首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined eukaryote genetic diversity in the hydrothermal environments of Lassen Volcanic National Park (LVNP), Northern California. We sampled hydrothermal areas of the Bumpass Hell, Sulfur Works, Devil's Kitchen, and Boiling Springs Lake sites, all of which included diverse acidic pools, mud pots, and streams with visible algal mats and biofilms. Temperatures varied from 15 to 85 degrees C and pH from 1.7 to 5.8. DNA extraction methods compared by denaturing gradient gel electrophoresis fingerprinting exhibited similar patterns, and showed limited diversity of eukaryotic small subunit (SSU) rRNA genes compared with prokaryotes. We successfully amplified eukaryotic SSU rRNA genes from most environments up to 68 degrees C. Cloned rDNA sequences reveal acidophilic protists dominate eukaryotes in LVNP hydrothermal environments. Most sites showed phototrophic assemblages dominated by chlorophytes and stramenopiles (diatoms and chrysophytes). Heterotrophic taxa, though less abundant, included diverse alveolates (ciliates), amoebae, and flagellates. Fungi were also found at most sites, and metazoans (hexapods, nematodes, platyhelminths) were sometimes detected in less acidic environments, especially in algal mats. While many cloned rDNA sequences showed 95%-99% identity to known acidophilic isolates or environmental clones from other acidic sites (Rio Tinto), sequence diversity generally declined both with decreasing pH and increasing temperature, and both were controlling physical variables on the abundance and distribution of organisms at our sites. However, a pool at 68 degrees C with pH 1.7 yielded the greatest number of distinct sequences. While some were likely contaminants from nearby cooler sites, we suggest that Lassen's acidic hydrothermal features may harbor novel protists.  相似文献   

2.
The present study investigated the influence of abiotic conditions on microbial mat communities from Shark Bay, a World Heritage area well known for a diverse range of extant mats presenting structural similarities with ancient stromatolites. The distributions and stable carbon isotopic values of lipid biomarkers [aliphatic hydrocarbons and polar lipid fatty acids (PLFAs)] and bulk carbon and nitrogen isotope values of biomass were analysed in four different types of mats along a tidal flat gradient to characterize the microbial communities and systematically investigate the relationship of the above parameters with water depth. Cyanobacteria were dominant in all mats, as demonstrated by the presence of diagnostic hydrocarbons (e.g. n‐C17 and n‐C17:1). Several subtle but important differences in lipid composition across the littoral gradient were, however, evident. For instance, the shallower mats contained a higher diatom contribution, concordant with previous mat studies from other locations (e.g. Antarctica). Conversely, the organic matter (OM) of the deeper mats showed evidence for a higher seagrass contribution [high C/N, 13C‐depleted long‐chain n‐alkanes]. The morphological structure of the mats may have influenced CO2 diffusion leading to more 13C‐enriched lipids in the shallow mats. Alternatively, changes in CO2 fixation pathways, such as increase in the acetyl COA‐pathway by sulphate‐reducing bacteria, could have also caused the observed shifts in δ13C values of the mats. In addition, three smooth mats from different Shark Bay sites were analysed to investigate potential functional relationship of the microbial communities with differing salinity levels. The C25:1 HBI was identified in the high salinity mat only and a lower abundance of PLFAs associated with diatoms was observed in the less saline mats, suggesting a higher abundance of diatoms at the most saline site. Furthermore, it appeared that the most and least saline mats were dominated by autotrophic biomass using different CO2 fixation pathways.  相似文献   

3.
Two methods for extracting protists from freshwater sediment are described: (i) an adapted isopycnic centrifugation technique for sandy and gyttja-like sediments and (ii) a rate zonal centrifugation technique for sediments rich in particulate organic material (litter-like sediments). The recoveries of protists during isopycnic centrifugation in media of several densities were compared. No significant losses in sodium diatrizoate and Percoll were recorded. After known amounts of nanoflagellates were added to azoic sediments, the protists were extracted and counted. For sandy sediments, we found 100% recovery, and for the gyttja-like sediments we found a maximum recovery of 94%. The recovery of protozoa extracted from litter-like sediments, characteristic of littoral systems, depends on a given centrifugal force, on time, and on the dimensions of the flagellates. A recovery model which takes into account cell dimensions and centrifugation characteristics gives the minimum expected recovery.  相似文献   

