首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doxorubicin and other anthracyclines are among the most potent chemotherapeutic drugs for the treatment of acute leukaemia, lymphomas and different types of solid tumours such as breast, liver and lung cancers. Their clinical use is, however, limited by the risk of severe cardiotoxicity, which can lead to irreversible congestive heart failure. There is increasing evidence that essential components of myocardial energy metabolism are among the highly sensitive and early targets of doxorubicin-induced damage. Here we review doxorubicin-induced detrimental changes in cardiac energetics, with an emphasis on the emerging importance of defects in energy-transferring and -signalling systems, like creatine kinase and AMP-activated protein kinase.  相似文献   

2.
3.
Alterations in the intermediary metabolism of selenium-deficient mice   总被引:1,自引:0,他引:1  
Male albino mice were pair-fed a torula yeast-based selenium-deficient (Se-) diet containing 10 ppb selenium for 4 months, while a control group (Se+) received a similar diet supplemented with 330 ppb selenium as Na2SeO3. In addition to previously observed modulations of drug-metabolizing enzymes (Reiter, R. and Wendel, A. (1985) Biochem. Pharmacol. 34, 2287-2290), an increase of 6-phosphogluconate dehydrogenase activity and succinate dehydrogenase activity in liver by about 60% was found. In vivo, an increased 14CO2 exhalation from a tracer dose of glucose either labeled in the C-1- or C-6 position was observed in selenium-deficient mice. However, no difference in the total CO2 exhalation of Se(-)- as compared to Se+-mice was detectable. In line with the assumption that Se(-)-mice have an increased glucose turnover, Se(-)-mice exhibited a greater glucose tolerance when treated with an oral glucose load of 2.5 mg glucose/kg body weight. Also, the Se(-)-mice had a lower blood glucose level as compared to Se+-controls (89 +/- 3 versus 110 +/- 12 mg glucose/100 ml blood). Further in vitro experiments with red blood cells from Se(-)-mice showed that erythrocytes did not contribute to an increased CO2 formation from glucose via the pentose phosphate shunt. No significant differences between Se(-)- and Se+-animals were found in the profile of urinary metabolites, including ketone bodies and nitrogen excretion. These findings suggest a hitherto unknown involvement of selenium in specific regulatory sites of intermediary metabolism.  相似文献   

4.
1. Acute ammonium intoxication in rat was produced by an i.v. overload of 1000 nmoles of ammonium acetate infunded during 15 min. 2. The load of ammonium produced sodium and potassium accumulation in muscle and plasma, minor in liver, and decreased these metal levels in kidney. 3. Blood and muscle magnesium content was strongly altered as a result of ammonium intoxication. 4. Calcium plasma levels, iron blood levels and iron hepatic stock diminished after the ammonium infusion. 5. Copper and zinc homeostasis were insignificantly altered.  相似文献   

5.
Kim SK  Seo JM  Jung YS  Kwak HE  Kim YC 《Amino acids》2003,24(1-2):103-110
Summary.  Alterations in hepatic metabolism of S-amino acids were monitored over one week in male rats treated with a single dose of ethanol (3 g/kg, ip). Methionine and S-adenosylhomocysteine concentrations were increased rapidly, but S-adenosylmethionine, cysteine, and glutathione (GSH) decreased following ethanol administration. Activities of methionine adenosyltransferase, cystathionine γ-lyase and cystathionine β-synthase were all inhibited. γ-Glutamylcysteine synthetase activity was increased from t = 8 hr, but GSH level did not return to control for 24 hr. Hepatic hypotaurine and taurine levels were elevated immediately, but reduced below control in 18 hr. Changes in serum and urinary taurine levels were consistent with results observed in liver. Cysteine dioxygenase activity was increased rapidly, but declined from t = 24 hr. The results show that a single dose of ethanol induces profound changes in hepatic S-amino acid metabolism, some of which persist for several days. Ethanol not only inhibits the cysteine synthesis but suppresses the cysteine availability further by enhancing its irreversible catabolism to taurine, which would play a significant role in the depletion of hepatic GSH. Received April 26, 2002 Accepted June 12, 2002 Published online October 14, 2002 Authors' address: Young C. Kim, Ph.D., Professor of Toxicology, College of Pharmacy, Seoul National University, San 56-1 Shinrim-Dong, Kwanak-Ku, Seoul, Korea, Fax: +82-2-872-1795, E-mail: youckim@snu.ac.kr Abbreviations: CβS, cystathionine β-synthase; CDC, cysteine sulfinate decarboxylase; CDO, cysteine dioxygenase; CγL, cystathionine γ-lyase; GCS, γ-Glutamylcysteine synthetase; GSH, glutathione; MAT, methionine adenosyltransferase; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine.  相似文献   

