首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variants of carnitine palmitoyltransferase 1A (CPT1A), a key hepatic lipid oxidation enzyme, may influence how fatty acid oxidation contributes to obesity and metabolic outcomes. CPT1A is regulated by diet, suggesting interactions between gene variants and diet may influence outcomes. The objective of this study was to test the association of CPT1A variants with body composition and lipids, mediated by consumption of polyunsaturated fatty acids (PUFA). Obesity phenotypes and fasting lipids were measured in a cross-sectional sample of Yup'ik Eskimo individuals (n = 1141) from the Center of Alaska Native Health Research (CANHR) study. Twenty-eight tagging CPT1A SNPs were evaluated with outcomes of interest in regression models accounting for family structure. Several CPT1A polymorphisms were associated with HDL-cholesterol and obesity phenotypes. The P479L (rs80356779) variant was associated with all obesity-related traits and fasting HDL-cholesterol. Interestingly, the association of P479L with HDL-cholesterol was still significant after correcting for body mass index (BMI), percentage body fat (PBF), or waist circumference (WC). Our findings are consistent with the hypothesis that the L479 allele of the CPT1A P479L variant confers a selective advantage that is both cardioprotective (through increased HDL-cholesterol) and associated with reduced adiposity.  相似文献   

2.
Apolipoprotein A5 (APOA5) and lipoprotein lipase (LPL) proteins interact functionally to regulate lipid metabolism, and single‐nucleotide polymorphisms (SNPs) for each gene have also been associated independently with obesity risk. Evaluating gene combinations may be more effective than single SNP analyses in identifying genetic risk, but insufficient minor allele frequency (MAF) often limits evaluations of potential epistatic relationships. Populations with multiple ancestral admixtures may provide unique opportunities for evaluating genetic interactions. We examined relationships between LPL m107 (rs1800590) and APOA5 S19W (rs3135506) and lipid and anthropometric measures in Caribbean origin Hispanics (n = 1,019, aged 45–75 years) living in the Boston metropolitan area. Significant interaction terms between LPL m107 and APOA5 S19W were observed for BMI (P = 0.003) and waist circumference (P = 0.019). Higher BMI (P = 0.001), waist (P = 0.011) and hip (P = 0.026) circumference were observed in minor allele (G) carriers for LPL m107 who also carried the APOA5 S19W minor allele (G). Additionally, extreme obesity (BMI ≥ 40 kg/m2) risk was higher (odds ratio = 4.02; 95% confidence interval: 1.81–8.91; global P = 0.008) for minor allele carriers for both SNPs (LPL TG+GG, APOA5 CG+GG) compared to major allele carriers for both SNPs. In summary, we identified significant interactions for APOA5 S19W and LPL m107 for obesity in Caribbean Hispanics. Population‐specific MAFs increase the difficulties of replicating gene–gene interactions, but may support the hypothesis that combinations of frequencies in selected genes could heighten obesity susceptibility in a given population. Analyses of gene–gene interactions may improve understanding of genetically based obesity risk, and underscore the need for further study of groups with multiple ancestral admixtures.  相似文献   

3.
In animal models, STAT3 action in the hypothalamus and liver appears essential for normal body weight and glucose homeostasis in response to insulin. We hypothesized that variation in the STAT3 gene may be associated with body fat and/or insulin resistance in the general population. Five tagging SNPs spanning the STAT3 gene, rs8074524, rs2293152, rs2306580, rs6503695, and rs7211777 were genotyped in 2776 white female twins (mean age, 47.4+/-12.5 yrs) from the St Thomas' United Kingdom Adult Twin Registry (Twins UK). Minor allele frequencies were as follows: rs8074524 (0.19), rs2293152 (0.37), rs2306580 (0.06), rs6503695 (0.35), and rs7211777 (0.34). The minor allele of rs2293152 was associated with higher homeostasis model assessment index of insulin resistance (p=0.013) in the full cohort and confirmed in sib-transmission/disequilibrium test (TDT): (p=0.015; n=60). However, there were no associations with fasting serum insulin or glucose or with obesity variables. Although defective STAT3 action results in obesity and insulin resistance in animal models, we failed to establish any indicative associations with common SNPs in this human study.  相似文献   

4.
5.

