首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In ungulates it is argued that specialization in the consumption of a particular type of food (feeding style) is reflected in morphological adaptations of the organs involved in the selection, processing and digestion of food. We analysed the differences in size and morphology of some oral traits that have been functionally related to food-selection ability (muzzle width, incisor-arcade shape, incisor shape), prehension of food (incisor protrusion), food comminution (molar occlusal surface area, hypsodonty (high-crowned molars)) and intake rate (incisor breadth) between ungulate species with different feeding styles (browser, mixed feeder, grazer). Grazers were characterized by large-body-size species. After controlling only for body mass, we found that grazers had wider muzzles and incisors, more-protruding incisors and more-bulky and higher-crowned molars than did mixed feeders and browsers. When the analyses took into account both body mass and phylogeny, only body mass and two out of the three hypsodonty indexes used remained significantly different between feeding styles. Browsers were smaller, on average, than mixed feeders and grazers, whilst grazers and mixed feeders did not differ in size. Also, browsers had shorter and less-bulky molars than did mixed feeders and grazers; the latter two feeding styles did not differ from each other in any of the hypsodonty indexes. We conclude that the adaptation to different dietary types in most of the oral traits studied is subsumed by the effects of body mass and the sharing of common ancestors. We hypothesize that differences in the ability to exploit different food resources primarily result from differences in body mass between species, and also discuss why hypsodonty characterizes feeding styles.  相似文献   

2.
The relationship between jaw and skull morphology and feeding type (grazer, mixed feeder, browser, frugivorous, omnivorous) was analysed in 94 species of extant ungulates. A total of 21 morphological traits of the jaw and skull (17 and 4, respectively) were analysed using analysis of covariance, with body mass as covariate. To take into account the phylogenetic effect, simulations were generated under the Brownian motion model of character evolution. Analysis of covariance was applied to these simulations and the simulated F-ratios were used to assess the signification of the F-ratios for the real values of the traits. The feeding types had a weak effect on ungulate cranial and jaw morphology in comparison with the phylogenetic effect, since, before phylogeny correction, the analysis of covariance showed statistically significant differences associated with feeding type in 15 out of the 21 traits analysed. After controlling for phylogeny, only 2 significant traits remained, the length of the coronoid process and the occipital height. Omnivorous species had shorter coronoid processes than grazers or mixed feeders, and the occipital height was greater in the omnivorous species than in the grazers, mixed feeders or browsers. The coronoid process is involved in the generation of bite force, being the effective moment arm of the temporalis muscle, and occipital height is positively related to the force exerted by the temporalis muscle. This result matches the hypothesis that species with a toughness diet should show higher bite force (“toughness” describes the resistance of a material to being mechanically broken down). When the omnivorous species were excluded from the analysis, no differences in jaw and skull morphology were detected between the rest of the feeding types. Received: 1 September 1998 / Accepted: 2 November 1998  相似文献   

3.
In 1998, A. Mysterud analysed the relationships between a behavioural parameter (activity time, AT) and body mass and feeding style for 18 temperate ruminants. He found a negative allometric relationship between body mass and AT, and also found a significant effect of feeding style on AT after controlling for body mass. We reanalysed this data set taking into account the effect of phylogeny, and found that while body mass and AT were negatively related, feeding style did not have any effect on AT. We discuss the strong effect that phylogeny has on morphophysiological and behavioural features of ruminants that differ in feeding style, and the lack of evidence to support a feeding style effect. Received: 16 November 1998 / Accepted: 20 April 1999  相似文献   

4.
Sex-specific estimates of the summer and winter home range area of 19 species of temperate ruminants were collated from the literature. It was predicted that there should be a shallower slope for the home range area against body mass relationship during winter than during summer, as large ruminants can meet more of their energy requirements from the fat reserves deposited during summer than small ruminants. Consequently, relatively large species do not need to range as widely during winter. There was a significant positive relationship between body mass and summer and winter home range area in both females and males. This relationship remained significant when analysed within feeding styles (browser, mixed feeder, grazer), except in mixed feeders in winter. As predicted, slope estimates were significantly lower during winter (b=0.59) than during summer (b=1.28), both before and after controlling for phylogeny. After controlling for phylogeny, browsers had a steeper slope (summer: b=1.48; winter: b=1.07) of the home range area against body mass relationship than did mixed feeders (summer: b=0.75; winter: b=-0.11) or grazers (summer: b=1.10; winter: b=0.34). There was no effect of sex after body mass was controlled for. The effect of season, sex and feeding style on the home range area versus body mass relationship in temperate ruminants is discussed.  相似文献   

