首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a mechanism for the formation of membrane oscillations and traveling waves, which arise due to the coupling between the actin cytoskeleton and the calcium flux through the membrane. In our model, the fluid cell membrane has a mobile but constant population of proteins with a convex spontaneous curvature, which act as nucleators of actin polymerization and adhesion. Such a continuum model couples the forces of cell-substrate adhesion, actin polymerization, membrane curvature, and the flux of calcium through the membrane. Linear stability analysis shows that sufficiently strong coupling among the calcium, membrane, and protein dynamics may induce robust traveling waves on the membrane. This result was checked for a reduced feedback scheme and is compared to the results without the effects of calcium, where permanent phase separation without waves or oscillations is obtained. The model results are compared to the published observations of calcium waves in cell membranes, and a number of testable predictions are proposed.  相似文献   

2.
A motile cell, when stimulated, shows a dramatic increase in the activity of its membrane, manifested by the appearance of dynamic membrane structures such as lamellipodia, filopodia, and membrane ruffles. The external stimulus turns on membrane bound activators, like Cdc42 and PIP2, which cause increased branching and polymerization of the actin cytoskeleton in their vicinity leading to a local protrusive force on the membrane. The emergence of the complex membrane structures is a result of the coupling between the dynamics of the membrane, the activators, and the protrusive forces. We present a simple model that treats the dynamics of a membrane under the action of actin polymerization forces that depend on the local density of freely diffusing activators on the membrane. We show that, depending on the spontaneous membrane curvature associated with the activators, the resulting membrane motion can be wavelike, corresponding to membrane ruffling and actin waves, or unstable, indicating the tendency of filopodia to form. Our model also quantitatively explains a variety of related experimental observations and makes several testable predictions.  相似文献   

3.
The forces that arise from the actin cytoskeleton play a crucial role in determining the cell shape. These include protrusive forces due to actin polymerization and adhesion to the external matrix. We present here a theoretical model for the cellular shapes resulting from the feedback between the membrane shape and the forces acting on the membrane, mediated by curvature-sensitive membrane complexes of a convex shape. In previous theoretical studies we have investigated the regimes of linear instability where spontaneous formation of cellular protrusions is initiated. Here we calculate the evolution of a two dimensional cell contour beyond the linear regime and determine the final steady-state shapes arising within the model. We find that shapes driven by adhesion or by actin polymerization (lamellipodia) have very different morphologies, as observed in cells. Furthermore, we find that as the strength of the protrusive forces diminish, the system approaches a stabilization of a periodic pattern of protrusions. This result can provide an explanation for a number of puzzling experimental observations regarding cellular shape dependence on the properties of the extra-cellular matrix.  相似文献   

4.
The appropriate regulation of the actin cytoskeleton is essential for cell movement, changes in cell shape, and formation of membrane protrusions like lamellipodia and filopodia. Moreover, several regulatory proteins affecting actin dynamics have been identified in the motile regions of cells. Here, we provide evidence for the involvement of SPIN90 in the regulation of actin cytoskeleton and actin comet tail formation. SPIN90 was distributed throughout the cytoplasm in COS-7 cells, but exposing the cells to platelet-derived growth factor (PDGF) caused a redistribution of SPIN90 to the cell cortex and the formation of lamellipodia (or membrane ruffles), both of which were dramatically inhibited in SPIN90-knockdown cells. In addition, the binding of the C terminus of SPIN90 with both the Arp2/3 complex (actin-related proteins Arp 2 and Arp 3) and G-actin activates the former, leading to actin polymerization in vitro. And when coexpressed with phosphatidylinositol 4-phosphate 5 kinase, SPIN90 was observed within actin comet tails. Taken these findings suggest that SPIN90 participates in reorganization of the actin cytoskeleton and in actin-based cell motility.  相似文献   