Background

The glucokinase regulatory protein encoded by GCKR plays an important role in glucose metabolism and a single nucleotide polymorphism (SNP) rs1260326 (P446L) in the gene has been associated with several age-related biomarkers, including triglycerides, glucose, insulin and apolipoproteins. However, associations between SNPs in the gene and other ageing phenotypes such as cognitive and physical capability have not been reported.

Methods

As part of the Healthy Ageing across the Life Course (HALCyon) collaborative research programme, men and women from five UK cohorts aged between 44 and 90+ years were genotyped for rs1260326. Meta-analysis was used to pool within-study genotypic associations between the SNP and several age-related phenotypes, including body mass index (BMI), blood lipid levels, lung function, and cognitive and physical capability.

Results

We confirm the associations between the minor allele of the SNP and higher triglycerides and lower glucose levels. We also observed a triglyceride-independent association between the minor allele and lower BMI (pooled beta on z-score = −0.04, p-value = 0.0001, n = 16,251). Furthermore, there was some evidence for gene-environment interactions, including physical activity attenuating the effects on triglycerides. However, no associations were observed with measures of cognitive and physical capability.

Conclusion

Findings from middle-aged to older adults confirm associations between rs1260326 GCKR and triglycerides and glucose, suggest possible gene-environment interactions, but do not provide evidence that its relevance extends to cognitive and physical capability.  相似文献   

6.
Genetic variability in the FADS1-FADS2 gene cluster [encoding delta-5 (D5D) and delta-6 (D6D) desaturases] has been associated with plasma long-chain PUFA (LCPUFA) and lipid levels in adults. To better understand these relationships, we further characterized the association between FADS1-FADS2 genetic variability and D5D and D6D activities in adolescents. Thirteen single nucleotide polymorphisms (SNPs) were genotyped in 1,144 European adolescents (mean ± SD age: 14.7 ± 1.4 y). Serum phospholipid fatty acid levels were analyzed using gas chromatography. D5D and D6D activities were estimated from the C20:4n-6/C20:3n-6 and C20:3n-6/C18:2n-6 ratios, respectively. Minor alleles of nine SNPs were associated with higher 18:2n-6 levels (1.9E-18 ≤ P ≤ 6.1E-5), lower C20:4n-6 levels (7.1E-69 ≤ P ≤ 1.2E-12), and lower D5D activity (7.2E-44 ≤ P ≤ 4.4E-5). All haplotypes carrying the rs174546 minor allele were associated with lower D5D activity, suggesting that this SNP is in linkage disequilibrium with a functional SNP within FADS1. In contrast, only the rs968567 minor allele was associated with higher D6D activity (P = 1.5E-6). This finding agrees with an earlier in vitro study showing that the minor allele of rs968567 is associated with a higher FADS2 promoter activity. These results suggest that rare alleles of several SNPs in the FADS gene cluster are associated with higher D6D activity and lower D5D activity in European adolescents.  相似文献   

7.
In this work, we assessed whether SERPINE1 expression could be under the influence of microRNAs (miRNAs) predicted to bind the SERPINE1 3'UTR region. We specifically focused on the 3'UTR region harboring a common polymorphism, rs1050955, that have been found associated to SERPINE1 monocyte expression, and investigated whether the presence of different alleles at rs1050955 could modify the miRNAs binding efficiency and affect PAI-1 protein levels. We demonstrated that, in human umbilical vein endothelial cells, both miR-421 and miR-30c directly interacted with PAI-1 mRNA to inhibit the expression of the associated protein. However, these inhibitory mechanisms were independent on the allele present at the rs1050955 locus. We further showed that miR-421 levels correlated with PAI-1 activity in the plasma sample of 40 patients with venous thrombosis. Our results strongly suggest that the regulation of PAI-1 molecule could be under the influence of several miRNAs whose measurement in the plasma of patients could be envisaged as a biomarker for inflammatory and thrombotic disorders.  相似文献   

8.
Jung SH  Shim SH  Park SH  Park JE  Park HR  Ahn EH  Kim SH  Cha DH 《Gene》2012,494(2):237-241

Context

Myostatin (MSTN) is a member of the TGF-β superfamily of signal transduction proteins, which plays an important role in muscular growth and lipid metabolism.