5.
  1. Trait‐based approaches are increasingly used to study species assemblages and understand ecosystem functioning. The strength of these approaches lies in the appropriate choice of functional traits that relate to the functions of interest. However, trait–function relationships are often supported by weak empirical evidence.
  2. Processes related to digestion and nutrient assimilation are particularly challenging to integrate into trait‐based approaches. In fishes, intestinal length is commonly used to describe these functions. Although there is broad consensus concerning the relationship between fish intestinal length and diet, evolutionary and environmental forces have shaped a diversity of intestinal morphologies that is not captured by length alone.
  3. Focusing on coral reef fishes, we investigate how evolutionary history and ecology shape intestinal morphology. Using a large dataset encompassing 142 species across 31 families collected in French Polynesia, we test how phylogeny, body morphology, and diet relate to three intestinal morphological traits: intestinal length, diameter, and surface area.
  4. We demonstrate that phylogeny, body morphology, and trophic level explain most of the interspecific variability in fish intestinal morphology. Despite the high degree of phylogenetic conservatism, taxonomically unrelated herbivorous fishes exhibit similar intestinal morphology due to adaptive convergent evolution. Furthermore, we show that stomachless, durophagous species have the widest intestines to compensate for the lack of a stomach and allow passage of relatively large undigested food particles.
  5. Rather than traditionally applied metrics of intestinal length, intestinal surface area may be the most appropriate trait to characterize intestinal morphology in functional studies.
  相似文献   

6.
Understanding patterns and distributions of morphological traits is essential for discerning underpinning processes of morphological variation. We report on the variation in the avian pelvic limb skeleton. Length and width variables were measured in the skeletons of 236 avian species in order to examine the importance of body mass, ecological factors, phylogeny and integration in the formation of specific hindlimb morphology. Scaling relationships with body mass were analyzed across Aves and in individual avian subclades. Principal component analysis and multiple regressions were performed to examine the relationship between morphology, ecology, and phylogeny. Finally, the occurrence of within‐limb morphological integration was tested by partial correlation analysis of the residuals from element lengths vs. body mass and correlation analysis of avian hindlimb proportions. Body mass is the greatest contributor to variation, and it strongly influences variation in avian skeletal lengths. Lengthening of the leg typically comes from disproportionate increases in tibiotarsal and tarsometatarsal length. Partial correlation analysis showed that only these two elements are distinctly integrated consistently across all bird taxa, whereas relation of femur and third toe to other limb elements displays no clear pattern. Hence, morphological integration of all elements is not a prerequisite for limb design, and variation between taxa is mainly to be found in femoral and digital length. Furthermore, variation in tibiotarsal relative length is much lower than in other elements likely due to geometric constrains. Clear ecological adaptations are obscured by multifunctionality of the avian hindlimb, and phylogeny significantly constrains the morphology. Finally, when looking at relative lengths segmented limbs meet the requirements of many‐to‐one‐mapping of phenotype to functional property, in line with a common concept of evolvability of function and morphology. J. Morphol., 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
We tested for morphological convergence in conifer specialists among 88 passerines belonging to seven different phylogenetic lineages by discriminant factor analysis. We found a parallel trend among the seven lineages in body mass and digital pad morphology, whereas no such trends existed for the feeding and flight apparatus. Compared to the control species, the conifer specialists have smaller body masses and higher digital pads with maximal widths lying more distally within each of the seven lineages. These traits are interpreted as adaptations to dwelling among coniferous needles.Communicated by: F. Bairlein  相似文献   

