首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxidative stress is implicated as an important mechanism by which diabetes causes nephropathy. Oxykine is the cantaloupe melon extract rich in vegetal superoxide dismutase covered by polymeric films of wheat matrix gliadin. In this study, we examined whether chronic oral administration of oxykine could prevent the progression of diabetic nephropathy induced by oxidative stress using preclinical rodent model of type 2 diabetes. We used female db/db mice and their non-diabetic db/m littermates. The mice were divided into the following three groups: non-diabetic db/m; diabetic db/db, and diabetic db/db treated with oxykine. Blood glucose level, body weight, urinary albumin, and urinary 8-hydroxydeoxyguanosine (8-OHdG) were measured during the experiments. Histological and 8-OHdG immunohistochemical studies were preformed on 12 weeks from the beginning of treatment. After 12 weeks of treatment, the levels of blood glucose and the body weight were not significantly different between the oxykine-treated group and the non-treated db/db group, however both groups kept significantly high levels rather than db/m mice. The relative mesangial area calculated by mesangial area/total glomerular area ratio was significantly ameliorated in the oxykine treated group compared with non-treated db/db group. The increases in urinary albumin and 8-OHdG at 12 weeks of treatment were significantly inhibited by chronic treatment with oxykine. The 8-OHdG immunoreactive cells in the glomeruli of non-treated db/db mice were more numerous than that of oxykine-treated db/db mice. In this study, treatment of oxykine ameliorated the progression and acceleration of diabetic nephropathy for rodent model of type 2 diabetes. These results indicated that the oxykine reduced the diabetes-induced oxidative stress and renal mesangial cell injury. In conclusion, oxykine might be a novel approach for the prevention of diabetes nephropathy.  相似文献   

2.
Oxidative stress is implicated as an important mechanism by which diabetes causes nephropathy. Astaxanthin, which is found as a common pigment in algae, fish, and birds, is a carotenoid with significant potential for antioxidative activity. In this study, we examined whether chronic administration of astaxanthin could prevent the progression of diabetic nephropathy induced by oxidative stress in mice. We used female db/db mice, a rodent model of type 2 diabetes, and their non-diabetic db/m littermates. The mice were divided into three groups as follows: non-diabetic db/m, diabetic db/db, and diabetic db/db treated with astaxanthin. Blood glucose level, body weight, urinary albumin, and urinary 8-hydroxydeoxyguanosine (8-OHdG) were measured during the experiments. Histological and 8-OHdG immunohistochemical studies were performed for 12 weeks from the beginning of treatment. After 12 weeks of treatment, the astaxanthin-treated group showed a lower level of blood glucose compared with the non-treated db/db group; however, both groups had a significantly high level compared with the db/m mice. The relative mesangial area calculated by the mesangial area/total glomerular area ratio was significantly ameliorated in the astaxanthin-treated group compared with the non-treated db/db group. The increases in urinary albumin and 8-OHdG at 12 weeks of treatment were significantly inhibited by chronic treatment with astaxanthin. The 8-OHdG immunoreactive cells in glomeruli of non-treated db/db mice were more numerous than in the astaxanthin-treated db/db mice. In this study, treatment with astaxanthin ameliorated the progression and acceleration of diabetic nephropathy in the rodent model of type 2 diabetes. The results suggested that the antioxidative activity of astaxanthin reduced the oxidative stress on the kidneys and prevented renal cell damage. In conclusion, administration of astaxanthin might be a novel approach for the prevention of diabetes nephropathy.  相似文献   

