed using an ionic crosslinking method. Chitosan nanoparticles containing the lentogenic live-virus vaccine against NDV (NDV-CS-NPs) were produced with good morphology, high stability, a mean diameter of 371.1 nm, an encapsulation rate of 77% and a zeta potential of +2.84 mV. The Western blotting analysis showed that NDV structural proteins were detected in NDV-CS-NPs. The virus release assay results of NDV-CS-NPs indicated that NDV was released from NDV-CS-NPs. Chickens immunized orally or intranasally with NDV-CS-NPs were fully protected whereas one out of five chickens immunized with the LaSota live NDV vaccine and three out of five chickens immunized with the inactivated NDV vaccine were dead after challenge with the highly virulent NDV strain F48E9.

Conclusions/Significance

NDV-CS-NPs induced better protection of immunized specific pathogen free chickens compared to the live NDV vaccine strain LaSota and the inactivated NDV vaccine. This study lays a foundation for the further development of mucosal vaccines and drugs encapsulated in chitosan nanoparticles.  相似文献   

7.

Setting

In most developing countries, paediatric tuberculosis is treated with split tablets leading to potential inaccuracy in the dose delivery and drug exposure. There is no data on the quality of first-line drugs content in split fixed-dose combination tablets.

Objective

To determine Isoniazid, Pyrazinamide and Rifampicin content uniformity in split FDC tablets used in the treatment of childhood tuberculosis.

Design

Drug contents of 15 whole tablets, 30 half tablets and 36 third tablets were analysed by high performance liquid chromatography. The content uniformity was assessed by comparing drug content measured in split portions with their expected amounts and the quality of split portions was assessed applying qualitative specifications for whole tablets.

Results

All whole tablets measurements fell into the USP proxy for the three drugs. But a significant number of half and third portions was found outside the tolerated variation range and the split formulation failed the requirements for content uniformity. To correct for the inaccuracy of splitting the tablets into equal portions, a weight-adjustment strategy was used but this did not improve the findings.

Conclusion

In split tablets the content of the three drugs is non-uniform and exceeded the USP recommendations. There is an absolute need to make child-friendly formulations available for the treatment of childhood tuberculosis.  相似文献   

8.

Background

Olfactory dysfunction in MS patients is reported in the literature. MRI of the olfactory bulb (OB) is discussed as a promising new testing method for measuring olfactory function (OF).Aim of this study was to explore reasons for and optimize the detection of olfactory dysfunction in MS patients with MRI.

Materials and Methods

OB and olfactory brain volume was assessed within 34 MS patients by manual segmentation. Olfactory function was tested using the Threshold-Discrimination-Identification-Test (TDI), gustatory function was tested using Taste Strips (TST).

Results

41% of the MS patients displayed olfactory dysfunction (8% of the control group), 16% displayed gustatory dysfunction (5% of the control group). There was a correlation between the OB volume and the number and volume of MS lesions in the olfactory brain. Olfactory brain volume correlated with the volume of lesions in the olfactory brain and the EDSS score. The TST score correlated with the number and volume of lesions in the olfactory brain.

Conclusion

The correlation between a higher number and volume of MS lesions with a decreased OB and olfactory brain volume could help to explain olfactory dysfunction.  相似文献   

9.

Background

Intermittent preventive treatment for malaria in children (IPTc) is a promising new intervention for the prevention of malaria but its delivery is a challenge. We have evaluated the coverage of IPTc that can be achieved by two different delivery systems in Ghana.

Methods

IPTc was delivered by volunteers in six villages (community-based arm) and by health workers at health centres or at Expanded Programme on Immunisation outreach clinics (facility based) in another six communities. The villages were selected randomly and drugs were administered in May, June, September and October 2006. The first dose of a three-dose regimen of amodiaquine plus sulphadoxine-pyrimethamine was administered under supervision to 3–59 month-old children (n = 964) in the 12 study villages; doses for days 2 and 3 were given to parents/guardians to administer at home.