4.
Little is known about protists at deep‐sea hydrothermal vents. The vent sites at Guaymas Basin in the Gulf of California are characterized by dense mats of filamentous pigmented or nonpigmented Beggiatoa that serve as markers of subsurface thermochemical gradients. We constructed 18S rRNA libraries to investigate ciliate assemblages in Beggiatoa mats and from bare sediments at the Guaymas vent site. Results indicated a high diversity of ciliates, with 156 operational taxonomic units identified in 548 sequences. Comparison between mat environments demonstrated that ciliate and bacterial assemblages from pigmented mats, nonpigmented mats, and bare sediments were significantly different and highly correlated with bacterial assemblages. Neither bacterial nor ciliate assemblages were correlated with environmental factors. The most abundant ciliates at Guaymas were more likely to be represented in clone libraries from other hydrothermal, deep‐sea, and/or anoxic or microaerophilic environments, supporting the hypothesis that these ciliate species are broadly distributed. The orange mat environment included a higher proportion of ciliate sequences that were more similar to those from other environmental studies than to cultured ciliate species, whereas clone libraries from bare sediments included sequences that were the most highly divergent from all other sequences and may represent species that are endemic to Guaymas.  相似文献   

5.
From genes to genomes: beyond biodiversity in Spain's Rio Tinto   总被引:3,自引:0,他引:3  
Spain's Rio Tinto, or Red River, an example of an extremely acidic (pH 1.7-2.5) environment with a high metal content, teems with prokaryotic and eukaryotic microbial life. Our recent studies based on small-subunit rRNA genes reveal an unexpectedly high eukaryotic phylogenetic diversity in the river when compared to the relatively low prokaryotic diversity. Protists can therefore thrive in and dominate extremely acidic, heavy-metal-laden environments. Further, because we have discovered protistan acidophiles closely related to neutrophiles, we can hypothesize that the transition from neutral to acidic environments occurs rapidly over geological time scales. How have these organisms adapted to such environments? We are currently exploring the alterations in physiological mechanisms that might allow for growth of eukaryotic microbes at acid extremes. To this end, we are isolating phylogenetically diverse protists in order to characterize and compare ion-transporting ATPases from cultured acidophiles with those from neutrophilic counterparts. We predict that special properties of these ion transporters allow protists to survive in the Rio Tinto.  相似文献   

6.
The capacity of thermal algal-bacterial mats to fix nitrogen (N2) was examined in an alkaline thermal stream, Rabbit Creek, of Yellowstone National Park. Nitrogenase activity and nitrogen-fixation rates of mat cores placed in serum bottles and incubated in situ were estimated by the acetylene-reduction technique. Active nitrogenase was not detected at 60 or 65 C in either the blue-green algal or bacterial undermat components of the mats. Acetylene was reduced by all mats ≤55 C along the thermogradient; mean fixation estimates for the mats ranged from 7 to 5,028 nmoles N2 fixed · mg Chl a?1· hr?1. Maximum fixation occurred at 35 C in the stream; statistical comparison of mean rates ordered the thermogradient mats according to estimated activities: 35 > 40 > 30 > 50 ≥ 55 ≥ 45 C. Mats (≤40 C) dominated by species of Calothrix accounted for ca. 97% of the total nitrogen fixation observed in the stream; the remaining activity was associated with mats containing Mastigocladus laminosus Cohn. Light intensity significantly affected fixation rates of the Calothrix mats which responded in a linear fashion from 9–100% full sunlight (ca. 1,900 μEin · m?2· sec?1). Calothrix mats from 30 and 40 C had maximum nitrogenase activity at their growth temperature suggesting that nitrogen fixation along the thermogradient was optimally adapted to in situ temperatures.  相似文献   