8.
Genera within the South American cichlid tribe Geophagini display specialized feeding and reproductive strategies, with some taxa specialized for both substrate-sifting and mouth brooding. Several lineages within the clade also possess an epibranchial lobe (EBL), a unique pharyngeal structure that has been proposed to have a function in feeding and/or mouth brooding. A recently published genus-level phylogeny of Neotropical cichlids was used as the evolutionary framework for investigating the evolution of morphological features presumably correlated with diet and mouth brooding in the tribe Geophagini. We tested for possible associations between the geophagine epibranchial lobe and benthic feeding and mouth brooding. We also addressed whether the EBL may be associated with unique patterns of diversification in certain geophagine clades. Tests of binary character correlations revealed the EBL was significantly associated with mouth brooding. We also tested for a relationship between diet and morphology. We analyzed stomach contents and morphometric variation among 21 species, with data for two additional species obtained from the literature. Principal Components Analysis revealed axes of morphological variation significantly correlated with piscivory and benthivory, and both morphology and diet were significantly associated with phylogeny. These results suggest that the EBL could be an adaptation for either feeding or mouth brooding. The EBL, however, was not associated with species richness or accelerated rates of phyletic diversification.  相似文献   

9.
Acoustic signals show immense variation among passerines, and several hypotheses have been proposed to explain this diversity. In this study, we tested, for the first time, the relationships of song structure to phylogeny, habitat type, and morphology in the vireos and allies (Vireonidae). Every measure of song structure considered in this study had moderate and significant phylogenetic signal. Furthermore, two song-constraining morphological traits, bill shape and body mass, also exhibited significant phylogenetic signal. Song length showed the largest within-clade similarity; longer songs were highly conserved in part of the greenlet (Hylophilus) clade, whereas shorter songs characterized the remaining seven genera. We found no differences in song structure among vireonids living in different habitat types. However, vireonids with shorter, stouter bills and larger bodies sang songs with lower minimum and maximum peak frequency, compared with species with longer, thinner bills and smaller bodies. We conclude that Vireonidae song evolution is driven partially by phylogenetically conserved morphological traits. Our findings support the phylogenetic signal and morphological constraints hypotheses explaining structural diversity in avian acoustic signals.  相似文献   

10.
A comparison was made of the labral fan morphology of 29 populations belonging to at least 21 different simuliid species present as mature larvae in spring-early summer in North Swedish streams and rivers. The study revealed that there are both adaptive, morphological and phylogenetic traits evident in the material. Two basically different particle capture techniques can be deduced from morphology, where two prosimuliids, Cnephia pallipes and Metacnephia trigonia , represent species which mainly rely on a sieving technique, whereas all other species investigated capture particles by some other process, such as diffusional deposition. Within tribe Simuliini there are significant relationships between several fan traits and habitat. Thus, fast rivers are inhabited by species with small fans, having short and stout rays, whereas small, slow streams harbour species with large fans consisting of elongated, delicate rays. The finer morphology of the fan rays in terms of secondary structures, the microtrichia, appears to be more related to phylogeny than" habitat. Since a phylogeny of blackfly species still is lacking, this conclusion cannot be tested. In two subgenera, however, which are particularly well represented in the present material ( Simulium s. str. and Nevermannia ), and whose taxonomy is based on criteria other than fan morphology, there is consistent support for the conclusions about habitat-morphology relations.  相似文献   

11.
We explored how morphological traits can complement phylogenetic information to extend our predictions of the ecology of a diverse beetle assemblage. We analysed ten morphological traits from an assemblage of 239 species from 35 families, and identified three axes of morphological variation that were independent of body length: (1) relative robustness; (2) relative appendage length; and (3) relative abdomen length. The trait associations defining these axes of morphological variation did not change after adjusting for family‐level phylogeny. We detected significant differences in morphological variation across the beetle assemblage according to diet and microhabitat use, and these patterns were only partially influenced by family membership. Further analysis within dominant families showed that species of Carabidae, Curculionidae, Scarabaeidae and Staphylinidae had greater body length in open versus tree litter microhabitat, and species of Carabidae and Curculionidae had greater relative robustness, but shorter relative appendage length, in open versus tree litter microhabitat. Although it is clear that family‐level phylogeny and morphology share some explanatory power for predicting the diet and microhabitat use by beetles, we demonstrate that body length, robustness and appendage length are correlated significantly with microhabitat use when comparing members of the same family. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 301–310.  相似文献   