3.
Zhang HM  Dang H  Kamat A  Yeh CK  Zhang BX 《PloS one》2012,7(3):e32746
Diabetic nephropathy is a serious complication of longstanding diabetes and its pathogenesis remains unclear. Oxidative stress may play a critical role in the pathogenesis and progression of diabetic nephropathy. Our previous studies have demonstrated that polyunsaturated fatty acids (PUFA) induce peroxynitrite generation in primary human kidney mesangial cells and heat shock protein 90β1 (hsp90β1) is indispensable for the PUFA action. Here we investigated the effects of high fat diet (HFD) on kidney function and structure of db/db mice, a widely used rodent model of type 2 diabetes. Our results indicated that HFD dramatically increased the 24 h-urine output and worsened albuminuria in db/db mice. Discontinuation of HFD reversed the exacerbated albuminuria but not the increased urine output. Prolonged HFD feeding resulted in early death of db/db mice, which was associated with oliguria and anuria. Treatment with the geldanamycin derivative, 17-(dimethylaminoehtylamino)-17-demethoxygeldanamycin (17-DMAG), an hsp90 inhibitor, preserved kidney function, and ameliorated glomerular and tubular damage by HFD. 17-DMAG also significantly extended survival of the animals and protected them from the high mortality associated with renal failure. The benefit effect of 17-DMAG on renal function and structure was associated with a decreased level of kidney nitrotyrosine and a diminished kidney mitochondrial Ca(2+) efflux in HFD-fed db/db mice. These results suggest that hsp90β1 is a potential target for the treatment of nephropathy and renal failure in diabetes.  相似文献   

4.
Daidzein shows estrogenic, antioxidant and antiandrogenic properties as well as cell cycle regulatory activity. However, the antihyperglycemic effect of daidzein remains to be elucidated. In this study, we investigated the in vitro effect of daidzein on glucose uptake, AMPK phosphorylation and GLUT4 translocation on plasma membrane in L6 myotubes and its in vivo antihyperglycmic effect in obese–diabetic model db/db mice. Daidzein was found to promote glucose uptake, AMPK phosphorylation and GLUT4 translocation by Western blotting analyses in L6 myotubes under a condition of insulin absence. Promotion by daidzein of glucose uptake as well as GLUT4 translocation to plasma membrane by immunocytochemistry was also demonstrated in L6 myoblasts transfected with a GLUT4 cDNA-coding vector. Daidzein (0.1% in the diet) suppressed the rises in the fasting blood glucose, serum total cholesterol levels and homeostasis model assessment index of db/db mice. In addition, daidzein supplementation markedly improved the AMPK phosphorylation in gastrocnemius muscle of db/db mice. Daidzein also suppressed increases in blood glucose levels and urinary glucose excretion in KK-Ay mice, another Type 2 diabetic animal model. These in vitro and in vivo findings suggest that daidzein is preventive for Type 2 diabetes and an antidiabetic phytochemical.  相似文献   

5.
Treatment with a neutralizing anti-transforming growth factor-beta (TGF-beta) antibody can prevent the development of diabetic nephropathy in the db/db mouse, a model of type 2 diabetes. However, it is unknown whether anti-TGF-beta therapy can reverse the histological lesions of diabetic glomerulopathy once they are established. Diabetic db/db mice and their non-diabetic db/m littermates were allowed to grow until 16 weeks of age, by which time the db/db mice had developed glomerular basement membrane (GBM) thickening and mesangial matrix expansion. The mice were then treated with an irrelevant control IgG or a panselective, neutralizing anti-TGF-beta antibody for eight more weeks. Compared with control db/m mice, the db/db mice treated with IgG had developed increased GBM width (16.64+/-0.80 nm vs. 21.55+/-0.78 nm, P<0.05) and increased mesangial matrix fraction (4.01+/-0.81% of total glomerular area vs. 9.55+/-1.04%, P<0.05). However, the db/db mice treated with anti-TGF-beta antibody showed amelioration of GBM thickening (18.40+/-0.72 nm, P<0.05 vs. db/db-IgG) and mesangial matrix accumulation (6.32+/-1.79%, P<0.05 vs. db/db-IgG). Our results demonstrate that inhibiting renal TGF-beta activity can partially reverse the GBM thickening and mesangial matrix expansion in this mouse model of type 2 diabetes. Anti-TGF-beta regimens would be useful in the treatment of diabetic nephropathy.  相似文献   