Results

The proportion of children who received at least the first dose of 3 or more courses of IPTc was slightly higher in the community based arm (90.5% vs 86.6%; p = 0.059). Completion of the three dose regimen was high and similar with both delivery systems (91.6% and 91.7% respectively).

Conclusion

Seasonal IPTc delivered through community-based or facility-based systems can achieve a high coverage rate with the support and supervision of the district health management team. However, in order to maximise the impact of IPTc, both delivery systems may be needed in some settings.

Trial Registration

ClinicalTrials.gov NCT00119132  相似文献   

10.

Background

Due to the use of organophosphates (OP) as pesticides and the availability of OP-type nerve agents, an effective medical treatment for OP poisonings is still a challenging problem. The acute toxicity of an OP poisoning is mainly due to the inhibition of acetylcholinesterase (AChE) in the peripheral and central nervous systems (CNS). This results in an increase in the synaptic concentration of the neurotransmitter acetylcholine, overstimulation of cholinergic receptors and disorder of numerous body functions up to death. The standard treatment of OP poisoning includes a combination of a muscarinic antagonist and an AChE reactivator (oxime). However, these oximes can not cross the blood-brain barrier (BBB) sufficiently. Therefore, new strategies are needed to transport oximes over the BBB.

Methodology/Principal Findings

In this study, we combined different oximes (obidoxime dichloride and two different HI 6 salts, HI 6 dichloride monohydrate and HI 6 dimethanesulfonate) with human serum albumin nanoparticles and could show an oxime transport over an in vitro BBB model. In general, the nanoparticulate transported oximes achieved a better reactivation of OP-inhibited AChE than free oximes.

Conclusions/Significance

With these nanoparticles, for the first time, a tool exists that could enable a transport of oximes over the BBB. This is very important for survival after severe OP intoxication. Therefore, these nanoparticulate formulations are promising formulations for the treatment of the peripheral and the CNS after OP poisoning.  相似文献   

11.
Song XY  Li F  Zhang FH  Zhong JH  Zhou XF 《PloS one》2008,3(3):e1707

Background

The blood brain barrier (BBB) and truncated trkB receptor on astrocytes prevent the penetration of brain derived neurotrophic factor (BDNF) applied into the peripheral (PNS) and central nervous system (CNS) thus restrict its application in the treatment of nervous diseases. As BDNF is anterogradely transported by axons, we propose that peripherally derived and/or applied BDNF may act on the regeneration of central axons of ascending sensory neurons.

Methodology/Principal Findings

The present study aimed to test the hypothesis by using conditioning lesion of the sciatic nerve as a model to increase the expression of endogenous BDNF in sensory neurons and by injecting exogenous BDNF into the peripheral nerve or tissues. Here we showed that most of regenerating sensory neurons expressed BDNF and p-CREB but not p75NTR. Conditioning-lesion induced regeneration of ascending sensory neuron and the increase in the number of p-Erk positive and GAP-43 positive neurons was blocked by the injection of the BDNF antiserum in the periphery. Enhanced neurite outgrowth of dorsal root ganglia (DRG) neurons in vitro by conditioning lesion was also inhibited by the neutralization with the BDNF antiserum. The delivery of exogenous BDNF into the sciatic nerve or the footpad significantly increased the number of regenerating DRG neurons and regenerating sensory axons in the injured spinal cord. In a contusion injury model, an injection of BDNF into the footpad promoted recovery of motor functions.

Conclusions/Significance

Our data suggest that endogenous BDNF in DRG and spinal cord is required for the enhanced regeneration of ascending sensory neurons after conditioning lesion of sciatic nerve and peripherally applied BDNF may have therapeutic effects on the spinal cord injury.  相似文献   

12.