6.
Our previous microarray expression analysis of the long-lived Little mice (Ghrhr(lit/lit)) showed a concerted up-regulation of xenobiotic detoxification genes. Here, we show that this up-regulation is associated with a potent increase in resistance against the adverse effects of a variety of xenobiotics, including the hepatotoxins acetaminophen and bromobenzene and the paralyzing agent zoxazolamine. The classic xenobiotic receptors Car (Constitutive Androstane Receptor) and Pxr (Pregnane X Receptor) are considered key regulators of xenobiotic metabolism. Using double and triple knockout/mutant mouse models we found, however, that Car and Pxr are not required for the up-regulation of xenobiotic genes in Little mice. Our results suggest instead that bile acids and the primary bile acid receptor Fxr (farnesoid X receptor) are likely mediators of the up-regulation of xenobiotic detoxification genes in Little mice. Bile acid levels are considerably elevated in the bile, serum, and liver of Little mice. We found that treatment of wild-type animals with cholic acid, one of the major bile acids elevated in Little mice, mimics in large part the up-regulation of xenobiotic detoxification genes observed in Little mice. Additionally, the loss of Fxr had a major effect on the expression of the xenobiotic detoxification genes up-regulated in Little mice. A large fraction of these genes lost or decreased their high expression levels in double mutant mice for Fxr and Ghrhr. The alterations in xenobiotic metabolism in Little mice constitute a form of increased stress resistance and may contribute to the extended longevity of these mice.  相似文献   

7.
8.
Some alterations in lipid metabolism in mice were observed by the intraperitoneal injection of endotoxin from Salmonella typhimurium. The content of serum triglyceride increased markedly in poisoned mice 16-24 hr postintoxication. The level of free fatty acid (FFA) in the serum of endotoxin-administered mice decreased in inverse proportion to an increase in the injected dose of endotoxin. The electrophoretic analysis of the serum lipoprotein on cellulose acetate membrane showed that pre beta-lipoprotein increased markedly and that FFA fraction in the poisoned mice sera disappeared 18 hr postintoxication. The activity of hormone-sensitive lipase in adipose tissue was elevated appreciably 2 hr after injection, but decreased more significantly after 18 hr than that in fasted control mice. On the other hand, the activity of lipoprotein lipase decreased in the post-heparin serum and adipose tissue 3 hr postintoxication, and decreased significantly after 16 hr. There were no significant differences between changes in the formation of active glycerol (alpha-GP) and in the activity of alpha glycerophosphate dehydrogenase (alpha-GPDH) in the mice liver with or without administration of endotoxin, and after 16 hr levels of both hepatic alpha-GP content and alpha-GPDH activity in poisoned mice showed a tendency to be slightly lower than those in fasted control mice.  相似文献   

9.
An investigation of the effect of cortisone administration upon the chemical composition of intracellular particulates of rat liver has been made. Livers were homogenized in 0.25 M sucrose solutions and submitted to differential centrifugation. Five fractions were prepared: mitochondria (Mit), microsomes (Mi), ultracentrifugable (U), non-sedimentable (S), and nuclear (Nuc). Measurement was made of total and polymerized RNA, nitrogen, lipide P, and uptake of P(32) by the RNA of each fraction. The following observations were made:- Cortisone administration caused a fall in concentration in all measured constituents except glycogen. On a per liver basis, however, total liver RNA was unchanged in amount; nitrogen content of Mi fell and that of S increased; the lipide P of Mit and Mi also decreased. The biochemical composition of a statistical mitochondrion was significantly altered; in contrast, the microsomal fraction decreased in amount, but the relationship between the chemical constituents was unchanged. When polymerized RNA was sought by a process involving precipitation from ethanol at 20 degrees C., none was found in the Mit of cortisone livers and the amount in Mi was much less than found in the normal. When, however, precipitation was conducted at 4 degrees C., yields of polymerized RNA in all fractions after cortisone were equal to or greater than those found in the normal. Furthermore, incubation of mixtures of homogenates from normal and cortisone livers resulted in loss of warm precipitable RNA. These data strongly suggest the presence of an enzyme in cortisone livers which upon incubation with normal livers made preparation of polymerized RNA virtually impossible by use of the warm method. This agent, thought to operate in vivo and in vitro, was not present in significant amounts in normal livers, since incubation in this instance had no effect upon the amount of polymerized RNA. Mit from cortisone livers obtained by the cold technique had a significantly decreased rate of incorporation of P(32) even though the yield of RNA from this fraction was increased. To reconcile these observations, it was proposed that under the influence of cortisone a variant of normal RNA is synthesized or normal RNA is converted to this variant. This "new" RNA has new solubility properties, a new rate of incorporation of P(32), and conceivably it cannot act as a template for normal protein synthesis.  相似文献   

