首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lee M  Choy WC  Abid MR 《PloS one》2011,6(12):e28454

Background

ADPH oxidase-derived reactive oxygen species (ROS) play important roles in redox homeostasis and signal transduction in endothelial cells (ECs). We previously demonstrated that c-Src plays a key role in VEGF-induced, ROS-dependent selective activation of PI3K-Akt but not PLCγ-1-ERK1/2 signaling pathways. The aim of the present study was to understand how VEGFR-2-c-Src signaling axis ‘senses’ NADPH oxidase-derived ROS levels and couples VEGF activation of c-Src to the redox state of ECs.

Methodology/Principal Findings

Using biotinylated probe that detects oxidation of cysteine thiol (cys-OH) in intracellular proteins, we demonstrate that VEGF induced oxidative modification in c-Src and VEGFR-2, and that reduction in ROS levels using siRNA against p47phox subunit of Rac1-dependent NADPH oxidase inhibited this phenomenon. Co-immunoprecipitation studies using human coronary artery ECs (HCAEC) showed that VEGF-induced ROS-dependent interaction between VEGFR-2 and c-Src correlated with their thiol oxidation status. Immunofluorescence studies using antibodies against internalized VEGFR-2 and c-Src demonstrated that VEGF-induced subcellular co-localization of these tyrosine kinases were also dependent on NADPH oxidsase-derived ROS.

Conclusion/Significance

These results demonstrate that VEGF induces cysteine oxidation in VEGFR-2 and c-Src in an NADPH oxidase-derived ROS-dependent manner, suggesting that VEGFR-2 and c-Src can ‘sense’ redox levels in ECs. The data also suggest that thiol oxidation status of VEGFR-2 and c-Src correlates with their ability to physically interact with each other and c-Src activation. Taken together, these findings suggest that prior to activating downstream c-Src-PI3K-Akt signaling pathway, VEGFR-2-c-Src axis requires an NADPH oxidase-derived ROS threshold in ECs.  相似文献   

3.
4.
Serum starvation has recently been shown to cause cell death of cardiac fibroblasts and increased synthesis of extracellular matrix proteins in the surviving cells. In the present study, events occurring in the dying cells were investigated. Cultured adult rat cardiac fibroblasts were exposed to serum-free medium. Cell number was measured using a Coulter Counter Channelyzer. The activity of the extracellular signal-regulated or mitogen-activated protein kinases (ERK1/2, p42/p44MAPK), the p38 kinase (p38MAPK), the c-Jun N-terminal kinases (p46/p54JNK), and Akt kinase was assessed by Western blotting and phospho-specific antibodies. Caspase 7-cleavage was investigated by Western blotting and specific antibodies. Caspase 3 activity was measured by detection of its cleaved substrate. The appearance of necrosis was studied by inclusion of trypan blue. Apoptosis was assessed by DNA ladder formation. The mRNA expression of Bax and Bcl-2 was investigated by quantitative real-time PCR. Serum withdrawal led to the death of 26% of cultured isolated cardiac fibroblasts during the first 5 h. The activity of the p42/p44MAPK as well as of Akt kinase was partially reduced. For p46/p54JNK and p38MAPK, elevated phosphorylation was measured. Inhibition of p46/p54JNK and p38MAPK activity by SB202190 did not affect the decrease in cell number. Cleavage of caspase7 was detected after 90 min. However, no activation of caspase 3 was measured. DNA fragmentation was not found after serum depletion. Trypan blue staining, however, was observed in 16% of the cells after 5 h. The mRNA levels of both Bax and Bcl-2 were increased after 30 min. These results indicate the appearance of necrosis during serum starvation in cardiac fibroblasts. However, some processes typical of apoptosis were also detected.  相似文献   

5.