5.
Eukaryotic cytoskeleton consists of three main types of filaments: actin microfilaments, microtubules and intermediate filaments (IFs). Actin and tubulin-like proteins are also found in bacteria where they perform diverse cytoskeletal functions. IFs, however, are considered to be a characteristic constituent of metazoan cells only, where they (among other functions) are involved in determination and maintenance of cell shape and cellular integrity. Surprisingly, a coiled coil-rich protein called crescentin was recently shown to play a key role in determining the complex curved and helical cell shapes of the bacterium Caulobacter crescentus, and to exhibit several characteristic properties of animal IF proteins. First, the arrangement of the coiled coil domains of crescentin closely resembles the tripartite molecular architecture of IF proteins. Second, crescentin also possesses the defining biochemical property of IF proteins to assemble into 10-nm-wide filaments in vitro without cofactors. Furthermore, crescentin forms a higher-order helical structure in vivo, which is localized asymmetrically along the concave side of the cell. In close association with the cell membrane, the crescentin structure promotes the helical growth of the cell and thereby determines a curved or a helical shape, depending on the length of the cell. The unexpected finding of an IF-like element in a bacterium raises several interesting questions concerning, for example, the molecular mechanisms whereby complex and asymmetric cell shapes are generated by different bacteria, or the functional and evolutionary relatedness of crescentin to animal IF proteins.  相似文献   

6.
Veksler A  Gov NS 《Biophysical journal》2007,93(11):3798-3810
Formation of protrusions and protein segregation on the membrane is of a great importance for the functioning of the living cell. This is most evident in recent experiments that show the effects of the mechanical properties of the surrounding substrate on cell morphology. We propose a mechanism for the formation of membrane protrusions and protein phase separation, which may lay behind this effect. In our model, the fluid cell membrane has a mobile but constant population of proteins with a convex spontaneous curvature. Our basic assumption is that these membrane proteins represent small adhesion complexes, and also include proteins that activate actin polymerization. Such a continuum model couples the membrane and protein dynamics, including cell-substrate adhesion and protrusive actin force. Linear stability analysis shows that sufficiently strong adhesion energy and actin polymerization force can bring about phase separation of the membrane protein and the appearance of protrusions. Specifically, this occurs when the spontaneous curvature and aggregation potential alone (passive system) do not cause phase separation. Finite-size patterns may appear in the regime where the spontaneous curvature energy is a strong factor. Different instability characteristics are calculated for the various regimes, and are compared to various types of observed protrusions and phase separations, both in living cells and in artificial model systems. A number of testable predictions are proposed.  相似文献   

7.
Actin filament assembly typically occurs in association with cellular membranes. A large number of proteins sit at the interface between actin networks and membranes, playing diverse roles such as initiation of actin polymerization, modulation of membrane curvature, and signaling. Bin/Amphiphysin/Rvs (BAR) domain proteins have been implicated in all of these functions. The BAR domain family of proteins comprises a diverse group of multi-functional effectors, characterized by their modular architecture. In addition to the membrane-curvature sensing/inducing BAR domain module, which also mediates antiparallel dimerization, most contain auxiliary domains implicated in protein-protein and/or protein-membrane interactions, including SH3, PX, PH, RhoGEF, and RhoGAP domains. The shape of the BAR domain itself varies, resulting in three major subfamilies: the classical crescent-shaped BAR, the more extended and less curved F-BAR, and the inverse curvature I-BAR subfamilies. Most members of this family have been implicated in cellular functions that require dynamic remodeling of the actin cytoskeleton, such as endocytosis, organelle trafficking, cell motility, and T-tubule biogenesis in muscle cells. Here, we review the structure and function of mammalian BAR domain proteins and the many ways in which they are interconnected with the actin cytoskeleton.  相似文献   

8.
Cells construct a number of plasma membrane structures to meet a range of physiological demands. Driven by juxtamembrane actin machinery, these actin-based membrane protrusions are essential for the operation and maintenance of cellular life. They are required for diverse cellular functions, such as directed cell motility, cell spreading, adhesion, and substrate/matrix degradation. Circular dorsal ruffles (CDRs) are one class of such structures characterized as F-actin-rich membrane projections on the apical cell surface. CDRs commence their formation minutes after stimulation as flat, open, and immature ruffles and progressively develop into fully enclosed circular ruffles. These “rings” then mature and contract centrifugally before subsiding. Serving a critical function in receptor internalization and cell migration, CDRs are thus highly dynamic but transient formations. Here, we review the current state of knowledge concerning the regulation of circular dorsal ruffles. We focus specifically on the biochemical pathways leading to CDR formation in order to better define the roles and functions of these enigmatic structures.  相似文献   