12.
Boggs CL  Freeman KD 《Oecologia》2005,144(3):353-361
Allocation of larval food resources affects adult morphology and fitness in holometabolous insects. Here we explore the effects on adult morphology and female fitness of larval semi-starvation in the butterfly Speyeria mormonia. Using a split-brood design, food intake was reduced by approximately half during the last half of the last larval instar. Body mass and forewing length of resulting adults were smaller than those of control animals. Feeding treatment significantly altered the allometric relationship between mass and wing length for females but not males, such that body mass increased more steeply with wing length in stressed insects as compared to control insects. This may result in changes in female flight performance and cost. With regard to adult life history traits, male feeding treatment or mating number had no effect on female fecundity or survival, in agreement with expectations for this species. Potential fecundity decreased with decreasing body mass and relative fat content, but there was no independent effect of larval feeding treatment. Realized fecundity decreased with decreasing adult survival, and was not affected by body mass or larval feeding treatment. Adult survival was lower in insects subjected to larval semi-starvation, with no effect of body mass. In contrast, previous laboratory studies on adult nectar restriction showed that adult survival was not affected by such stress, whereas fecundity was reduced in direct 11 proportion to the reduction of adult food. We thus see a direct impact of larval dietary restriction on survival, whereas fecundity is affected by adult dietary restriction, a pattern reminiscent of a survival/reproduction trade-off, but across a developmental boundary. The data, in combination with previous work, thus provide a picture of the intra-specific response of a suite of traits to ecological stress.  相似文献   

13.
Odontophoral cartilages are located in the molluscan buccal mass and support the movement of the radula during feeding. The structural diversity of odontophoral cartilages is currently known only from limited taxa, but this information is important for interpreting phylogeny and for understanding the biomechanical operation of the buccal mass. Caenogastropods exhibit a wide variety of feeding strategies, but there is little comparative information on cartilage morphology within this group. The morphology of caenogastropod odontophoral cartilages is currently known only from dissection and histology, although preliminary results suggest that they may be structurally diverse. A comparative morphological survey of 18 caenogastropods and three noncaenogastropods has been conducted, sampling most major caenogastropod superfamilies. Three‐dimensional models of the odontophoral cartilages were generated using X‐ray microscopy (micro‐CT) and reconstruction by image segmentation. Considerable morphological diversity of the odontophoral cartilages was found within Caenogastropoda, including the presence of thin cartilaginous appendages, asymmetrically overlapping cartilages, and reflexed cartilage margins. Many basal caenogastropod taxa possess previously unidentified cartilaginous support structures below the radula (subradular cartilages), which may be homologous to the dorsal cartilages of other gastropods. As subradular cartilages were absent in carnivorous caenogastropods, adaptation to trophic specialization is likely. However, incongruence with specific feeding strategies or body size suggests that the morphology of odontophoral cartilages is constrained by phylogeny, representing a new source of morphological characters to improve the phylogenetic resolution of this group. J. Morphol. 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
Learning has been traditionally thought to accelerate the evolutionary change of behavioural traits. We evaluated the evolutionary rate of learned vocalizations and the interplay of morphology and ecology in the evolution of these signals. We examined contact calls of 51 species of Neotropical parrots from the tribe Arini. Parrots are ideal subjects due to their wide range of body sizes and habitats, and their open‐ended vocal learning that allows them to modify their calls throughout life. We estimated the evolutionary rate of acoustic parameters of parrot contact calls and compared them to those of morphological traits and habitat. We also evaluated the effect of body mass, bill length, vegetation density and species interactions on acoustic parameters of contact calls while controlling for phylogeny. Evolutionary rates of acoustic parameters did not differ from those of our predictor variables except for spectral entropy, which had a significantly slower rate of evolution. We found support for correlated evolution of call duration, and fundamental and peak frequencies with body mass, and of fundamental frequency with bill length. The degree of sympatry between species did not have a significant effect on acoustic parameters. Our results suggest that parrot contact calls, which are learned acoustic signals, show evolutionary rates similar to those of morphological traits. This is the first study to our knowledge to provide evidence that change through cultural evolution does not necessarily accelerate the evolutionary rate of traits acquired through life‐long vocal learning.  相似文献   