Background

Classical mammalian mitogen-activated protein kinase (MAPK) pathways consist of a cascade of three successive phosphorylation events resulting in the phosphorylation of a variety of substrates, including another class of protein kinases referred to as MAPK-activating protein kinases (MAPKAPKs). The MAPKAPKs MK2, MK3 and MK5 are closely related, but MK2 and MK3 are the major downstream targets of the p38MAPK pathway, while MK5 can be activated by the atypical MAPK ERK3 and ERK4, protein kinase A (PKA), and maybe p38MAPK. MK2, MK3, and MK5 can phosphorylate the common substrate small heat shock protein 27 (HSP27), a modification that regulates the role of HSP27 in actin polymerization. Both stress and cAMP elevating stimuli can cause F-actin remodeling, but whereas the in vivo role of p38MAPK-MK2 in stress-triggered HSP27 phosphorylation and actin reorganization is well established, it is not known whether MK2 is involved in cAMP/PKA-induced F-actin rearrangements. On the other hand, MK5 can phosphorylate HSP27 and cause cytoskeletal changes in a cAMP/PKA-dependent manner, but its role as HSP27 kinase in stress-induced F-actin remodeling is disputed. Therefore, we wanted to investigate the implication of MK2 and MK5 in stress- and PKA-induced HSP27 phosphorylation.

Results

Using HEK293 cells, we show that MK2, MK3, and MK5 are expressed in these cells, but MK3 protein levels are very moderate. Stress- and cAMP-elevating stimuli, as well as ectopic expression of active MKK6 plus p38MAPK or the catalytic subunit of PKA trigger HSP27 phosphorylation, and specific inhibitors of p38MAPK and PKA prevent this phosphorylation. Depletion of MK2, but not MK3 and MK5 diminished stress-induced HSP27 phosphorylation, while only knockdown of MK5 reduced PKA-induced phosphoHSP27 levels. Stimulation of the p38MAPK, but not the PKA pathway, caused activation of MK2.

Conclusion

Our results suggest that in HEK293 cells MK2 is the HSP27 kinase engaged in stress-induced, but not cAMP-induced phosphorylation of HSP27, while MK5 seems to be the sole MK to mediate HSP27 phosphorylation in response to stimulation of the PKA pathway. Thus, despite the same substrate specificity towards HSP27, MK2 and MK5 are implicated in different signaling pathways causing actin reorganization.  相似文献   

6.

Background

We aimed to test the antiproliferative effect of acetylsalicylic acid (ASA) on vascular smooth muscle cells (VSMC) from bypass surgery patients and the role of transforming growth factor beta 1 (TGF-β1).

Methodology/Principal Findings

VSMC were isolated from remaining internal mammary artery from patients who underwent bypass surgery. Cell proliferation and DNA fragmentation were assessed by ELISA. Protein expression was assessed by Western blot. ASA inhibited BrdU incorporation at 2 mM. Anti-TGF-β1 was able to reverse this effect. ASA (2 mM) induced TGF-β1 secretion; however it was unable to induce Smad activation. ASA increased p38MAPK phosphorylation in a TGF-β1-independent manner. Anti-CD105 (endoglin) was unable to reverse the antiproliferative effect of ASA. Pre-surgical serum levels of TGF-β1 in patients who took at antiplatelet doses ASA were assessed by ELISA and remained unchanged.

Conclusions/Significance

In vitro antiproliferative effects of aspirin (at antiinflammatory concentration) on human VSMC obtained from bypass patients are mediated by TGF-β1 and p38MAPK. Pre-surgical serum levels of TGF- β1 from bypass patients who took aspirin at antiplatelet doses did not change.  相似文献   

7.

Introduction

Oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (OxPAPC) differentially modulate endothelial cell (EC) barrier function in a dose-dependent fashion. Vascular endothelial growth factor receptor-2 (VEGFR2) is involved in the OxPAPC-induced EC inflammatory activation. This study examined a role of VEGFR2 in barrier dysfunction caused by high concentrations of OxPAPC and evaluated downstream signaling mechanisms resulting from the effect of OxPAPC in EC from pulmonary and systemic circulation.