6.
Atherosclerosis development is accelerated severalfold in patients with Type 2 diabetes. In the initial stages of disease, monocytes transmigrate into the subendothelial space and differentiate into foam cells. Scavenger receptors and ATP binding cassette (ABC) Transporters play an important role in foam cell formation as they regulate the influx and efflux of oxidized lipids. Here, we show that peritoneal macrophages isolated from Type 2 diabetic db/db mice have decreased expression of the ABC transporter ABCG1 and increased expression of the scavenger receptor CD36. We found a 2-fold increase in accumulation of esterified cholesterol in diabetic db/db macrophages compared with wild-type control macrophages. Diabetic db/db macrophages also had impaired cholesterol efflux to high density lipoprotein but not to lipid-free apo A-I, suggesting that the increased esterified cholesterol in diabetic db/db macrophages was due to a selective loss of ABCG1-mediated efflux to high density lipoprotein. Additionally, we were able to confirm down-regulation of ABCG1 using C57BL/6J peritoneal macrophages cultured in elevated glucose in vitro (25 mM glucose for 7 days), suggesting that ABCG1 expression in diabetic macrophages is regulated by chronic exposure to elevated glucose. Diabetic KK(ay) mice were also studied and were found to have decreased ABCG1 expression without an increase in CD36. These observations demonstrate that ABCG1 plays a major role in macrophage cholesterol efflux and that decreased ABCG1 function can facilitate foam cell formation in Type 2 diabetic mice.  相似文献   

7.
8.
Diabetic (db/db) mice provide an animal model of Type 2 diabetes characterized by marked in vivo insulin resistance. The effect of insulin on myocardial metabolism has not been fully elucidated in this diabetic model. In the present study we tested the hypothesis that the metabolic response to insulin in db/db hearts will be diminished due to cardiac insulin resistance. Insulin-induced changes in glucose oxidation (GLUox) and fatty acid (FA) oxidation (FAox) were measured in isolated hearts from control and diabetic mice, perfused with both low as well as high concentration of glucose and FA: 10 mM glucose/0.5 mM palmitate and 28 mM glucose/1.1 mM palmitate. Both in the absence and presence of insulin, diabetic hearts showed decreased rates of GLUox and elevated rates of FAox. However, the insulin-induced increment in GLUox, as well as the insulin-induced decrement in FAox, was similar or even more pronounced in diabetic that in control hearts. During elevated FA and glucose supply, however, the effect of insulin was blunted in db/db hearts with respect to both FAox and GLUox. Finally, insulin-stimulated deoxyglucose uptake was markedly reduced in isolated cardiomyocytes from db/db mice, whereas glucose uptake in isolated perfused db/db hearts was clearly responsive to insulin. These results show that, despite reduced insulin-stimulated glucose uptake in isolated cardiomyocytes, isolated perfused db/db hearts are responsive to metabolic actions of insulin. These results should advocate the use of insulin therapy (glucose-insulin-potassium) in diabetic patients undergoing cardiac surgery or during reperfusion after an ischemic insult.  相似文献   

9.
10.

Background

Obesity-related diabetes mellitus leads to increased myocardial uptake and oxidation of fatty acids, resulting in a form of cardiac dysfunction referred to as lipotoxic cardiomyopathy. We have shown previously that Astragalus polysaccharides (APS) administration was sufficient to improve the systemic metabolic disorder and cardiac dysfunction in diabetic models.

Methodology/Principal Findings

To investigate the precise role of APS therapy in the pathogenesis of myocardial lipotoxity in diabetes, db/db diabetic mice and myosin heavy chain (MHC)- peroxisome proliferator-activated receptor (PPAR) α mice were characterized and administrated with or without APS with C57 wide- type mice as normal control. APS treatment strikingly improved the myocyte triacylglyceride accumulation and cardiac dysfunction in both db/db mice and MHC-PPARα mice, with the normalization of energy metabolic derangements in both db/db diabetic hearts and MHC-PPARα hearts. Consistently, the activation of PPARα target genes involved in myocardial fatty acid uptake and oxidation in both db/db diabetic hearts and MHC-PPARα hearts was reciprocally repressed by APS administration, while PPARα-mediated suppression of genes involved in glucose utilization of both diabetic hearts and MHC-PPARα hearts was reversed by treatment with APS.