15.
Changes in morphology have been postulated as one of the responses of animals to global warming, with increasing ambient temperatures leading to decreasing body size. However, the results of previous studies are inconsistent. Problems related to the analyses of trends in body size may be related to the short-term nature of data sets, to the selection of surrogates for body size, to the appropriate models for data analyses, and to the interpretation as morphology may change in response to ecological drivers other than climate and irrespective of size. Using generalized additive models, we analysed trends in three morphological traits of 4529 specimens of eleven bird species collected between 1889 and 2010 in southern Germany and adjacent areas. Changes and trends in morphology over time were not consistent when all species and traits were considered. Six of the eleven species displayed a significant association of tarsus length with time but the direction of the association varied. Wing length decreased in the majority of species but there were few significant trends in wing pointedness. Few of the traits were significantly associated with mean ambient temperatures. We argue that although there are significant changes in morphology over time there is no consistent trend for decreasing body size and therefore no support for the hypothesis of decreasing body size because of climate change. Non-consistent trends of change in surrogates for size within species indicate that fluctuations are influenced by factors other than temperature, and that not all surrogates may represent size appropriately. Future analyses should carefully select measures of body size and consider alternative hypotheses for change.  相似文献   

16.
Eye stalks and their scaling relationship with body size are important features in the mating system of many diopsid species, and sexual selection is a critical force influencing the evolution of this exaggerated morphology. Interspecific variation in eye span suggests there has been significant evolutionary change in this trait, but a robust phylogenetic hypothesis is required to determine its rate and direction of change. In this study, the pattern of morphological evolution of eye span is assessed in a phylogenetic framework with respect to its function in the sexual system of these flies. Specifically, we examine within the family Diopsidae the pattern of increase and decrease in sexual dimorphism, the morphological coevolution of eye span between males and females, and the evolutionary flexibility of eye-span allometry. Based on several different methods for reconstructing morphological change, results suggest a general pattern of evolutionary flexibility, particularly for eye-span allometry. Sexual dimorphism in eye span has evolved independently at least four times in the family and this trait also has undergone several reductions within the genus Diasemopsis. Despite most species being dimorphic, there is a strong phylogenetic correlation between males and females for mean eye span. The coevolution between the sexes for eye-span allometry, however, is significantly weaker. Overall, eye-span allometry exhibits significantly more change on the phylogeny than the other morphological traits. The evolutionary pattern in eye-span allometry is caused primarily by changes in eye-span variance. Therefore, this pattern is consistent with recent models that predict a strong relationship between sexual selection and the variance of ornamental traits and highlights the significance of eye-span allometry in intersexual and intrasexual signaling.  相似文献   

17.
We studied the relationship between leg morphology and posture while feeding in a population of great tits (Parus major) under controlled conditions to investigate to what extent morphology and ecology are linked at the individual level. From predictions generated at the interspecific level within the genus Parus (Moreno and Carrascal 1993), we tested whether intra- and interspecific ecomorphological relationships are consistent. Within our population, neither leg bone lengths nor leg muscle morphology were related to the feeding posture of individuals. However, differences in body weight were correlated with inter-individual differences in time spent hanging. These results demonstrate that the association between intra- and interspecific ecomorphological relationships is not uniform. We argue that, at the intraspecific level, body weight overrides the significance of other traits that have a functional meaning at the interspecific level (i.e. leg segment lengths, muscular morphology), due to isometric variation of morphological traits (muscular and skeletal) with body mass. Thus, the discrepancy between the ecomorphological associations at intra- and interspecific levels is the result of a problem of scale (morphological changes in evolutionary time and isometric variation of morphological traits with body mass in ecological time).  相似文献   