Objective

To study the association of myostatin gene polymorphisms with obesity in Chinese north Han human subjects.

Design

297 healthy and 606 over-weight/obesity Chinese north Han subjects were selected as healthy control group and overweight/obesity group, respectively. The methods of DNA Sequencing, Restriction Fragment Length Polymorphism (RFLP) and TaqMan® probe were used to screen myostatin gene SNPs and clarify genotype in every individual.

Results

Total 11 SNPs in MSTN gene were identified by DNA sequencing and three SNPs including rs35781413 (G/A), rs3791783 (A/G) and rs3791782 (A/G) were selected for further study in total 903 samples. The results showed that the frequency of AA genotype of rs3791783 A/G SNP was significantly higher (56.4% vs. 50.8%) and the frequency GG genotype was significantly lower (3.2% vs. 6.7%) in overweight/obese patients than in normal weight subjects. A logistic regression analysis under a recessive inheritance model (AA + AG vs.GG) demonstrated that the Odd ratio for AA + AG vs.GG were 1.985 (95% CI 1.078-3.643; P = 0.029). Among three genotypes of rs3791783, the subjects with AA genotype have much more higher body weight, BMI, waist circumference, TC, TG and LDL-C than those with GG genotype.

Conclusions

Our data firstly suggest that genetic variant rs3791783 A/G in myostatin gene are associated with obesity. The A allele carriers in rs3791783 SNP have an increased susceptibility to obesity compared with the G allele carriers. Participants with AA genotype in rs3791783 SNP site will have higher risk suffered from overweight or obesity than those with GG genotype.  相似文献   

9.

Background

Both genetic polymorphisms and environmental risk factors play important roles in the development of human chronic diseases including lung cancer. This is the first case-control study of interaction between polymorphisms in pre-miRNA genes and cooking oil fume exposure on the risk of lung cancer.

Methods

A hospital-based case-control study of 258 cases and 310 controls was conducted. Six polymorphisms in miRNAs were determined by Taqman allelic discrimination method. The gene-environment interactions were assessed on both additive and multiplicative scale. The statistical analyses were performed mostly with SPSS.

Results

The combination of the risk genotypes of five miRNA SNPs (miR-146a rs2910164, miR-196a2 rs11614913, miR-608 rs4919510, miR-27a rs895819 and miR-423 rs6505162) with risk factor (cooking oil fume exposure) contributed to a significantly higher risk of lung cancer, and the corresponding ORs (95% confidence intervals) were 1.91(1.04-3.52), 1.94 (1.16-3.25), 2.06 (1.22-3.49), 1.76 (1.03-2.98) and 2.13 (1.29-3.51). The individuals with both risk genotypes of miRNA SNPs and exposure to risk factor (cooking oil fumes) were in a higher risk of lung cancer than persons with only one of the two risk factors (ORs were 1.91, 1.05 and 1.41 for miR-146a rs2910164, ORs were 1.94, 1.23 and 1.34 for miR-196a2 rs11614913, ORs were 2.06, 1.41 and 1.68 for miR-608 rs4919510, ORs were 1.76, 0.82 and 1.07 for miR-27a rs895819, and ORs were 2.13, 1.15 and 1.02 for miR-423 rs6505162, respectively). All the measures of biological interaction indicate that there were not indeed biological interactions between the six SNPs of miRNAs and exposure to cooking oil fumes on an additive scale. Logistic models suggested that the gene-environment interactions were not statistically significant on a multiplicative scale.