Conclusions

We conclude that APS therapy could prevent the development of diabetic cardiomyopathy through a mechanism mainly dependent on the cardiac PPARα-mediated regulatory pathways.  相似文献   

11.
Autophagy is an evolutionarily conserved machinery for bulk degradation of cytoplasmic components. Here, we report upregulation of autophagosome formation in pancreatic beta cells in diabetic db/db and in nondiabetic high-fat-fed C57BL/6 mice. Free fatty acids (FFAs), which can cause peripheral insulin resistance associated with diabetes, induced autophagy in beta cells. Genetic ablation of atg7 in beta cells resulted in degeneration of islets and impaired glucose tolerance with reduced insulin secretion. While high-fat diet stimulated beta cell autophagy in control mice, it induced profound deterioration of glucose tolerance in autophagy-deficient mutants, partly because of the lack of compensatory increase in beta cell mass. These findings suggest that basal autophagy is important for maintenance of normal islet architecture and function. The results also identified a unique role for inductive autophagy as an adaptive response of beta cells in the presence of insulin resistance induced by high-fat diet.  相似文献   

12.
It has been proposed that the development of diabetic nephropathy is caused in large part by oxidative stress. We previously showed that continuous exposure of mice to low-dose-rate γ radiation enhances antioxidant activity. Here, we studied the ameliorative effect of continuous whole-body irradiation with low-dose-rate γ rays on diabetic nephropathy. Ten-week-old female db/db mice, an experimental model for type II diabetes, were irradiated with low-dose-rate γ rays from 10?weeks of age throughout their lives. Nephropathy was studied by histological observation and biochemical analysis of serum and urine. Antioxidant activities in kidneys were determined biochemically. Continuous low-dose-rate γ radiation significantly increases life span in db/db mice. Three of 24 irradiated mice were free of glucosuria after 80?weeks of irradiation. Histological studies of kidney suggest that low-dose irradiation increases the number of normal capillaries in glomeruli. Antioxidant activities of superoxide dismutase, catalase and glutathione are significantly increased in kidneys of irradiated db/db mice. Continuous low-dose-rate γ irradiation ameliorates diabetic nephropathy and increases life span in db/db mice through the activation of renal antioxidants. These findings have noteworthy implications for radiation risk estimation of non-cancer diseases as well as for the clinical application of low-dose-rate γ radiation for diabetes treatment.  相似文献   

13.
14.
《Autophagy》2013,9(2):280-282
Pancreatic β-cells play a key role in glucose homeostasis in mammals. Although large-scale protein synthesis and degradation occur in pancreatic β-cells, the mechanism underlying dynamic protein turnover in β-cells remains largely unknown. We found low-level constitutive autophagy in β-cells of C57BL/6 mice fed a standard diet; however, autophagy was markedly upregulated in mice fed a high-fat diet. β-cells of diabetic db/db mice contained large numbers of autophagosomes, compared with non-diabetic db/misty controls. The functional importance of autophagy was analyzed using β-cell-specific Atg7 knockout mice. Autophagy-deficient mice showed degeneration of β-cells and impaired glucose tolerance with reduced insulin secretion. While a high-fat diet stimulated β-cell autophagy in control mice, it induced a profound deterioration of glucose intolerance in β-cell autophagy-deficient mutants, partly because of the lack of a compensatory increase in β-cell mass. These results suggest that the degradation of unnecessary cellular components by autophagy is essential for maintenance of the architecture and function of β-cells. Autophagy also serves as a crucial element of stress responses to protect β-cells under insulin resistant states. Impairment of autophagic machinery could thus predispose individuals to type 2 diabetes.  相似文献   