18.
Distress signals produced by dung beetles of the genus Trypocopris (Coleoptera, Geotrupidae) were analysed to test whether interspecific and intraspecific acoustic variability are species- and subspecies-specific and to ascertain to what extent bioacoustic parameters depend upon the morphology of the stridulatory organs (pars stridens). Bioacoustic analyses showed that the three species were clearly differentiated, despite the fact that disturbance stridulations presented the same stereotyped spectrographic pattern. Within each species, most of the subspecies and populations considered were also bioacoustically distinguishable. Subspecies and populations within each species were differentiated with regard to body size and stridulatory organ, and the length of the pars stridens was positively correlated with the width of the coxa, in turn positively correlated with body size. A few spectrographic measures were significantly constrained by the morphology of the stridulatory apparatus; in particular the duration of sound emission was positively correlated with the length of the apparatus and the sub-pulse rate was negatively related to the distance between two consecutive crests. For T. pyrenaeus, with the largest number of populations sampled, there was no significant correlation between morphological and spectrographic distances, but there were significant positive correlations between morphological and geographical distances and between morphological and genetic distances. It is hypothesized that genetic differentiation might directly affect variability of the stridulatory apparata which would also be indirectly influenced and constrained by external morphological traits (like the width of the coxa and body size). Stridulatory organs, in turn, would affect the ways a few stridulatory traits (especially the temporal ones) change in time and space.  相似文献   

19.
Behavioral shifts can initiate morphological evolution by pushing lineages into new adaptive zones. This has primarily been examined in ecological behaviors, such as foraging, but social behaviors may also alter morphology. Swallows and martins (Hirundinidae) are aerial insectivores that exhibit a range of social behaviors, from solitary to colonial breeding and foraging. Using a well‐resolved phylogenetic tree, a database of social behaviors, and morphological measurements, we ask how shifts from solitary to social breeding and foraging have affected morphological evolution in the Hirundinidae. Using a threshold model of discrete state evolution, we find that shifts in both breeding and foraging social behavior are common across the phylogeny of swallows. Solitary swallows have highly variable morphology, while social swallows show much less absolute variance in all morphological traits. Metrics of convergence based on both the trajectory of social lineages through morphospace and the overall morphological distance between social species scaled by their phylogenetic distance indicate strong convergence in social swallows, especially socially foraging swallows. Smaller physical traits generally observed in social species suggest that social species benefit from a distinctive flight style, likely increasing maneuverability and foraging success and reducing in‐flight collisions within large flocks. These results highlight the importance of sociality in species evolution, a link that had previously been examined only in eusocial insects and primates.  相似文献   

20.
Body mass has been considered one of the most critical organismal traits, and its role in many ecological processes has been widely studied. In hummingbirds, body mass has been linked to ecological features such as foraging performance, metabolic rates, and cost of flying, among others. We used an evolutionary approach to test whether body mass is a good predictor of two of the main ecological features of hummingbirds: their abundances and behavioral dominance. To determine whether a species was abundant and/or behaviorally dominant, we used information from the literature on 249 hummingbird species. For abundance, we classified a species as “plentiful” if it was described as the most abundant species in at least part of its geographic distribution, while we deemed a species to be “behaviorally dominant” when it was described as pugnacious (notably aggressive). We found that plentiful hummingbird species had intermediate body masses and were more phylogenetically related to each other than expected by chance. Conversely, behaviorally dominant species tended to have larger body masses and showed a random pattern of distribution in the phylogeny. Additionally, small‐bodied hummingbird species were not considered plentiful by our definition and did not exhibit behavioral dominance. These results suggest a link between body mass, abundance, and behavioral dominance in hummingbirds. Our findings indicate the existence of a body mass range associated with the capacity of hummingbird species to be plentiful, behaviorally dominant, or to show both traits. The mechanisms behind these relationships are still unclear; however, our results provide support for the hypothesis that body mass is a supertrait that explains abundance and behavioral dominance in hummingbirds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号