Conclusions

The interactions between miRNA SNPs and cooking oil fume exposure suggested by ORs of different combination were not statistically significant.  相似文献   

10.
CD36 variants have been associated with type 2 diabetes, features of the metabolic syndrome, and alterations in lipid metabolism. In contrast, the effect of single-nucleotide polymorphisms (SNPs) in CD36 on insulin resistance is controversial in literature. Therefore, we investigated whether genetic variation within the CD36 gene locus affects insulin resistance in a well-phenotyped cohort of white European subjects at increased risk for type 2 diabetes. We genotyped 1,790 subjects (1,174 women, 616 men) for six SNPs tagging 100% of common variants (minor allele frequency ≥0.05) within the CD36 gene locus with an r2 ≥ 0.8. All subjects underwent an oral glucose tolerance test (OGTT) and a subset additionally a hyperinsulinemic-euglycemic clamp (n = 523). Ectopic hepatic lipids (n = 346) were assessed by magnetic resonance spectroscopy. After appropriate adjustment and Bonferroni correction for multiple comparisons, the four CD36 SNPs rs9784998, rs3211883, rs3211908, and rs3211956 significantly associated with BMI and rs3211883 and rs3211908 significantly associated with waist circumference (all P < 0.0042). In contrast, CD36 SNPs rs3211816 and rs3211960 were not associated with measures of adiposity (all P ≥ 0.11). No reliable association was detected between the six CD36 SNPs and insulin sensitivity or ectopic hepatic lipid accumulation after adjustment for age, gender, and BMI. In the long run, genetic variation within the CD36 locus may contribute to metabolic disease via its effect on body adiposity, but not via an independent effect on insulin sensitivity.  相似文献   

11.
To evaluate the associations between six single-nucleotide polymorphisms (SNPs) in intron 1 of FTO and body mass index (BMI), a case-control association study of 2314 unrelated Mexican-Mestizo adult subjects was performed. The association between each SNP and BMI was tested using logistic and linear regression adjusted for age, gender, and ancestry and assuming additive, recessive, and dominant effects of the minor allele. Association analysis after BMI stratification showed that all five FTO SNPs (rs1121980, rs17817449, rs3751812, rs9930506, and rs17817449), were significantly associated with obesity class II/III under an additive model (P<0.05). Interestingly, we also documented a genetic model-dependent influence of gender on the effect of FTO variants on increased BMI. Two SNPs were specifically associated in males under a dominant model, while the remainder were associated with females under additive and recessive models (P<0.05). The SNP rs9930506 showed the highest increased in obesity risk in females (odds ratio = 4.4). Linear regression using BMI as a continuous trait also revealed differential FTO SNP contributions. Homozygous individuals for the risk alleles of rs17817449, rs3751812, and rs9930506 were on average 2.18 kg/m2 heavier than homozygous for the wild-type alleles; rs1121980 and rs8044769 showed significant but less-strong effects on BMI (1.54 kg/m2 and 0.9 kg/m2, respectively). Remarkably, rs9930506 also exhibited positive interactions with age and BMI in a gender-dependent manner. Women carrying the minor allele of this variant have a significant increase in BMI by year (0.42 kg/m2, P = 1.17 x 10−10). Linear regression haplotype analysis under an additive model, confirmed that the TGTGC haplotype harboring all five minor alleles, increased the BMI of carriers by 2.36 kg/m2 (P = 1.15 x 10−5). Our data suggest that FTO SNPs make differential contributions to obesity risk and support the hypothesis that gender differences in the mechanisms involving these variants may contribute to disease development.  相似文献   

12.
Retinol‐binding protein 4 (RBP4) is a novel adipokine that likely contributes to systemic insulin resistance and dyslipidemia. The role of genetic variations in RBP4 on phenotypes of glucose and lipid metabolism is not clear in humans. The purpose of this study was to examine five single‐nucleotide polymorphisms (SNPs) in the RBP4 gene to determine their relationship with markers of insulin resistance and serum lipids in the CODING Study. The CODING Study consists of 1,836 subjects recruited from the genetically homogeneous population of Newfoundland and Labrador (NL), Canada. Serum glucose, insulin, homeostasis model assessment of insulin resistance (HOMAIR), HOMA for β cell function (HOMAβ), total cholesterol (Chol), high‐density lipoprotein cholesterol (HDL‐C), low‐density lipoprotein cholesterol (LDL‐C), and triglycerides were determined after a 12‐h fast. Five SNPs within RBP4 (rs3758539, G/A 5′ flanking region; rs61461737, A/G intron; rs10882280, C/A intron; rs11187545, A/G intron; and rs12265684, C/G intron) were genotyped using TaqMan validated or functionally tested SNP genotyping assays. After correcting for multiple testing, we observed a significant association between the minor allele of two noncoding SNPs (rs10882280 and rs11187545) and higher serum HDL‐C (P = 0.043 and 0.042, respectively). No significant associations were observed with any other parameter related to lipid metabolism. We also found no significant association between any variant sites and markers of insulin resistance. Our results suggest that genetic variations in RBP4 may play a role in the differences in serum HDL‐C levels in the NL population.  相似文献   