Methods

EC monolayer permeability in human pulmonary artery endothelial cells (HPAEC) and human aortic endothelial cells (HAEC) was monitored by changes in transendothelial electrical resistance (TER) across EC monolayers. Actin cytoskeleton was examined by immunostaining with Texas Red labeled phalloidin. Phosphorylation of myosin light chains (MLC) and VE-Cadherin was examined by Western blot and immunofluorescence techniques. The role of VEGFR2 in OxPAPC-induced permeability and cytoskeletal arrangement were determined using siRNA-induced VEGFR2 knockdown.

Results

Low OxPAPC concentrations (5–20 µg/ml) induced a barrier protective response in both HPAEC and HAEC, while high OxPAPC concentrations (50–100 µg/ml) caused a rapid increase in permeability ; actin stress fiber formation and increased MLC phosphorylation were observed as early as 30 min after treatment. VEGFR2 knockdown dramatically decreased the amount of MLC phosphorylation and stress fiber formation caused by high OxPAPC concentrations with modest effects on the amount of VE-cadherin phosphorylation at Y731. We present evidence that activation of Rho is involved in the OxPAPC/VEGFR2 mechanism of EC permeability induced by high OxPAPC concentrations. Knockdown of VEGFR2 did not rescue the early drop in TER but prevented further development of OxPAPC-induced barrier dysfunction.

Conclusions

This study shows that VEGFR2 is involved in the delayed phase of EC barrier dysfunction caused by high OxPAPC concentrations and contributes to stress fiber formation and increased MLC phosphorylation.  相似文献   

8.
Leptin administration has been shown to enhance muscle lipid oxidation in relation to the energy expenditure. Both long-form (Ob-RL) and short-form leptin receptors (Ob-RS) are expressed in skeletal muscle, but the role of Ob-RS is unclear. In the present study, the role of Ob-RS in leptin-induced lipid oxidation in skeletal muscles was investigated using primary murine myotubes from m/m and db/db mice. Primary myotubes were treated with leptin (0.1, 1, 10, 100 nM) for 24 h. Lipid oxidation was determined by 14CO2 production rate from [1-14C] palmitate. Leptin was found to increase lipid oxidation in a dose- and time-dependent manner in db/db myotubes as well as in m/m myotubes. Leptin significantly increased phosphorylation of JAK2 and STAT3 in both types of myotube. Leptin-induced lipid oxidation was abolished by STAT3 siRNA. To investigate the mechanism underlying leptin-induced lipid oxidation, the effects of pharmacological inhibitors were examined. JAK2 or p38 MAPK inhibitor suppressed leptin-induced lipid oxidation and decreased STAT3 phosphorylation in both types of myotube, respectively. Leptin significantly increased phosphorylation of p38 MAPK, and leptin-induced lipid oxidation was abolished by treatment with p38 MAPK siRNA in both types of myotube. These results suggest that leptin induces lipid oxidation in skeletal muscle through the JAK2/p38 MAPK/STAT3 signaling pathway via not only Ob-RL but also Ob-RS.  相似文献   

9.

Background

Fabry disease (FD) is caused by a deficiency of the lysosomal enzyme alpha-galactosidase A (GLA) resulting in the accumulation of globotriaosylsphingosine (Gb3) in a variety of tissues. While GLA deficiency was always considered as the fulcrum of the disease, recent attention shifted towards studying the mechanisms through which Gb3 accumulation in vascular cells leads to endothelial dysfunction and eventually multiorgan failure. In addition to the well-described macrovascular disease, FD is also characterized by abnormalities of microvascular function, which have been demonstrated by measurements of myocardial blood flow and coronary flow reserve. To date, the relative importance of Gb3 accumulation versus GLA deficiency in causing endothelial dysfunction is not fully understood; furthermore, its differential effects on cardiac micro- and macrovascular endothelial cells are not known.