Background

An association was previously established between facial nerve paralysis (Bell''s palsy) and intranasal administration of an inactivated influenza virosome vaccine containing an enzymatically active Escherichia coli Heat Labile Toxin (LT) adjuvant. The individual component(s) responsible for paralysis were not identified, and the vaccine was withdrawn.

Methodology/Principal Findings

Subjects participating in two contemporaneous non-randomized Phase 1 clinical trials of nasal subunit vaccines against Human Immunodeficiency Virus and tuberculosis, both of which employed an enzymatically inactive non-toxic mutant LT adjuvant (LTK63), underwent active follow-up for adverse events using diary-cards and clinical examination. Two healthy subjects experienced transient peripheral facial nerve palsies 44 and 60 days after passive nasal instillation of LTK63, possibly a result of retrograde axonal transport after neuronal ganglioside binding or an inflammatory immune response, but without exaggerated immune responses to LTK63.

Conclusions/Significance

While the unique anatomical predisposition of the facial nerve to compression suggests nasal delivery of neuronal-binding LT–derived adjuvants is inadvisable, their continued investigation as topical or mucosal adjuvants and antigens appears warranted on the basis of longstanding safety via oral, percutaneous, and other mucosal routes.  相似文献   

13.

Background

The role of histocompatibility and immune recognition in stem cell transplant therapy has been controversial, with many reports arguing that undifferentiated stem cells are protected from immune recognition due to the absence of major histocompatibility complex (MHC) markers. This argument is even more persuasive in transplantation into the central nervous system (CNS) where the graft rejection response is minimal.

Methodology/Principal Findings

In this study, we evaluate graft survival and neuron production in perfectly matched vs. strongly mismatched neural stem cells transplanted into the hippocampus in mice. Although allogeneic cells survive, we observe that MHC-mismatch decreases surviving cell numbers and strongly inhibits the differentiation and retention of graft-derived as well as endogenously produced new neurons. Immune suppression with cyclosporine-A did not improve outcome but non-steroidal anti-inflammatory drugs, indomethacin or rosiglitazone, were able to restore allogeneic neuron production, integration and retention to the level of syngeneic grafts.

Conclusions/Significance

These results suggest an important but unsuspected role for innate, rather than adaptive, immunity in the survival and function of MHC-mismatched cellular grafts in the CNS.  相似文献   

14.

Background

Precise measurement of the QT interval is often hampered by difficulty determining the end of the low amplitude T wave. Root mean square electrocardiography (RMS ECG) provides a novel alternative measure of ventricular repolarization. Experimental data have shown that the interval between the RMS ECG QRS and T wave peaks (RTPK) closely reflects the mean ventricular action potential duration while the RMS T wave width (TW) tracks the dispersion of repolarization timing. Here, we tested the precision of RMS ECG to assess ventricular repolarization in humans in the setting of drug-induced and congenital Long QT Syndrome (LQTS).

Methods

RMS ECG signals were derived from high-resolution 24 hour Holter monitor recordings from 68 subjects after receiving placebo and moxifloxacin and from standard 12 lead ECGs obtained in 97 subjects with LQTS and 97 age- and sex-matched controls. RTPK, QTRMS and RMS TW intervals were automatically measured using custom software and compared to traditional QT measures using lead II.

Results

All measures of repolarization were prolonged during moxifloxacin administration and in LQTS subjects, but the variance of RMS intervals was significantly smaller than traditional lead II measurements. TW was prolonged during moxifloxacin and in subjects with LQT-2, but not LQT-1 or LQT-3.

Conclusion

These data validate the application of RMS ECG for the detection of drug-induced and congenital LQTS. RMS ECG measurements are more precise than the current standard of care lead II measurements.  相似文献   

15.

Background

A drug delivery system specifically targeting endothelial cells (ECs) in tumors is required to prevent normal blood vessels from being damaged by angiogenesis inhibitors. The purpose of this study was to investigate whether apelin, a ligand for APJ expressed in ECs when angiogenesis is taking place, can be used for targeting drug delivery to ECs in tumors.