13.

Background

Neighboring genes PIK3CA and KCNMB3 are both important for insulin signaling and β-cell function, but their associations with glucose-related traits are unclear.

Objective

The objective was to examine associations of PIK3CA-KCNMB3 variants with glucose-related traits and potential interaction with dietary fat.

Design

We first investigated genetic associations and their modulation by dietary fat in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study (n = 820). Nine single-nucleotide polymorphisms (SNPs) were selected for analysis, covering more than 80% of the SNPs in the region. We then sought to replicate the findings in the Boston Puerto Rican Health Study (BPRHS) (n = 844).

Results

For KCNMB3 missense mutation rs7645550, meta-analysis indicated that homeostasis model assessment of insulin resistance (HOMA-IR) was significantly lower in minor allele T homozygotes compared with major allele C carriers (pooled P-value = 0.004); for another SNP rs1183319, which is in moderate LD with rs7645550, minor allele G carriers had higher HOMA-IR compared with non-carriers in both populations (pooled P-value = 0.028). In GOLDN, rs7645550 T allele homozygotes had lower HOMA-IR only when dietary n-3: n-6 PUFA ratio was low (≤0.11, P = 0.001), but not when it was high (>0.11, P-interaction = 0.033). Similar interaction was observed between rs1183319 and n-3: n-6 PUFA ratio on HOMA-IR (P-interaction = 0.001) in GOLDN. Variance contribution analyses in GOLDN confirmed the genetic association and gene-diet interaction. In BPRHS, dietary n-3: n-6 PUFA ratio significantly modulated the association between rs1183319 and HbA1c (P-interaction = 0.034).

Conclusion

PIK3CA-KCNMB3 variants are associated with insulin resistance in populations of different ancestries, and are modified by dietary PUFA.  相似文献   

14.
15.
Myocardial infarction (MI) is the major cardiovascular disease. This can be caused by mutual interaction of environmental and genetic factors. The current study was designed to investigate the role of lipid metabolism related genetic polymorphisms with the onset of MI in Punjabi population of Pakistan. A total of 384 subjects was studied from April 2011 to July 2012. To determine the genetic associations with MI, the single nucleotide polymorphisms (SNPs) were genotyped by sequencing, as well as one label extension method. Out of eight SNPs in four candidate genes, seven genetic variants were significantly (P < 0.05) associated with elevated risk of MI. In current study two SNPs rs662799 risk allele G (P = 0.03) and rs3135506 risk allele C (P = 0.05) of APOA5 were found to be associated with significant higher risk of triglyceride levels, irrespective of age, sex, obesity, diabetes, hypertension and smoking. Gene variants (rs1558861, rs662799 and rs10750097) in APOA5 showed almost complete linkage disequilibrium and their minor allele frequencies (0.34, 0.28, and 0.41 respectively) were more prevalent (P < 0.05) in cases than controls. We further revealed risk haplotypes (C-T-G-A, G-C-A-G; P = 0.001) and protective haplotypes (G-T-A-G, C-C-G-A; P = 0.005) between these four SNPs for the progression of MI. Current study confirms the correlation between lipid metabolism related SNPs with MI and supports the role of APOA5 in raising plasma triglyceride levels in Pakistanis. However further studies are needed for delineating the role of these SNPs.  相似文献   