7.
Severely burned areas in the pitch pine-dominated forests of the New Jersey Pinelands may remain open and only vegetated with mats of lichens and mosses and sparse, scattered vascular plants for many decades. We hypothesize that climate-driven alternation between moss and lichen domination of the cryptogam mats may foster and inhibit, respectively, vascular plant development. We propose that these processes are mediated by the inhibitory effects of lichens on seed germination and seedling establishment versus a facilitating effect of mosses. We tested the hypothesis by 1) detailed surveys of the composition of cryptogam mats and their association with vascular plants, 2) experimental studies of the effects of tissue leachates on seed germination, 3) observations of mycorrhizal infection in field-collected plants, and 4) experimental tests of seedling emergence from mats. Lichen dominance in the mats was correlated with low densities of vascular plants (graminoids and ericoid shrubs), thin organic horizons on the soil, and high levels of light availability; moss dominance was correlated with higher vascular plant densities, thicker organic horizons, and lower light. Tissue extracts of lichens strongly inhibited seed germination, while moss extracts had no effect. Similarly, mycorrhizal infection by both ecto- and endomycorrhizae was lower in plants growing within lichen mats than in moss mats or in bare soil. However, thick mats of both types of cryptogam inhibited seedling emergence. We observed that moss-dominated patches became overgrown with lichens during a series of very dry, hot summers during the study. These observations all support the hypothesis that fluctuating warm and dry versus cool and moist conditions allow alternative stable states (open cryptogam mats vs succession to pine forest) to develop.  相似文献   

8.
Ecological studies of Chloroflexis,a gliding photosynthetic bacterium   总被引:2,自引:0,他引:2  
Summary Chloroflexis, a gliding, filamentous, photosynthetic bacterium, is present in the stratified algal-bacterial mats which occur in the 50°–70°C temperature range of alkaline hot spring effluents. The organism is in association with the alga in the upper, algal layer, and also forms thick, orange mats beneath the algal layer. Natural populations of Chloroflexis from these mats demonstrated light-stimulated uptake of some 14C-labelled organic compounds. Photosynthetic 14CO2 fixation by natural samples of Chloroflexis was investigated with respect to temperature, light intensity and mat depth. Bacterial photosynthesis was determined in samples in which algae were present by use of the inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Bacterial photosynthesis was maximal at depths down to about 3 mm and then decreased rapidly to very low levels at greater depths. The greatest amounts of bacteriochlorophyll pigments were also concentrated in the top 3–4 mm of the mat. The optimum light intensity for bacterial photosynthesis (about 400 ft-c) was considerably lower than the normal summer light intensity at the surface of the mat (5000-8000 ft-c).The temperature optima for photosynthesis by the bacterial component of natural mat samples from several sites of different temperatures in a hot spring thermal gradient were determined. Temperature optima approximated the environmental temperatures, indicative of the occurrence of strains of Chloroflexis adapted to different temperatures. Although bacterial standing crop was greatest in the temperature range 50°–55°C, maximum photosynthetic efficiency was observed at about 45°C. Sulfide was stimulatory to photosynthetic 14CO2 fixation by naturally occurring populations of Chloroflexis under field conditions. These data are consistent with the hypothesis that Chloroflexis may utilize sulfide as an electron donor for photosynthetic CO2 reduction. However, it is also likely that Chloroflexis grows photoheterotrophically in these mats, obtaining organic compounds from algal excretory products.  相似文献   

9.
10.
During the last 4 years there has been an enormous interest in the question how iron-sulphur ([Fe-S]) clusters, which are essential building blocks for life, are synthesised and assembled into apo-proteins, both in prokaryotes and in eukaryotes. The emerging picture is that the basic mechanism of this pathway has been well conserved during evolution. In yeast and probably all other eukaryotes the mitochondrion is the place where [Fe-S] clusters are synthesised, even for extramitochondrial [Fe-S] cluster-containing proteins, and a number of proteins have been functionally characterised to a certain extent within this pathway. However, almost nothing is known about this aspect in parasitic protists, although recent studies of amitochondriate protists and on the plastid-like organelle of apicomplexan parasites, the apicoplast, have started to change this. In this article I will summarise the current view of [Fe-S] cluster biogenesis in eukaryotes and discuss its implications for amitochondriate protists and for the plastid-like organelle of apicomplexan parasites.  相似文献   

11.
1. Allochthonous organic matter, in the form of senesced leaves, is a major source of carbon supporting detrital food webs. While studies have documented the role of bacteria and fungi in the decomposition of leaf litter, little information is available regarding the role of protists in the decomposition process. 2. We tested the hypothesis that the presence of stream‐dwelling bacterivorous protists leads to an increased rate of leaf decomposition through grazing pressure on bacteria. We isolated live protists from decomposing leaves collected in a stream in Northern Virginia, U.S.A. (Goose Creek) and established laboratory cultures of common bacterivorous protists. 3. Recently senesced leaves from the field were used in laboratory microcosm experiments to determine if the rate of litter decomposition differed between four treatments: bacteria only, bacteria + flagellates, bacteria + flagellates + ciliates, autoclaved stream water (control). We determined the dry weight of leaf remaining, bacterial abundance, flagellate abundance and ciliate abundance for each replicate on days 0, 7, 14, 30, 60 and 120. 4. The rate of leaf decomposition was significantly higher in treatments with protists than without and bacterial abundance declined in protist treatments compared with bacteria only treatment. Weight loss in the presence of flagellates was three to four times higher when protists were present compared with treatments with bacteria alone. These results provide experimental evidence that protists could play a significant role in the detrital processes of streams.  相似文献   

