首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A focused theme in systems biology is to uncover design principles of biological networks, that is, how specific network structures yield specific systems properties. For this purpose, we have previously developed a reverse engineering procedure to identify network topologies with high likelihood in generating desired systems properties. Our method searches the continuous parameter space of an assembly of network topologies, without enumerating individual network topologies separately as traditionally done in other reverse engineering procedures. Here we tested this CPSS (continuous parameter space search) method on a previously studied problem: the resettable bistability of an Rb-E2F gene network in regulating the quiescence-to-proliferation transition of mammalian cells. From a simplified Rb-E2F gene network, we identified network topologies responsible for generating resettable bistability. The CPSS-identified topologies are consistent with those reported in the previous study based on individual topology search (ITS), demonstrating the effectiveness of the CPSS approach. Since the CPSS and ITS searches are based on different mathematical formulations and different algorithms, the consistency of the results also helps cross-validate both approaches. A unique advantage of the CPSS approach lies in its applicability to biological networks with large numbers of nodes. To aid the application of the CPSS approach to the study of other biological systems, we have developed a computer package that is available in Information S1.  相似文献   

2.
Jung S  Lee KH  Lee D 《Bio Systems》2007,90(1):197-210
The Bayesian network is a popular tool for describing relationships between data entities by representing probabilistic (in)dependencies with a directed acyclic graph (DAG) structure. Relationships have been inferred between biological entities using the Bayesian network model with high-throughput data from biological systems in diverse fields. However, the scalability of those approaches is seriously restricted because of the huge search space for finding an optimal DAG structure in the process of Bayesian network learning. For this reason, most previous approaches limit the number of target entities or use additional knowledge to restrict the search space. In this paper, we use the hierarchical clustering and order restriction (H-CORE) method for the learning of large Bayesian networks by clustering entities and restricting edge directions between those clusters, with the aim of overcoming the scalability problem and thus making it possible to perform genome-scale Bayesian network analysis without additional biological knowledge. We use simulations to show that H-CORE is much faster than the widely used sparse candidate method, whilst being of comparable quality. We have also applied H-CORE to retrieving gene-to-gene relationships in a biological system (The 'Rosetta compendium'). By evaluating learned information through literature mining, we demonstrate that H-CORE enables the genome-scale Bayesian analysis of biological systems without any prior knowledge.  相似文献   

3.
How do biochemical signaling pathways generate biological specificity? This question is fundamental to modern biology, and its enigma has been accentuated by the discovery that most proteins in signaling networks serve multifunctional roles. An answer to this question may lie in analyzing network properties rather than individual traits of proteins in order to elucidate design principles of biochemical networks that enable biological decision-making. We discuss how this is achieved in the MST2/Hippo-Raf-1 signaling network with the help of mathematical modeling and model-based analysis, which showed that competing protein interactions with affinities controlled by dynamic protein modifications can function as Boolean computing devices that determine cell fate decisions. In addition, we discuss areas of interest for future research and highlight how systems approaches would be of benefit.  相似文献   

4.
Computational circuit design with desired functions in a living cell is a challenging task in synthetic biology. To achieve this task, numerous methods that either focus on small scale networks or use evolutionary algorithms have been developed. Here, we propose a two-step approach to facilitate the design of functional circuits. In the first step, the search space of possible topologies for target functions is reduced by reverse engineering using a Boolean network model. In the second step, continuous simulation is applied to evaluate the performance of these topologies. We demonstrate the usefulness of this method by designing an example biological function: the SOS response of E. coli. Our numerical results show that the desired function can be faithfully reproduced by candidate networks with different parameters and initial conditions. Possible circuits are ranked according to their robustness against perturbations in parameter and gene expressions. The biological network is among the candidate networks, yet novel designs can be generated. Our method provides a scalable way to design robust circuits that can achieve complex functions, and makes it possible to uncover design principles of biological networks.  相似文献   