16.
To test the hypothesis that µ‐opioid receptor (OPRM1) gene might be involved in the prevalence of obesity, a population‐based association study was carried out in Uyghur population. Overall 10 tagging single‐nucleotide polymorphisms (tSNPs) in OPRM1 gene were genotyped. We showed that genotypes of rs1799971 in exon 1, and rs514980 and rs7773995 in intron 1 were significantly associated with the BMI. The BMI significantly decreased by the copy of minor allele carriers of rs1799971 which is a nonsynonymous functional polymorphism, whereas the BMI significantly increased by the copy of minor allele carriers of rs514980 and rs7773995. Subsequently, subjects were subsequently divided into case (BMI ≥ 28) and control group (BMI < 24). Significant associations were again observed at rs1799971, rs514980, and rs7773995, regardless of controlling for covariates age and gender or not. The stronger evidence for association was found under the additive model for each of the three SNPs. The per‐allele odds ratio of the minor allele for obesity was 0.75 (95% confidence interval 0.58–0.96, P = 0.023) for rs1799971, 1.68 (95% confidence interval 1.14–2.49, P = 0.009) for rs514980, and 1.80 (95% confidence interval 1.14–2.85, P = 0.012) for rs7773995, respectively. Our observations give the evidence that OPRM1 gene is involved in the prevalence of obesity in Uyghurs.  相似文献   

17.

Background

There is limited research regarding the association between genes and cognitive intermediate phenotypes in those at risk for psychotic disorders.

Methods

We measured the association between established psychosis risk variants in dopamine D2 receptor (DRD2) and cognitive performance in individuals at age 23 years and explored if associations between cognition and these variants differed according to the presence of familial or clinical risk for psychosis. The subjects of the Oulu Brain and Mind Study were drawn from the general population-based Northern Finland 1986 Birth Cohort (NFBC 1986). Using linear regression, we compared the associations between cognitive performance and two candidate DRD2 polymorphisms (rs6277 and rs1800497) between subjects having familial (n=61) and clinical (n=45) risk for psychosis and a random sample of participating NFBC 1986 controls (n=74). Cognitive performance was evaluated using a comprehensive battery of tests at follow-up.

Results

Principal components factor analysis supported a three-factor model for cognitive measures. The minor allele of rs6277 was associated with poorer performance on a verbal factor (p=0.003) but this did not significantly interact with familial or clinical risk for psychosis. The minor allele of rs1800497 was associated with poorer performance on a psychomotor factor (p=0.038), though only in those at familial risk for psychotic disorders (interaction p=0.049).

Conclusion

The effect of two DRD2 SNPs on cognitive performance may differ according to risk type for psychosis, suggesting that cognitive intermediate phenotypes differ according to the type (familial or clinical) risk for psychosis.  相似文献   

18.
Single-nucleotide polymorphism (SNP) in long noncoding RNAs (lncRNAs) is known to disrupt the binding between lncRNAs and microRNAs. In this paper, we aimed to explore the role of LINC00673 rs11655237 SNP in the survival of cervical cancer (CC). Real-time polymerase chain reaction and western-blot analysis were used to detect expressions of LINC00673 and microRNA-1231 (miR-1231) in CC patients with different rs11655237 SNP genotypes. And the expression of LINC00673, miR-1231, and IFNAR1 was measured in mice and cells treated with exosomes carrying GG, GA, and AA rs11655237 genotypes. Compared with patients carrying the rs11655237 A allele of LINC00673 rs11655237 SNP, patients carrying the G allele showed higher overall survival and higher miR-1231 expression. In addition, the expression of miR-1231 was the highest in patients carrying the GG genotype and the lowest in patients carrying the AA genotype. Furthermore, the exosomes carrying GG, GA, and AA genotypes of LINC00673 rs11655237 SNP reduced tumor growth in mice, while the inhibitory effect of rs11655237 A allele was much stronger than that of the rs11655237 G allele. Additionally, exosome treatment upregulated the expression of LINC000673 and IFNAR1 while downregulating the expression of miR-1231. Interestingly, the A allele of rs11655237 generated a binding site for miR-1231 and subsequently affected the expression of IFNAR1, a target gene of miR-1231 containing a miR-1231 binding site in its 3′-untranslated region. Cells transfected with exosomes carrying GG, GA, and AA genotypes of LINC00673 rs11655237 SNP achieved higher LINC000673 and IFNAR1 expression along with lower miR-1231 expression. Therefore, rs11655237 can be used as a prognostic biomarker for CC.  相似文献   