Methods and Results

In order to assess the effects of Gb3 accumulation versus GLA deficiency, human macro- and microvascular cardiac endothelial cells (ECs) were incubated with Gb3 or silenced by siRNA to GLA. Gb3 loading caused deregulation of several key endothelial pathways such as eNOS, iNOS, COX-1 and COX-2, while GLA silencing showed no effects. Cardiac microvascular ECs showed a greater susceptibility to Gb3 loading as compared to macrovascular ECs.

Conclusions

Deregulation of key endothelial pathways as observed in FD vasculopathy is likely caused by intracellular Gb3 accumulation rather than deficiency of GLA. Human microvascular ECs, as opposed to macrovascular ECs, seem to be affected earlier and more severely by Gb3 accumulation and this notion may prove fundamental for future progresses in early diagnosis and management of FD patients.  相似文献   

10.

Background

Hepatocellular carcinoma (HCC) is a classical example of inflammation-linked cancer and is characterized by hypervascularity suggesting rich angiogenesis. Cycloxygenase-2 (COX-2) is a potent mediator of inflammation and is considered to upregulate angiogenesis. The aims of the study are (1) to analyze expression of Cox-2 mRNA, Cox-2 protein, miR-16, miR-21 and miR-101 in HCC and adjacent liver parenchyma in cirrhotic and noncirrhotic liver, (2) to investigate the relation between COX-2 expression, miR-21 expression and angiogenic factors in these tissues and (3) to investigate the association between miR-16 and miR-101 and COX-2 expression.

Methods

Tissue samples of HCC and adjacent liver parenchyma of 21 noncirrhotic livers and 20 cirrhotic livers were analyzed for COX-2 expression at the mRNA level (qRT-PCR) and at the protein level by Western blot and immunohistochemistry. Gene expression of VEGFA, VEGFR1, VEGFR2, Ang-1, Ang-2 and Tie-2 were correlated with COX-2 levels. miR-16, miR-21 and miR-101 gene expression levels were quantified in HCC tumor tissue.

Results

COX-2 mRNA and protein levels were lower in HCC as compared to adjacent liver parenchyma both in cirrhotic and noncirrhotic liver. COX-2 protein localized mainly in vascular and sinusoidal endothelial cells and in Kupffer cells. At the mRNA level but not at the protein level, COX-2 correlated with mRNA levels of angiogenic factors VEGFR1, Ang-1, and Tie2. miR-21 expression was higher in cirrhotic tissues versus noncirrhotic tissues. MiR-101 expression was lower in cirrhotic versus noncirrhotic adjacent liver parenchyma. None of the miRNAs correlelated with COX-2 expression. miR-21 correlated negatively with Tie-2 receptor in adjacent liver parenchyma.

Conclusions

In human HCC, COX-2 mRNA but not COX-2 protein levels are associated with expression levels of angiogenic factors. MiR-21 levels are not associated with angiogenic molecules. MiR-16 and miR-101 levels do not correlate with COX-2 mRNA and protein levels.  相似文献   

11.

Background

Soluble leptin receptor (OBRe), one of several leptin receptor isoforms, is the only bona fide leptin binding protein in plasma. Our earlier studies demonstrated that OBRe modulates leptin levels in circulation. Both clinical and in vitro studies have shown that OBRe expression is inversely correlated to body weight and leptin levels. However, it is not clear whether OBRe plays an active role, either in collaboration with leptin or independently, in the maintenance of body weight.

Methodology/Principal Findings

To investigate the function of OBRe in the regulation of energy homeostasis, we generated transgenic mice that express OBRe under the control of human serum amyloid P (hSAP) component gene promoter. The transgene led to approximately doubling of OBRe in circulation in the transgenic mice than in wild type control mice. Transgenic mice exhibited lower body weight at 4 weeks of age, and slower rate of weight gain when compared with control mice. Furthermore, transgenic mice had lower body fat content. Indirect calorimetry revealed that transgenic mice had reduced food intake, increased basal metabolic rate, and increased lipid oxidation, which could account for the differences in body weight and body fat content. Transgenic mice also showed higher total circulating leptin, with the majority of it being in the bound form, while the amount of free leptin is comparable between transgenic and control mice.