15.
Insulin resistance in Type 2 diabetes leads to hepatic steatosis that can accompanied by progressive inflammation of the liver. Citrus unshiu peel is a rich source of citrus flavonoids that possess anti-inflammatory, anti-diabetic and lipid-lowering effects. However, the ability of citrus unshiu peel ethanol extract (CPE) to improve hyperglycemia, adiposity and hepatic steatosis in Type 2 diabetes is unknown. Thus, we evaluated the effects of CPE on markers for glucose, lipid metabolism and inflammation in Type 2 diabetic mice. Male C57BL/KsJ-db/db mice were fed a normal diet with CPE (2 g/100 g diet) or rosiglitazone (0.001 g/100 g diet) for 6 weeks. Mice supplemented with the CPE showed a significant decrease in body weight gain, body fat mass and blood glucose level. The antihyperglycemic effect of CPE appeared to be partially mediated through the inhibition of hepatic gluconeogenic phosphoenolpyruvate carboxykinase mRNA expression and its activity and through the induction of insulin/glucagon secretion. CPE also ameliorated hepatic steatosis and hypertriglyceridemia via the inhibition of gene expression and activities of the lipogenic enzymes and the activation of fatty acid oxidation in the liver. These beneficial effects of CPE may be related to increased levels of anti-inflammatory adiponectin and interleukin (IL)-10, and decreased levels of pro-inflammatory markers (IL-6, monocyte chemotactic protein-1, interferon-γ and tumor necrosis factor-α) in the plasma or liver. Taken together, we suggest that CPE has the potential to improve both hyperglycemia and hepatic steatosis in Type 2 diabetes.  相似文献   

16.
Loss of insulin-producing β-cell mass is a hallmark of type 2 diabetes in humans and diabetic db/db mice. Pancreatic β-cells can modulate their mass in response to a variety of physiological and pathophysiological cues. There are currently few effective therapeutic approaches targeting β-cell regeneration although some anti-diabetic drugs may positively affect β-cell mass. Here we show that oral administration of FTY720, a sphingosine 1-phosphate (S1P) receptor modulator, to db/db mice normalizes fasting blood glucose by increasing β-cell mass and blood insulin levels without affecting insulin sensitivity. Fasting blood glucose remained normal in the mice even after the drug was withdrawn after 23 weeks of treatment. The islet area in the pancreases of the FTY720-treated db/db mice was more than 2-fold larger than that of the untreated mice after 6 weeks of treatment. Furthermore, BrdU incorporation assays and Ki67 staining demonstrated cell proliferation in the islets and pancreatic duct areas. Finally, islets from the treated mice exhibited a significant decrease in the level of cyclin-dependent kinase inhibitor p57(KIP2) and an increase in the level of cyclin D3 as compared with those of untreated mice, which could be reversed by the inhibition of phosphatidylinositol 3-kinase (PI3K). Our findings reveal a novel network that controls β-cell regeneration in the obesity-diabetes setting by regulating cyclin D3 and p57(KIP2) expression through the S1P signaling pathway. Therapeutic strategies targeting this network may promote in vivo regeneration of β-cells in patients and prevent and/or cure type 2 diabetes.  相似文献   

17.
Atherosclerosis is a major complication of diabetes. Up to 16 weeks of age, the db/db mouse is insulin-resistant and hyperglycemic and is a good model of Type 2 diabetes. After approximately 16 weeks of age, the mice develop pancreatic beta cell failure that can progress to a Type 1 diabetes phenotype. We have previously shown that glucose increases production of endothelial 12/15 lipoxygenase (12/15LO) products in vitro. In young 10-week-old Type 2 diabetic db/db mice, we found significant elevations in levels of urinary 12/15LO products, 12S-hydroxyeicosatetraenoic acid (12S-HETE) and 13S-hydroxyoctadecaenoic acid (13S-HODE) in vivo compared with C57BLKS/J mice. Using isolated primary aortic endothelial cells (ECs) from db/db mice and WEHI78/24 mouse monocyte cells in static adhesion assays, we found increased WEHI monocyte adhesion to db/db ECs (14 +/- 2 monocytes/field for db/db ECs versus 4 +/- 1 monocytes/field for C57BLKS/J ECs, p < 0.002). Thus, ECs from db/db mice appear to be "pre-activated" to bind monocytes. Analysis of db/db ECs revealed a 2-fold elevation in 12/15LO protein compared with C57BLKS/J EC. To determine that 12/15LO products were responsible for the increased monocyte adhesion observed with db/db ECs, we inhibited expression of murine 12/15LO using either an adenovirus expressing a ribozyme to 12/15LO (AdRZ) or with the 12/15LO inhibitor cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate. Treatment of db/db ECs for 48 h with AdRZ or 4 h with 10 microm cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate significantly reduced monocyte adhesion to db/db endothelium (p < 0.009). Thus, inhibition of the murine 12/15LO in db/db mice significantly reduced monocyte/endothelial interactions. We also found that adhesion of monocytes to diabetic db/db ECs was mediated by interactions of alpha4beta1 integrin on monocytes with endothelial vascular cell adhesion molecule 1 and connecting segment 1 fibronectin and interactions of beta2 integrins with endothelial intercellular adhesion molecule 1. In summary, regulation of the 12/15LO pathway is important for mediating early vascular changes in diabetes. Modulation of the 12/15LO pathway in the vessel wall may provide therapeutic benefit for early vascular inflammatory events in diabetes.  相似文献   