Methods and Results

Uptake of apelin via APJ stably expressed in NIH-3T3 cells was investigated using TAMRA (fluorescent probe)-conjugated apelin. Both long and short forms of apelin (apelin 36 and apelin 13) were taken up, the latter more effectively. To improve efficacy of apelin- liposome conjugates, we introduced cysteine, with its sulfhydryl group, to the C terminus of apelin 13, resulting in the generation of apelin 14. In turn, apelin 14 was conjugated to rhodamine-encapsulating liposomes and administered to tumor-bearing mice. In the tumor microenvironment, we confirmed that liposomes were incorporated into the cytoplasm of ECs. In contrast, apelin non-conjugated liposomes were rarely found in the cytoplasm of ECs. Moreover, non-specific uptake of apelin-conjugated liposomes was rarely detected in other normal organs.

Conclusions

ECs in normal organs express little APJ; however, upon hypoxic stimulation, such as in tumors, ECs start to express APJ. The present study suggests that apelin could represent a suitable tool to effectively deliver drugs specifically to ECs within tumors.  相似文献   

16.

Background

Glaucoma is a progressive optic nerve degenerative disease that often leads to blindness. Local inflammatory responses are implicated in the pathology of glaucoma. Although inflammatory episodes outside the CNS, such as those due to acute systemic infections, have been linked to central neurodegeneration, they do not appear to be relevant to glaucoma. Based on clinical observations, we hypothesized that chronic subclinical peripheral inflammation contributes to neurodegeneration in glaucoma.

Methods

Mouthwash specimens from patients with glaucoma and control subjects were analyzed for the amount of bacteria. To determine a possible pathogenic mechanism, low-dose subcutaneous lipopolysaccharide (LPS) was administered in two separate animal models of glaucoma. Glaucomatous neurodegeneration was assessed in the retina and optic nerve two months later. Changes in gene expression of toll-like receptor 4 (TLR4) signaling pathway and complement as well as changes in microglial numbers and morphology were analyzed in the retina and optic nerve. The effect of pharmacologic blockade of TLR4 with naloxone was determined.

Findings

Patients with glaucoma had higher bacterial oral counts compared to control subjects (p<0.017). Low-dose LPS administration in glaucoma animal models resulted in enhancement of axonal degeneration and neuronal loss. Microglial activation in the optic nerve and retina as well as upregulation of TLR4 signaling and complement system were observed. Pharmacologic blockade of TLR4 partially ameliorated the enhanced damage.

Conclusions

The above findings suggest that the oral microbiome contributes to glaucoma pathophysiology. A plausible mechanism by which increased bacterial loads can lead to neurodegeneration is provided by experiments in animal models of the disease and involves activation of microglia in the retina and optic nerve, mediated through TLR4 signaling and complement upregulation. The finding that commensal bacteria may play a role in the development and/or progression of glaucomatous pathology may also be relevant to other chronic neurodegenerative disorders.  相似文献   

17.

Background

Several studies reported olfactory dysfunction in patients with multiple sclerosis. The estimate of the incidence of olfactory deficits in multiple sclerosis is uncertain; this may arise from different testing methods that may be influenced by patients'' response bias and clinical, demographic and cognitive features.

Aims

To evaluate objectively the olfactory function using Olfactory Event Related Potentials.

Materials and Methods

We tested the olfactory function of 30 patients with relapsing remitting multiple sclerosis (mean age of 36.03±6.96 years) and of 30 age, sex and smoking–habit matched healthy controls by using olfactory potentials. A selective and controlled stimulation of the olfactory system to elicit the olfactory event related potentials was achieved by a computer-controlled olfactometer linked directly with electroencephalograph. Relationships between olfactory potential results and patients'' clinical characteristics, such as gender, disability status score, disease-modifying therapy, and disease duration, were evaluated.