12.
Alkaline siliceous hot spring microbial mats in Yellowstone National Park are composed of two dominant phototropic groups, cyanobacteria and green non-sulfur-like bacteria (GNSLB). While cyanobacteria are thought to cross-feed low-molecular-weight organic compounds to support photoheterotrophic metabolism in GNSLB, it is unclear how this could lead to the heavier stable carbon isotopic signatures in GNSLB lipids compared with cyanobacterial lipids found in previous studies. The two groups of phototrophs were separated using percoll density gradient centrifugation and subsequent lipid and stable carbon isotopic analysis revealed that we obtained fractions with a approximately 60-fold enrichment in cyanobacterial and an approximately twofold enrichment in GNSLB biomass, respectively, compared with the mat itself. This technique was used to study the diel cycling and 13C content of the glucose pools in and the uptake of 13C-bicarbonate by the cyanobacteria and GNSLB, as well as the transfer of incorporated 13C from cyanobacteria to GNSLB. The results show that cyanobacteria have the highest bicarbonate uptake rates and accumulate glucose during the afternoon in full light conditions. In contrast, GNSLB have relatively higher bicarbonate uptake rates compared with cyanobacteria in the morning at low light levels. During the night GNSLB take up carbon that is likely derived through fermentation of cyanobacterial glucose enriched in 13C. The assimilation of 13C-enriched cyanobacterial carbon may thus lead to enriched 13C-contents of GNSLB cell components.  相似文献   

13.
BACKGROUND: Lateral gene transfer (LGT) is an important evolutionary mechanism among prokaryotes. The situation in eukaryotes is less clear; the human genome sequence failed to give strong support for any recent transfers from prokaryotes to vertebrates, yet a number of LGTs from prokaryotes to protists (unicellular eukaryotes) have been documented. Here, we perform a systematic analysis to investigate the impact of LGT on the evolution of diplomonads, a group of anaerobic protists.RESULTS: Phylogenetic analyses of 15 genes present in the genome of the Atlantic Salmon parasite Spironucleus barkhanus and/or the intestinal parasite Giardia lamblia show that most of these genes originated via LGT. Half of the genes are putatively involved in processes related to an anaerobic lifestyle, and this finding suggests that a common ancestor, which most probably was aerobic, of Spironucleus and Giardia adapted to an anaerobic environment in part by acquiring genes via LGT from prokaryotes. The sources of the transferred diplomonad genes are found among all three domains of life, including other eukaryotes. Many of the phylogenetic reconstructions show eukaryotes emerging in several distinct regions of the tree, strongly suggesting that LGT not only involved diplomonads, but also involved other eukaryotic groups.CONCLUSIONS: Our study shows that LGT is a significant evolutionary mechanism among diplomonads in particular and protists in general. These findings provide insights into the evolution of biochemical pathways in early eukaryote evolution and have important implications for studies of eukaryotic genome evolution and organismal relationships. Furthermore, "fusion" hypotheses for the origin of eukaryotes need to be rigorously reexamined in the light of these results.  相似文献   

14.
15.
Abstract

Cave lithifying systems are excellent models to study biomineralization in the dark. The Chimalacatepec Lava Tube System in Mexico harbors diverse biospeleothems where previous studies suggest that the formation of opaline terrestrial stromatolites is related to microorganisms in contiguous mats. However, there is no information regarding their characterization and their role in mineral formation. In this study, we characterized the bacterial and archaeal composition of microbial mats and stromatolites and suggested the main processes involved in the genesis of opaline stromatolites. Our results showed that the microbial mats and stromatolites have a similar 16S rRNA gene composition, but stromatolites contain more Actinobacteria, which have been previously found in other lava tubes together with other key bacteria. Microorganisms found here belonged to groups with the potential to fix carbon and degrade organic matter. We propose that the synergic interaction of autotrophic and heterotrophic microorganisms that thrive in the dark might be inducing carbonate precipitation within the Ca-enriched extracellular polymeric substances (EPS), generating opal-A and calcite laminae. The similar 16S rRNA gene fingerprint and the presence of potential pathways that induce carbonate precipitation in opaline stromatolites and microbial mats suggest that microbial mats lithify and contribute to the stromatolite biotic genesis.  相似文献   