Conclusions

These results are consistent with the role of OBRe as a leptin binding protein in regulating leptin''s bioavailability and activity.  相似文献   

12.
13.

Background

This study investigated whether lipopolysaccharide (LPS) increase protease-activated receptor-2 (PAR-2) expression and enhance the association between PAR-2 expression and chemokine production in human vascular endothelial cells (ECs).

Methods

The morphology of ECs was observed through microphotography in cultured human umbilical vein ECs (EA. hy926 cells) treated with various LPS concentrations (0, 0.25, 0.5, 1, and 2 μg/mL) for 24 h, and cell viability was assessed using the MTT assay. Intracellular calcium imaging was performed to assess agonist (trypsin)-induced PAR-2 activity. Western blotting was used to explore the LPS-mediated signal transduction pathway and the expression of PAR-2 and adhesion molecule monocyte chemoattractant protein-1 (MCP-1) in ECs.

Results

Trypsin stimulation increased intracellular calcium release in ECs. The calcium influx was augmented in cells pretreated with a high LPS concentration (1 μg/mL). After 24 h treatment of LPS, no changes in ECs viability or morphology were observed. Western blotting revealed that LPS increased PAR-2 expression and enhanced trypsin-induced extracellular signal-regulated kinase (ERK)/p38 phosphorylation and MCP-1 secretion. However, pretreatment with selective ERK (PD98059), p38 mitogen-activated protein kinase (MAPK) (SB203580) inhibitors, and the selective PAR-2 antagonist (FSLLRY-NH2) blocked the effects of LPS-activated PAR-2 on MCP-1 secretion.

Conclusions

Our findings provide the first evidence that the bacterial endotoxin LPS potentiates calcium mobilization and ERK/p38 MAPK pathway activation and leads to the secretion of the pro-inflammatory chemokine MCP-1 by inducing PAR-2 expression and its associated activity in vascular ECs. Therefore, PAR-2 exerts vascular inflammatory effects and plays an important role in bacterial infection-induced pathological responses.
  相似文献   

14.
The airways in asthma and COPD are characterized by an increase in airway smooth muscle (ASM) mass and bronchial vascular changes associated with increased expression of pro-angiogenic growth factors, such as fibroblast growth factors (FGF-1 and FGF-2) and vascular endothelial growth factor (VEGF). We investigated the contribution of FGF-1/-2 in VEGF production in ASM cells and assessed the influence of azithromycin and dexamethasone and their underlying signaling mechanisms. Growth-synchronized human ASM cells were pre-treated with MAPK inhibitors, U0126 for ERK1/2MAPK and SB239063 for p38MAPK as well as with dexamethasone or azithromycin, 30 min before incubation with FGF-1 or FGF-2. Expression of VEGF (VEGF-A, VEGF121, and VEGF165) was assessed by quantitative PCR, VEGF release by ELISA and MAPK phosphorylation by Western blotting. Both FGF-1 and FGF-2 significantly induced mRNA levels of VEGF-A, VEGF121, and VEGF165. The VEGF protein release was increased 1.8-fold (FGF-1) and 5.5-fold (FGF-2) as compared to controls. Rapid transient increase in ERK1/2MAPK and p38MAPK phosphorylation and subsequent release of VEGF from FGF-1 or FGF-2-treated ASM cells were inhibited by respective blockers. Furthermore, azithromycin and dexamethasone significantly reduced both the VEGF release and the activation of p38MAPK pathway in response to FGF-1 or FGF-2 treatment. Our Results demonstrate that FGF-1 and FGF-2 up-regulate VEGF production via ERK1/2MAPK and p38MAPK pathways. Both azithromycin and dexamethasone elicited their anti-angiogenic effects via p38MAPK pathway in vitro, thereby suggesting a possible therapeutic approach to tackle VEGF-mediated vascular remodeling.  相似文献   

15.