19.
Assumptions are made about the genetic model of single nucleotide polymorphisms (SNPs) when choosing a traditional genetic encoding: additive, dominant, and recessive. Furthermore, SNPs across the genome are unlikely to demonstrate identical genetic models. However, running SNP-SNP interaction analyses with every combination of encodings raises the multiple testing burden. Here, we present a novel and flexible encoding for genetic interactions, the elastic data-driven genetic encoding (EDGE), in which SNPs are assigned a heterozygous value based on the genetic model they demonstrate in a dataset prior to interaction testing. We assessed the power of EDGE to detect genetic interactions using 29 combinations of simulated genetic models and found it outperformed the traditional encoding methods across 10%, 30%, and 50% minor allele frequencies (MAFs). Further, EDGE maintained a low false-positive rate, while additive and dominant encodings demonstrated inflation. We evaluated EDGE and the traditional encodings with genetic data from the Electronic Medical Records and Genomics (eMERGE) Network for five phenotypes: age-related macular degeneration (AMD), age-related cataract, glaucoma, type 2 diabetes (T2D), and resistant hypertension. A multi-encoding genome-wide association study (GWAS) for each phenotype was performed using the traditional encodings, and the top results of the multi-encoding GWAS were considered for SNP-SNP interaction using the traditional encodings and EDGE. EDGE identified a novel SNP-SNP interaction for age-related cataract that no other method identified: rs7787286 (MAF: 0.041; intergenic region of chromosome 7)–rs4695885 (MAF: 0.34; intergenic region of chromosome 4) with a Bonferroni LRT p of 0.018. A SNP-SNP interaction was found in data from the UK Biobank within 25 kb of these SNPs using the recessive encoding: rs60374751 (MAF: 0.030) and rs6843594 (MAF: 0.34) (Bonferroni LRT p: 0.026). We recommend using EDGE to flexibly detect interactions between SNPs exhibiting diverse action.  相似文献   

20.
Neuropeptide Y (NPY) is an appetite hormone that acts centrally to control feeding behavior. The 5' and exon 2 regions of NPY2R, one of five NPY receptor genes, have been weakly and inconsistently implicated with obesity. With the ATG start site of the gene at the beginning of exon 2, single-nucleotide polymorphisms (SNPs) across intron 1 may show stronger associations with obesity than expected. Two 5' SNPs, three intron 1 SNPs, and one synonymous exon 2 SNP were genotyped on 2,985 white Utah subjects. Previously associated FTO, NPY, NPY1R, MC4R, PPARGC1A, OR7D4, and four NPFFR2 SNPs were also genotyped and related to BMI. One NPY2R 5' SNP (rs12649641, P = 0.008), an exon 2 SNP (rs2880415, P = 0.009), and an intron 1 SNP (rs17376826, P = 7 × 10(-6)) were each significantly associated with BMI. All three SNPs, plus FTO (rs9939609, P = 1.5 × 10(-6)) and two NPFFR2 SNPs (rs4129733, P = 3.7 × 10(-13) and rs11940196, 4.2 × 10(-10)) remained significant in a multiple regression additive model. Diplotypes using the estimated haplotypes of NPY2R, NPFFR2, and MC4R were significantly associated with BMI (P = 1.0 × 10(-10), 3.2 × 10(-8), and 1.1 × 10(-4), respectively). Haplotypes of NPY2R, NPFFR2, and MC4R, plus the FTO SNP, explained 9.6% of the BMI variance. SNP effect sizes per allele for the four genes ranged from 0.8 to 3.5 kg/m(2). We conclude that haplotypes containing the rs17376826 SNP in intron 1 of NPY2R have strong associations with BMI, some NPFFR2 haplotypes are strongly protective against or increase risk of obesity, and both NPY2R and NPFFR2 play important roles in obesity predisposition independent of FTO and MC4R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号