9.
Circular dorsal ruffles (CDRs) are transient actin-rich ringlike structures that form on the dorsal surface of growth-factor stimulated cells. However, the dynamics and mechanism of formation of CDRs are still unknown. It has been observed that CDR formation leads to stress fibers disappearing near the CDRs. Because stress fiber formation can be modified by substrate stiffness, we examined the effect of substrate stiffness on CDR formation by seeding NIH 3T3 fibroblasts on glass and polydimethylsiloxane substrates of varying stiffnesses from 20 kPa to 1800 kPa. We found that increasing substrate stiffness increased the lifetime of the CDRs. We developed a mathematical model of the signaling pathways involved in CDR formation to provide insight into this lifetime and size dependence that is linked to substrate stiffness via Rac-Rho antagonism. From the model, increasing stiffness raised mDia1-nucleated stress fiber formation due to Rho activation. The increased stress fibers present increased replenishment of the G-actin pool, therefore prolonging Arp2/3-nucleated CDR formation due to Rac activation. Negative feedback by WAVE-related RacGAP on Rac explained how CDR actin propagates as an excitable wave, much like wave propagation in other excitable medium, e.g., nerve signal transmission.  相似文献   

10.
11.
Actin is among the most abundant proteins in eukaryotic cells and assembles into dynamic filamentous networks regulated by many actin binding proteins. The actin cytoskeleton must be finely tuned, both in space and time, to fulfill key cellular functions such as cell division, cell shape changes, phagocytosis and cell migration. While actin oxidation by reactive oxygen species (ROS) at non-physiological levels are known for long to impact on actin polymerization and on the cellular actin cytoskeleton, growing evidence shows that direct and reversible oxidation/reduction of specific actin amino acids plays an important and physiological role in regulating the actin cytoskeleton. In this review, we describe which actin amino acid residues can be selectively oxidized and reduced in many different ways (e.g. disulfide bond formation, glutathionylation, carbonylation, nitration, nitrosylation and other oxidations), the cellular enzymes at the origin of these post-translational modifications, and the impact of actin redox modifications both in vitro and in vivo. We show that the regulated balance of oxidation and reduction of key actin amino acid residues contributes to the control of actin filament polymerization and disassembly at the subcellular scale and highlight how improper redox modifications of actin can lead to pathological conditions.  相似文献   

12.
This paper employs substrates that are patterned with shapes having well-defined geometric cues to characterize the influence of curvature on the polarization of highly metastatic B16F10 rat melanoma cells. Substrates were patterned using microcontact printing to define adhesive islands of defined shape and size on a background that otherwise prevents cell adhesion. Cells adherent to these surfaces responded to local curvature at the perimeter of the adhesive islands; convex features promoted the assembly of lamellipodia and concave features promoted the assembly of stress filaments. Cells adherent to rectangular shapes displayed a polarized cytoskeleton that increased with the aspect ratio of the shapes. Shapes that combined local geometric cues, by way of concave or convex edges, with aspect ratio were used to understand the additive effects of shape on polarization. The dependence of cell polarity on shape was determined in the presence of small molecules that alter actomyosin contractility and revealed a stronger dependence on contractility for shapes having straight edges, in contrast to those having curved edges. This study demonstrates that the cytoskeleton modulates cell polarity in response to multiple geometric cues in the extracellular environment.  相似文献   

13.
Pentoxifylline (PTX) has been reported to enhance the early accumulation of neutrophils at the site of Staphylococcus aureus subcutaneous infection in mice (1) and to stimulate in vitro PMN chemotaxis, particularly under dense agarose (2). Among the biochemical events contributing to chemotaxis are actin polymerization (3). The membrane cytoskeleton is believed to control the lateral mobility of integral membrane proteins as well as influencing cell shape and mobility. Thus, pharmacological modulations of neutrophil chemotaxis may be related to an effect of the pharmacological agents on the membrane cytoskeleton. The present study was designed to characterize the effect of PTX on actin polymerization of freely-suspended PMN before and after stimulation by the chemotactic factor f-MLP. We used flow cytometry to determine the proportion of actin in the filamentous form, and Rhodamine-Phalloidin as fluorescent probe (4). PTX decreased actin polymerization in response to stimulation by f-MLP. The reduction in F-actin by PTX was higher in the samples with higher activation ratios as compared with untreated PMN.  相似文献   