5.
6.
MOTIVATION: An important tool for analyzing biological networks is the ability to perform homology searches, i.e. given a pattern network one would like to be able to search for occurrences of similar (sub)networks within a set of host networks. In the context of metabolic pathways, Pinter et al. [Bioinformatics, 2005] proposed to solve this computationally hard problem by restricting it to the case where both the pattern and host networks are trees. This restriction, however, severely limits the applicability of their algorithm. RESULTS: We propose a very fast and simple algorithm for the alignment of metabolic pathways that does not restrict the topology of the host or pattern network in any way; instead, our algorithm exploits a natural property of metabolic networks that we call 'local diversity property'. Experiments on a test bed of metabolic pathways from the BioCyc database indicate that our algorithm is much faster than the restricted algorithm of Pinter et al.-the metabolic pathways of two organisms can be aligned in mere seconds-and yet has a wider range of applicability and yields new biological insights. Our ideas can likely be extended to work for the alignment of various types of biological networks other than metabolic pathways. AVAILABILITY: Our algorithm has been implemented in C++ as a user-friendly metabolic pathway alignment tool called METAPAT. The tool runs under Linux or Windows and can be downloaded at http://theinf1.informatik.uni-jena.de/metapat/  相似文献   

7.
A classifier is cardinality invariant if it can classify more than one token of a single type at a time. We present a convolutional neural network (CNN) model of inferotemporal cortex (IT) and show that it is cardinality invariant. While the CNN is designed with translation invariance in mind, cardinality invariance is an emergent property. We speculate that translation invariance may lead to cardinality invariance in general, and particularly in IT. Recent investigations have shown that cells in IT are indeed cardinality blind. We also explore the implications of a cardinality blind classifier for vision overall, concentrating on visual attention and search.  相似文献   

8.
In recent years, Boolean-network-model-based approaches to dynamical analysis of complex biological networks such as gene regulatory networks have been extensively studied. One of the fundamental problems in control theory of such networks is the problem of determining whether a given substance quantity can be arbitrarily controlled by operating the other substance quantities, which we call the controllability problem. This paper proposes a polynomial-time algorithm for solving this problem. Although the algorithm is based on a sufficient condition for controllability, it is easily computable for a wider class of large-scale biological networks compared with the existing approaches. A key to this success in our approach is to give up computing Boolean operations in a rigorous way and to exploit an adjacency matrix of a directed graph induced by a Boolean network. By applying the proposed approach to a neurotransmitter signaling pathway, it is shown that it is effective.  相似文献   

9.
Taylor IW  Wrana JL 《Proteomics》2012,12(10):1706-1716
The physical interaction of proteins is subject to intense investigation that has revealed that proteins are assembled into large densely connected networks. In this review, we will examine how signaling pathways can be combined to form higher order protein interaction networks. By using network graph theory, these interaction networks can be further analyzed for global organization, which has revealed unique aspects of the relationships between protein networks and complex biological phenotypes. Moreover, several studies have shown that the structure and dynamics of protein networks are disturbed in complex diseases such as cancer progression. These relationships suggest a novel paradigm for treatment of complex multigenic disease where the protein interaction network is the target of therapy more so than individual molecules within the network.  相似文献   

10.
Metabolic pathways in the post-genome era   总被引:17,自引:0,他引:17  
  相似文献   

11.

Motivation

A grand challenge in the modeling of biological systems is the identification of key variables which can act as targets for intervention. Boolean networks are among the simplest of models, yet they have been shown to adequately model many of the complex dynamics of biological systems. In our recent work, we utilized a logic minimization approach to identify quality single variable targets for intervention from the state space of a Boolean network. However, as the number of variables in a network increases, the more likely it is that a successful intervention strategy will require multiple variables. Thus, for larger networks, such an approach is required in order to identify more complex intervention strategies while working within the limited view of the network’s state space. Specifically, we address three primary challenges for the large network arena: the first challenge is how to consider many subsets of variables, the second is to design clear methods and measures to identify the best targets for intervention in a systematic way, and the third is to work with an intractable state space through sampling.

Results

We introduce a multiple variable intervention target called a template and show through simulation studies of random networks that these templates are able to identify top intervention targets in increasingly large Boolean networks. We first show that, when other methods show drastic loss in performance, template methods show no significant performance loss between fully explored and partially sampled Boolean state spaces. We also show that, when other methods show a complete inability to produce viable intervention targets in sampled Boolean state spaces, template methods maintain significantly consistent success rates even as state space sizes increase exponentially with larger networks. Finally, we show the utility of the template approach on a real-world Boolean network modeling T-LGL leukemia.