16.
We have compiled a database of functional traits for two widespread and ecologically important groups of protists, Cercozoa and Endomyxa (Rhizaria). The functional traits of microorganisms are crucially important for interpreting results from environmental sequencing surveys. Linking morphological and ecological traits to environmental factors is common practice in studies involving micro‐ and macroorganisms, but is rarely applied to protists. Our database provides functional and ecologically significant traits linked to morphology, nutrition, locomotion and habitats. We discuss how the use of functional traits may help to unveil underlying ecosystem processes. This database is intended as a common reference for the molecular ecology community and will boost the understanding of ecosystem functions, especially those driven by biological interactions.  相似文献   

17.
The opportunistic protists encompass a wide diversity of organisms including Pneumocystis, Toxoplasma, cryptosporidia, microsporidia, and related genera. Recent advances in the molecular biology and cellular biochemistry of these organisms have led to the identification of an ever growing numbers of key genes and their cognate proteins. Until now, these molecules have not been designated using any consistent nomenclature system, leading to considerable confusion. The participants of the 11th International Workshop on Opportunistic Protists met on August 3, 2010 to reach consensus of a nomenclature system for genes, gene products, and mutants in the opportunistic protists. The following summary reports the consensus agreement to move toward a unified nomenclature system for these organisms. The system is adapted from that used for Saccharomyces cerevisiae.  相似文献   

18.
S Xin  Y Li  W Li  J Du  R Huang  Y Du  H Deng 《Carbohydrate polymers》2012,90(2):1069-1074
In this study, carboxymethyl chitin (CMC) - organic rectorite (OREC)/poly (vinyl alcohol) (PVA) composite nanofibrous mats were successfully prepared via electrospinning. SAXRD pattern showed that the interlayer distance of OREC was increased from 3.68 to 4.08nm, which verified that polymer chains were intercalated into the interlayer of OREC. Field emission scanning electron microscopy, Fourier transform infrared spectra and energy-dispersive X-ray spectroscopy were used to characterize the morphology and microcosmic structure of nanofibrous mats. Thermal properties of mats were determined by differential scanning calorimetry. To evaluate the cell compatibility of mats, mouse lung fibroblast (L929) was chosen for cell attachment and spreading assay. The results shows that nanofibrous mats contained OREC have better thermal properties. Besides, the addition of OREC has little effect on the cell compatibility of nanofibrous mats.  相似文献   

19.
The benthic biome of the deep-sea floor, one of the largest biomes on Earth, is dominated by diverse and highly productive heterotrophic protists, second only to prokaryotes in terms of biomass. Recent evidence suggests that these protists play a significant role in ocean biogeochemistry, representing an untapped source of knowledge. DNA metabarcoding and environmental sample sequencing have revealed that deep-sea abyssal protists exhibit high levels of specificity and diversity across local regions. This review aims to provide a comprehensive summary of the known heterotrophic protists from the deep-sea floor, their geographic distribution, and their interactions in terms of parasitism and predation. We offer an overview of the most abundant groups and discuss their potential ecological roles. We argue that the exploration of the biodiversity and species-specific features of these protists should be integrated into broader deep-sea research and assessments of how benthic biomes may respond to future environmental changes.  相似文献   

20.
A number of plant communities have been described on tropical inselbergs, known as hot spots of plant and animal biodiversity. However, few studies tried to question what drives seral processes in these harsh environments, submitted to natural hazards (violent storms, intense runoff and lightning strikes) which may destroy the vegetation cover and its accumulated organic matter. We analysed quantitative data from the granitic Nouragues inselberg (French Guiana) in order to discern how successional processes featured their variety. We showed that the transition from herbaceous carpets (bromeliaceous mats and grassy meadows) to woody vegetation (shrub thickets) was not conditioned by slope, but was truly successional. We also showed that there was a cycle of change in shrub thickets, reinitiated by the destruction of scrub vegetation by fire (lightnings), wood-destroying fungi and termites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号