14.
Exocytosis in neuroendocrine cells: new tasks for actin   总被引:1,自引:0,他引:1  
Most secretory cells undergoing calcium-regulated exocytosis in response to cell surface receptor stimulation display a dense subplasmalemmal actin network, which is remodeled during the exocytotic process. This review summarizes new insights into the role of the cortical actin cytoskeleton in exocytosis. Many earlier findings support the actin-physical-barrier model whereby transient depolymerization of cortical actin filaments permits vesicles to gain access to their appropriate docking and fusion sites at the plasma membrane. On the other hand, data from our laboratory and others now indicate that actin polymerization also plays a positive role in the exocytotic process. Here, we discuss the potential functions attributed to the actin cytoskeleton at each major step of the exocytotic process, including recruitment, docking and fusion of secretory granules with the plasma membrane. Moreover, we present actin-binding proteins, which are likely to link actin organization to calcium signals along the exocytotic pathway. The results cited in this review are derived primarily from investigations of the adrenal medullary chromaffin cell, a cell model that is since many years a source of information concerning the molecular machinery underlying exocytosis.  相似文献   

15.
Actin polymerization is typically initiated at specific sites in a cell by membrane-bound protein complexes, and the resulting structures are involved in specialized cellular functions, such as migration, particle uptake, or mitotic division. Here we analyze the potential of the actin system to self-organize into waves that propagate on the planar, substrate-attached membrane of a cell. We show that self-assembly involves the ordered recruitment of proteins from the cytoplasmic pool and relate the organization of actin waves to their capacity for applying force. Three proteins are shown to form distinct three-dimensional patterns in the actin waves. Myosin-IB is enriched at the wave front and close to the plasma membrane, the Arp2/3 complex is distributed throughout the waves, and coronin forms a sloping layer on top of them. CARMIL, a protein that links myosin-IB to the Arp2/3 complex, is also recruited to the waves. Wave formation does not depend on signals transmitted by heterotrimeric G-proteins, nor does their propagation require SCAR, a regulator upstream of the Arp2/3 complex. Propagation of the waves is based on an actin treadmilling mechanism, indicating a program that couples actin assembly to disassembly in a three-dimensional pattern. When waves impinge on the cell perimeter, they push the edge forward; when they reverse direction, the cell border is paralyzed. These data show that force-generating, highly organized supramolecular networks are autonomously formed in live cells from molecular motors and proteins controlling actin polymerization and depolymerization.  相似文献   

16.
The bacterial cytoskeleton guides the synthesis of cell wall and thus regulates cell shape. Because spatial patterning of the bacterial cytoskeleton is critical to the proper control of cell shape, it is important to ask how the cytoskeleton spatially self-organizes in the first place. In this work, we develop a quantitative model to account for the various spatial patterns adopted by bacterial cytoskeletal proteins, especially the orientation and length of cytoskeletal filaments such as FtsZ and MreB in rod-shaped cells. We show that the combined mechanical energy of membrane bending, membrane pinning, and filament bending of a membrane-attached cytoskeletal filament can be sufficient to prescribe orientation, e.g., circumferential for FtsZ or helical for MreB, with the accuracy of orientation increasing with the length of the cytoskeletal filament. Moreover, the mechanical energy can compete with the chemical energy of cytoskeletal polymerization to regulate filament length. Notably, we predict a conformational transition with increasing polymer length from smoothly curved to end-bent polymers. Finally, the mechanical energy also results in a mutual attraction among polymers on the same membrane, which could facilitate tight polymer spacing or bundling. The predictions of the model can be verified through genetic, microscopic, and microfluidic approaches.  相似文献   

17.
All eukaryotic cells need to reorganize their actin cytoskeleton to change shape, divide, move, and take up nutrients for survival. The Wiskott-Aldrich syndrome protein (WASP) and WASP-family verprolin-homologous protein (WAVE) family proteins are fundamental actin-cytoskeleton reorganizers found throughout the eukaryotes. The conserved function across species is to receive upstream signals from Rho-family small GTPases and send them to activate the Arp2/3 complex, leading to rapid actin polymerization, which is critical for cellular processes such as endocytosis and cell motility. Molecular and cell biological studies have identified a wide array of regulatory molecules that bind to the WASP and WAVE proteins and give them diversified roles in distinct cellular locations. Genetic studies using model organisms have also improved our understanding of how the WASP- and WAVE-family proteins act to shape complex tissue architectures. Current efforts are focusing on integrating these pieces of molecular information to draw a unified picture of how the actin cytoskeleton in a single cell works dynamically to build multicellular organization.  相似文献   