Background

Spermidine, a naturally occurring polyamine, displays a wide variety of internal biological activities including cell growth and proliferation. However, the molecular mechanisms responsible for its anti-inflammatory activity have not yet been elucidated.

Methods

The anti-inflammatory properties of spermidine were studied using lipopolysaccharide (LPS)-stimulated murine BV2 microglia model. As inflammatory parameters, the production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin (IL)-6 and tumor necrosis factor (TNF)-α were evaluated. We also examined the spermidine''s effect on the activity of nuclear factor-kappaB (NF-κB), and the phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinases (MAPKs) pathways.

Results

Pretreatment with spermidine prior to LPS treatment significantly inhibited excessive production of NO and PGE2 in a dose-dependent manner, and was associated with down-regulation of expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Spermidine treatment also attenuated the production of pro-inflammatory cytokines, including IL-6 and TNF-α, by suppressing their mRNA expressions. The mechanism underlying spermidine-mediated attenuation of inflammation in BV2 cells appeared to involve the suppression of translocation of NF-κB p65 subunit into the nucleus, and the phosphorylation of Akt and MAPKs.

Conclusions

The results indicate that spermidine appears to inhibit inflammation stimulated by LPS by blocking the NF-κB, PI3K/Akt and MAPKs signaling pathways in microglia.  相似文献   

16.
Mammalian intestinal epithelium undergoes continuous cell turn over, with cell proliferation in the crypts and apoptosis in the villus. Both transforming growth factor (TGF)-β and gastrin-releasing peptide (GRP) are involved in the regulation of intestinal epithelial cells for division, differentiation, adhesion, migration and death. Previously, we have shown that TGF-β and bombesin (BBS) synergistically induce cyclooxygenase-2 (COX-2) expression and subsequent prostaglandin E2 (PGE2) production through p38MAPK in rat intestinal epithelial cell line stably transfected with GRP receptor (RIE/GRPR), suggesting the interaction between TGF-β signaling pathway and GRPR. The current study examined the biological responses of RIE/GRPR cells to TGF-β and BBS. Treatment with TGF-β1 (40 pM) and BBS (100 nM) together synergistically inhibited RIE/GRPR growth and induced apoptosis. Pretreatment with SB203580 (10 μM), a specific inhibitor of p38MAPK, partially blocked the synergistic effect of TGF-β and BBS on apoptosis. In conclusion, BBS enhanced TGF-β growth inhibitory effect through apoptosis induction, which is at least partially mediated by p38MAPK.  相似文献   

17.
Y Guo  DN Tukaye  WJ Wu  X Zhu  M Book  W Tan  SP Jones  G Rokosh  S Narumiya  Q Li  R Bolli 《PloS one》2012,7(7):e41178

Background

Pharmacologic studies with cyclooxygenase-2 (COX-2) inhibitors suggest that the late phase of ischemic preconditioning (PC) is mediated by COX-2. However, nonspecific effects of COX-2 inhibitors cannot be ruled out, and the selectivity of these inhibitors for COX-2 vs. COX-1 is only relative. Furthermore, the specific prostaglandin (PG) receptors responsible for the salubrious actions of COX-2-derived prostanoids remain unclear.

Objective

To determine the role of COX-2 and prostacyclin receptor (IP) in late PC by gene deletion.

Methods

COX-2 knockout (KO) mice (COX-2−/−), prostacyclin receptor KO (IP−/−) mice, and respective wildtype (WT, COX-2+/+ and IP+/+) mice underwent sham surgery or PC with six 4-min coronary occlusion (O)/4-min R cycles 24 h before a 30-min O/24 h R.

Results

There were no significant differences in infarct size (IS) between non-preconditioned (non-PC) COX-2+/+, COX-2−/−, IP+/+, and IP−/− mice, indicating that neither COX-2 nor IP modulates IS in the absence of PC. When COX-2−/− or IP−/− mice were preconditioned, IS was not reduced, indicating that the protection of late PC was completely abrogated by deletion of either the COX-2 or the IP gene. Administration of the IP selective antagonist, RO3244794 to C57BL6/J (B6) mice 30 min prior to the 30-min O had no effect on IS. When B6 mice were preconditioned 24 h prior to the 30-min O, IS was markedly reduced; however, the protection of late PC was completely abrogated by pretreatment of RO3244794.