Conclusions

Overall, these results demonstrate how template-based approaches now effectively take over for our previous single variable approaches and produce quality intervention targets in larger networks requiring sampled state spaces.
  相似文献   

12.
Cell signaling pathways interact with one another to form networks in mammalian systems. Such networks are complex in their organization and exhibit emergent properties such as bistability and ultrasensitivity. Analysis of signaling networks requires a combination of experimental and theoretical approaches including the development and analysis of models. This review focuses on theoretical approaches to understanding cell signaling networks. Using heterotrimeric G protein pathways an example, we demonstrate how interactions between two pathways can result in a network that contains a positive feedback loop and function as a switch. Different mathematical approaches that are currently used to model signaling networks are described, and future challenges including the need for databases as well as enhanced computing environments are discussed.  相似文献   

13.
Evolutionary conservation of protein interaction properties has been shown to be a valuable indication for functional importance. Here we use homology interface modeling of 10 Ras-effector complexes by selecting ortholog proteins from 12 organisms representing the major eukaryotic branches, except plants. We find that with increasing divergence time the sequence similarity decreases with respect to the human protein, but the affinities and association rate constants are conserved as predicted by the protein design algorithm, FoldX. In parallel we have done computer simulations on a minimal network based on Ras-effector interactions, and our results indicate that in the absence of negative feedback, changes in kinetics that result in similar binding constants have strong consequences on network behavior. This, together with the previous results, suggests an important biological role, not only for equilibrium binding constants but also for kinetics in signaling processes involving Ras-effector interactions. Our findings are important to take into consideration in system biology approaches and simulations of biological networks.  相似文献   

14.
ABSTRACT: BACKGROUND: Dynamic Bayesian network (DBN) is among the mainstream approaches for modeling various biological networks, including the gene regulatory network (GRN). Most current methods for learning DBN employ either local search such as hill-climbing, or a meta stochastic global optimization framework such as genetic algorithm or simulated annealing, which are only able to locate sub-optimal solutions. Further, current DBN applications have essentially been limited to small sized networks. RESULTS: To overcome the above difficulties, we introduce here a deterministic global optimization based DBN approach for reverse engineering genetic networks from time course gene expression data. For such DBN models that consist only of inter time slice arcs, we show that there exists a polynomial time algorithm for learning the globally optimal network structure. The proposed approach, named GlobalMIT+, employs the recently proposed information theoretic scoring metric named mutual information test (MIT). GlobalMIT+ is able to learn high-order time delayed genetic interactions, which are common to most biological systems. Evaluation of the approach using both synthetic and real data sets, including a 733 cyanobacterial gene expression data set, shows significantly improved performance over other techniques. CONCLUSIONS: Our studies demonstrate that deterministic global optimization approaches can infer large scale genetic networks.  相似文献   

15.
Molecular interaction data plays an important role in understanding biological processes at a modular level by providing a framework for understanding cellular organization, functional hierarchy, and evolutionary conservation. As the quality and quantity of network and interaction data increases rapidly, the problem of effectively analyzing this data becomes significant. Graph theoretic formalisms, commonly used for these analysis tasks, often lead to computationally hard problems due to their relation to subgraph isomorphism. This paper presents an innovative new algorithm, MULE, for detecting frequently occurring patterns and modules in biological networks. Using an innovative graph simplification technique based on ortholog contraction, which is ideally suited to biological networks, our algorithm renders these problems computationally tractable and scalable to large numbers of networks. We show, experimentally, that our algorithm can extract frequently occurring patterns in metabolic pathways and protein interaction networks from the KEGG, DIP, and BIND databases within seconds. When compared to existing approaches, our graph simplification technique can be viewed either as a pruning heuristic, or a closely related, but computationally simpler task. When used as a pruning heuristic, we show that our technique reduces effective graph sizes significantly, accelerating existing techniques by several orders of magnitude! Indeed, for most of the test cases, existing techniques could not even be applied without our pruning step. When used as a stand-alone analysis technique, MULE is shown to convey significant biological insights at near-interactive rates. The software, sample input graphs, and detailed results for comprehensive analysis of nine eukaryotic PPI networks are available at www.cs.purdue.edu/homes/koyuturk/mule.  相似文献   