18.
Actin-based motility is critical for nervous system development. Both the migration of neurons and the extension of neurites require organized actin polymerization to push the cell membrane forward. Numerous extracellular stimulants of motility and axon guidance cues regulate actin-based motility through the rho GTPases (rho, rac, and cdc42). The rho GTPases reorganize the actin cytoskeleton, leading to stress fiber, filopodium, or lamellipodium formation. The activity of the rho GTPases is regulated by a variety of proteins that either stimulate GTP uptake (activation) or hydrolysis (inactivation). These proteins potentially link extracellular signals to the activation state of rho GTPases. Effectors downstream of the rho GTPases that directly influence actin polymerization have been identified and are involved in neurite development. The Arp2/3 complex nucleates the formation of new actin branches that extend the membrane forward. Ena/VASP proteins can cause the formation of longer actin filaments, characteristic of growth cone actin morphology, by preventing the capping of barbed ends. Actin-depolymerizing factor (ADF)/cofilin depolymerizes and severs actin branches in older parts of the actin meshwork, freeing monomers to be re-incorporated into actively growing filaments. The signaling mechanisms by which extracellular cues that guide axons to their targets lead to direct effects on actin filament dynamics are becoming better understood.  相似文献   

19.
Actin filament dynamics at the cell membrane are important for cell-matrix and cell-cell adhesions and the protrusion of the leading edge. Since actin filaments must be connected to the cell membrane to exert forces but must also detach from the membrane to allow it to move and evolve, the balance between actin filament tethering and detachment at adhesion sites and the leading edge is key for cell shape changes and motility. How this fine tuning is performed in cells remains an open question, but possible candidates are the Drosophila enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family of proteins, which localize to dynamic actin structures in the cell. Here we study VASP-mediated actin-related proteins 2/3 (Arp2/3) complex-dependent actin dynamics using a substrate that mimics the fluid properties of the cell membrane: an oil-water interface. We show evidence that polymerization activators undergo diffusion and convection on the fluid surface, due to continual attachment and detachment to the actin network. These dynamics are enhanced in the presence of VASP, and we observe cycles of catastrophic detachment of the actin network from the surface, resulting in stop-and-go motion. These results point to a role for VASP in the modulation of filament anchoring, with implications for actin dynamics at cell adhesions and at the leading edge of the cell.  相似文献   

20.
The cytoskeleton is formed by a network of protein filaments, including microtubules, actin filaments and intermediate filaments. Filaments permeate the entire cytoplasm; they are involved in maintaining the cell shape, they organize and anchor the organelles, they control the transport of various molecules, cell division and provide signal transduction. To implement these diverse and complex functions, the components of the cytoskeleton must be very dynamic and mobile, be able to rebuilt quickly and interact with each other. This is due to the presence of a large number of actin-binding proteins—nucleators, activators, inactivators of polymerization and depolymerization of actin filaments. This review describes the regulation of actin dynamics by the Arp2/3 complex. In the cell, this complex is in an inactive state. Its activation occurs after it’s interaction with activators. Activators change the conformation and spatial arrangement of the domains of the Arp2/3 complex, providing its interaction with the monomeric and polymeric actin. Activators of the Arp2/3 complex have been known for a long time and include such proteins as WASp and WAVE. All activators possess a specific VCA domain, which is responsible for their binding to the Arp2/3 complex. The structure of the complex with bound activators has been studied using various physical-chemical methods. The inactivators of the complex only recently attracted specific attention of the investigators. At present, at least five different proteins are known to inactivate the Arp2/3 complex by binding to its various subunits. Examples of inactivators are coronin, Gmf and arpin. The structure of the Arp2/3 complex with inactivators was recently published and showed that despite their binding to different subunits of the complex, all inactivators transform the Arp2/3 complex into an “open” state, moving the actin-like Arp subunits apart from each other. Studies of the spatial organization of actin-binding proteins are necessary for understanding the patterns of interaction between them while providing the vital activity of the cell. These data can later be used in the search for new ligands to prevent metastasis of tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号