Conclusions

This is the first study to demonstrate that targeted disruption of the COX-2 gene completely abrogates the infarct-sparing effect of late PC, and that the IP, downstream of the COX-2/prostanoid pathway, is a key mediator of the late PC. These results provide unequivocal molecular genetic evidence for an essential role of the COX-2/PGI2 receptor axis in the cardioprotection afforded by the late PC.  相似文献   

18.
19.

Objectives

This study was designed to evaluate the interaction between aging and obesity on cardiac contractile and intracellular Ca2+ properties.

Methods

Cardiomyocytes from young (4-mo) and aging (12- and 18-mo) male lean and the leptin deficient ob/ob obese mice were treated with leptin (0.5, 1.0 and 50 nM) for 4 hrs in vitro. High fat diet (45% calorie from fat) and the leptin receptor mutant db/db obesity models at young and older age were used for comparison. Cardiomyocyte contractile and intracellular Ca2+ properties were evaluated including peak shortening (PS), maximal velocity of shortening/relengthening (± dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90), intracellular Ca2+ levels and decay. O2 levels were measured by dihydroethidium fluorescence.

Results

Our results revealed reduced survival in ob/ob mice. Aging and obesity reduced PS, ± dL/dt, intracellular Ca2+ rise, prolonged TR90 and intracellular Ca2+ decay, enhanced O2 production and p 47phox expression without an additive effect of the two, with the exception of intracellular Ca2+ rise. Western blot analysis exhibited reduced Ob-R expression and STAT-3 phosphorylation in both young and aging ob/ob mice, which was restored by leptin. Aging and obesity reduced phosphorylation of Akt, eNOS and p38 while promoting pJNK and pIκB. Low levels of leptin reconciled contractile, intracellular Ca2+ and cell signaling defects as well as O2 production and p 47phox upregulation in young but not aging ob/ob mice. High level of leptin (50 nM) compromised contractile and intracellular Ca2+ response as well as O2 production and stress signaling in all groups. High fat diet-induced and db/db obesity displayed somewhat comparable aging-induced mechanical but not leptin response.

Conclusions

Taken together, our data suggest that aging and obesity compromise cardiac contractile function possibly via phosphorylation of Akt, eNOS and stress signaling-associated O2 release.  相似文献   

20.
Regulated endothelial exocytosis of Weibel-Palade bodies (WPBs), the first stage in leukocyte trafficking, plays a pivotal role in inflammation and injury. Acute mechanical stretch has been closely associated with vascular inflammation, although the precise mechanism is unknown. Here, we show that hypertensive stretch regulates the exocytosis of WPBs of endothelial cells (ECs) through VEGF receptor 2 (VEGFR2) signaling pathways. Stretch triggers a rapid release (within minutes) of von Willebrand factor and interleukin-8 from WPBs in cultured human ECs, promoting the interaction between leukocytes and ECs through the translocation of P-selectin to the cell membrane. We further show that hypertensive stretch significantly induces P-selectin translocation of intact ECs and enhances leukocyte adhesion both ex vivo and in vivo. Stretch-induced endothelial exocytosis is mediated via a VEGFR2/PLCγ1/calcium pathway. Interestingly, stretch also induces a negative feedback via a VEGFR2/Akt/nitric oxide pathway. Such dual effects are confirmed using pharmacological and genetic approaches in carotid artery segments, as well as in acute hypertensive mouse models. These studies reveal mechanical stretch as a potent agonist for endothelial exocytosis, which is modulated by VEGFR2 signaling. Thus, VEGFR2 signaling pathways may represent novel therapeutic targets in limiting hypertensive stretch-related inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号