Results

Seven of 30 patients did not show olfactory event related potentials. Sixteen of remaining 23 patients had a mean value of amplitude significantly lower than control group (p<0.01). The presence/absence of olfactory event related potentials was associated with dichotomous expanded disability status scale (p = 0.0433), as well as inversely correlated with the disease duration (r = −0.3641, p = 0.0479).

Conclusion

Unbiased olfactory dysfunction of different severity found in multiple sclerosis patients suggests an organic impairment which could be related to neuroinflammatory and/or neurodegenerative processes of olfactory networks, supporting the recent findings on neurophysiopathology of disease.  相似文献   

18.

Background

Unlike mammals, zebrafish have the ability to regenerate damaged parts of their central nervous system (CNS) and regain functionality of the affected area. A better understanding of the molecular mechanisms involved in zebrafish regeneration may therefore provide insight into how CNS repair might be induced in mammals. Although many studies have described differences in gene expression in zebrafish during CNS regeneration, the regulatory mechanisms underpinning the differential expression of these genes have not been examined.

Results

We used microarrays to analyse and integrate the mRNA and microRNA (miRNA) expression profiles of zebrafish retina after optic nerve crush to identify potential regulatory mechanisms that underpin central nerve regeneration. Bioinformatic analysis identified 3 miRNAs and 657 mRNAs that were differentially expressed after injury. We then combined inverse correlations between our miRNA expression and mRNA expression, and integrated these findings with target predictions from TargetScan Fish to identify putative miRNA-gene target pairs. We focused on two over-expressed miRNAs (miR-29b and miR-223), and functionally validated seven of their predicted gene targets using RT-qPCR and luciferase assays to confirm miRNA-mRNA binding. Gene ontology analysis placed the miRNA-regulated genes (eva1a, layna, nefmb, ina, si:ch211-51a6.2, smoc1, sb:cb252) in key biological processes that included cell survival/apoptosis, ECM-cytoskeleton signaling, and heparan sulfate proteoglycan binding,

Conclusion

Our results suggest a key role for miR-29b and miR-223 in zebrafish regeneration. The identification of miRNA regulation in a zebrafish injury model provides a framework for future studies in which to investigate not only the cellular processes required for CNS regeneration, but also how these mechanisms might be regulated to promote successful repair and return of function in the injured mammalian brain.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1772-1) contains supplementary material, which is available to authorized users.  相似文献   

19.

Background

The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood.

Methodology/Principal Findings

In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor.

Conclusions/Significance

This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier.  相似文献   

20.

Objective

Decrease of olfactory function in Parkinson''s disease (PD) is a well-investigated fact. Studies indicate that pharmacological treatment of PD fails to restore olfactory function in PD patients. The aim of this investigation was whether patients with PD would benefit from “training” with odors in terms of an improvement of their general olfactory function. It has been hypothesized that olfactory training should produce both an improved sensitivity towards the odors used in the training process and an overall increase of olfactory function.

Methods

We recruited 70 subjects with PD and olfactory loss into this single-center, prospective, controlled non-blinded study. Thirty-five patients were assigned to the olfactory training group and 35 subjects to the control group (no training). Olfactory training was performed over a period of 12 weeks while patients exposed themselves twice daily to four odors (phenyl ethyl alcohol: rose, eucalyptol: eucalyptus, citronellal: lemon, and eugenol: cloves). Olfactory testing was performed before and after training using the “Sniffin'' Sticks” (thresholds for phenyl ethyl alcohol, tests for odor discrimination, and odor identification) in addition to threshold tests for the odors used in the training process.

Results

Compared to baseline, trained PD patients experienced a significant increase in their olfactory function, which was observed for the Sniffin'' Sticks test score and for thresholds for the odors used in the training process. Olfactory function was unchanged in PD patients who did not perform olfactory training.

Conclusion

The present results indicate that olfactory training may increase olfactory sensitivity in PD patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号