18.
Coxsackievirus B4 (CB4) replicated to equally high titers in the pancreas and other tissues of the C57BL/Ks (+/+) mouse and its genetic variants that were either heterozygous (db/+) or homozygous (db/db) for the autosomal recessive gene for diabetes, db. In contrast, the insulin-producing beta cells of both diabetic variants, but not the +/+ mice, completely degranulated during acute infection and resulted in hypoglycemia and hyperinsulemia. All db/db mice died within 13 days, with signs of severe endocrine pancreas involvement. Surviving +/+ mice maintained relatively normal glucose homeostasis. Surviving db/+ variants exhibited prolonged periods of diabetes-like disease with hypoinsulemia and abnormal glucose tolerance, even though the db gene is not phenotypically expressed in the heterozygous state.  相似文献   

19.
Activation of protein kinase C (PKC) is implicated as an important mechanism by which diabetes causes vascular complications. We have recently shown that a PKC beta inhibitor ameliorates not only early diabetes-induced glomerular dysfunction such as glomerular hyperfiltration and albuminuria, but also overexpression of glomerular mRNA for transforming growth factor beta1 (TGF-beta1) and extracellular matrix (ECM) proteins in streptozotocin-induced diabetic rats, a model for type 1 diabetes. In this study, we examined the long-term effects of a PKC beta inhibitor on glomerular histology as well as on biochemical and functional abnormalities in glomeruli of db/db mice, a model for type 2 diabetes. Administration of a PKC beta inhibitor reduced urinary albumin excretion rates and inhibited glomerular PKC activation in diabetic db/db mice. Administration of a PKC beta inhibitor also prevented the mesangial expansion observed in diabetic db/db mice, possibly through attenuation of glomerular expression of TGF-beta and ECM proteins such as fibronectin and type IV collagen. These findings provide the first in vivo evidence that the long-term inhibition of PKC activation in the renal glomeruli can ameliorate glomerular pathologies in diabetic state, and thus suggest that a PKC beta inhibitor might be an useful therapeutic strategy for the treatment of diabetic nephropathy.  相似文献   

20.
Randomized clinical trials have clearly shown that inhibition of the renin-angiotensin system (RAS) will slow the rate of progression of diabetic nephropathy, but controversy remains about whether the observed beneficial effects result from more than control of blood pressure. Deletion of eNOS in a model of type II diabetes, db/db mice (eNOS(-/-) db/db), induces an accelerated nephropathy and provides an excellent model of human diabetic nephropathy. As is frequently seen in type II diabetes, blood pressure is moderately elevated in eNOS(-/-) db/db mice. To determine the role of elevated blood pressure per se vs. additional deleterious effects of the RAS in mediation of disease progression, 8-wk-old eNOS(-/-) db/db mice were randomly divided into three groups: vehicle, treatment with the angiotensin-converting enzyme inhibitor (ACEI) captopril, or treatment with "triple therapy" (hydralazine, resperine, hydrocholorothiazide), and the animals were euthanized after treatment for 12 wk. Blood pressure was reduced to comparable levels with ACE inhibition or triple therapy. Although both treatment regimens decreased development of diabetic nephropathy, ACE inhibition led to more profound reductions in albuminuria, glomerulosclerosis, markers of tubulointerstitial injury, macrophage infiltration, and markers of inflammation. Therefore, this animal model suggests that while there is an important role for blood pressure control, RAS blockade provides additional benefits in slowing the progression of diabetic nephropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号