16.
Observing and interpreting correlations in metabolomic networks   总被引:23,自引:0,他引:23  
MOTIVATION: Metabolite profiling aims at an unbiased identification and quantification of all the metabolites present in a biological sample. Based on their pair-wise correlations, the data obtained from metabolomic experiments are organized into metabolic correlation networks and the key challenge is to deduce unknown pathways based on the observed correlations. However, the data generated is fundamentally different from traditional biological measurements and thus the analysis is often restricted to rather pragmatic approaches, such as data mining tools, to discriminate between different metabolic phenotypes. METHODS AND RESULTS: We investigate to what extent the data generated networks reflect the structure of the underlying biochemical pathways. The purpose of this work is 2-fold: Based on the theory of stochastic systems, we first introduce a framework which shows that the emergent correlations can be interpreted as a 'fingerprint' of the underlying biophysical system. This result leads to a systematic relationship between observed correlation networks and the underlying biochemical pathways. In a second step, we investigate to what extent our result is applicable to the problem of reverse engineering, i.e. to recover the underlying enzymatic reaction network from data. The implications of our findings for other bioinformatics approaches are discussed.  相似文献   

17.
Switch like responses appear as common strategies in the regulation of cellular systems. Here we present a method to characterize bistable regimes in biochemical reaction networks that can be of use to both direct and reverse engineering of biological switches. In the design of a synthetic biological switch, it is important to study the capability for bistability of the underlying biochemical network structure. Chemical Reaction Network Theory (CRNT) may help at this level to decide whether a given network has the capacity for multiple positive equilibria, based on their structural properties. However, in order to build a working switch, we also need to ensure that the bistability property is robust, by studying the conditions leading to the existence of two different steady states. In the reverse engineering of biological switches, knowledge collected about the bistable regimes of the underlying potential model structures can contribute at the model identification stage to a drastic reduction of the feasible region in the parameter space of search. In this work, we make use and extend previous results of the CRNT, aiming not only to discriminate whether a biochemical reaction network can exhibit multiple steady states, but also to determine the regions within the whole space of parameters capable of producing multistationarity. To that purpose we present and justify a condition on the parameters of biochemical networks for the appearance of multistationarity, and propose an efficient and reliable computational method to check its satisfaction through the parameter space.  相似文献   

18.
Biological networks   总被引:3,自引:0,他引:3  
Recent advances in high-throughput methods have provided us with a first glimpse of the overall structure of molecular interaction networks in biological systems. Ultimately, we expect that such information will change how we think about biological systems in a fundamental way. Instead of viewing the genetic parts list of an organism as a loose collection of biochemical activities, in the best case, we anticipate discrete networks of function to bridge the gap between genotype and phenotype, and to do so in a more profound way than the current qualitative classification of linked reactions into familiar pathways, such as glycolysis and the MAPK signal transduction cascades. At the present time, however, we are still far from a complete answer to the most basic question: what can we learn about biology by studying networks? Promising steps in this direction have come from such diverse approaches as mathematical analysis of global network structure, partitioning networks into functionally related modules and motifs, and even de novo design of networks. A complete picture will probably require integrating the data obtained from all of these approaches with modeling efforts at many different levels of detail.  相似文献   

19.
Systems biology applies quantitative, mechanistic modelling to study genetic networks, signal transduction pathways and metabolic networks. Mathematical models of biochemical networks can look very different. An important reason is that the purpose and application of a model are essential for the selection of the best mathematical framework. Fundamental aspects of selecting an appropriate modelling framework and a strategy for model building are discussed. Concepts and methods from system and control theory provide a sound basis for the further development of improved and dedicated computational tools for systems biology. Identification of the network components and rate constants that are most critical to the output behaviour of the system is one of the major problems raised in systems biology. Current approaches and methods of parameter sensitivity analysis and parameter estimation are reviewed. It is shown how these methods can be applied in the design of model-based experiments which iteratively yield models that are decreasingly wrong and increasingly gain predictive power.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号