10.
Pentylenetetrazole was administered to Swiss-Albino mice, producing clonic-tonic seizures. Other groups were pretreated with one of the three anticonvulsants: phenytoin, clonazepam, or sodium valproate. Mice were sacrificed during the preseizure (1 minute) stage and at the onset of clonic-tonic seizures (2 minutes). Glucose, glycogen, ATP, and phosphocreatine were measured in layers of the parietal cortex and cerebellar vermis. Cortical metabolites were unchanged, or increased slightly, suggesting decreased utilization. In both cerebellar layers, glucose and glycogen were significantly decreased, and phosphocreatine was decreased in the molecular layer. These results indicate a regionally selective effect for pentylenetetrazole on cerebral energy metabolites. Pretreatment with anticonvulsants reduced the severity of the seizure, and eliminated the effect of pentylenetetrazole on glucose and glycogen.  相似文献   

11.
The biochemical mechanism of cytotoxicity, induced by the quinoid compound 2-methyl 1,4-naphthoquinone (menadione), was investigated in hepatocytes freshly isolated from fasted and fed rats. Hepatocytes from fasted rats were significantly more vulnerable to the toxicity of menadione than hepatocytes from fed rats. Menadione (150 microM) induced a 50% loss of viability of cells (LT50) from fasted rats after 55 min of incubation, whereas a LT50 of 80 min was observed after exposure of hepatocytes from fed rats to menadione. Glutathione and NADPH levels were rapidly depleted by menadione metabolism. This depletion was sustained during the incubation period. No significant differences were found in the time course and extent of the menadione-induced glutathione and NADPH depletion in hepatocytes of both nutritional states. Menadione also affected the energy status of the hepatocytes. The ATP content of cells from fasted rats decreased to 50% (AT50) within 18 min of exposure to menadione, whereas a 50% loss of ATP content of hepatocytes from fed rats was reached at 65 min. In contrast to depletion of glutathione and NADPH, the time course and extent of menadione-induced ATP depletion correlated well with the time of onset and rate of cell killing. Our results suggest that menadione metabolism may interfere with both mitochondrial and glycolytic ATP production. Depletion of ATP might be a critical step in menadione-induced cytotoxicity.  相似文献   

12.
The biochemical effects of training programmes have been studied with a kinetic model of central metabolism, using enzyme activities and metabolite concentrations measured at rest and after 30 s maximum-intensity exercise, collected before and after long and short periods of training, which differed only by the duration of the rest intervals. After short periods of training the glycolytic flux at rest was three times higher than it had been before training, whereas during exercise the flux and energy consumption remained the same as before training. Long periods of training had less effect on the glycolytic flux at rest, but increased it in response to exercise, increasing the contribution of oxidative phosphorylation.  相似文献   

13.
In order to assess the early regional changes in energy metabolism in bicuculline induced seizures, mice were injected and sacrificed before the onset of overt seizure activity, and shortly after clonic-tonic seizures began. The energy metabolites glucose, ATP, and phosphocreatine were measured in layers of the motor cortex and the cerebellar vermis. Results showed minimal metabolite changes in the cerebellum, whereas changes in energy metabolism in the motor cortex were largely localized to the layers containing pyramidal cells. These results are in agreement with previous studies showing a relative sparing of the cerebellum, and suggest early cortical changes occur in pyramidal cells.  相似文献   

14.
Pulmonary complications often accompany the development of acute peritonitis. In this study, we analyzed the alterations of alveolar surfactant phospholipids in rats with experimentally induced peritonitis. The results showed a reduction of almost all phospholipid fractions in pulmonary surfactant of experimental animals. The most abundant alveolar phospholipids-phosphatidylcholine and phosphatidylglycerol were reduced significantly in surfactant of rats with experimental peritonitis. In addition, analysis of the fatty acid composition of these two phospholipids revealed marked differences between experimental and control animals. The activity of phospholipase A2, which is localized in the hydrophyllic phase of alveolar surfactant, was higher in rats with experimental peritonitis compared to sham-operated ones. Also, a weak acyl-CoA:lysophospholipid acyltransferase activity was detected in alveolar surfactant of rats with experimental peritonitis, whereas in control animals this activity was not detectable. The lipid-transfer activity was quite similar in pulmonary surfactant of control and experimental rats. The total number of cells and the percentage of neutrophils were strongly increased in broncho-alveolar lavage fluid from rats with peritonitis. Thus, our results showed that the development of peritonitis was accompanied by pulmonary pathophysiological processes that involved alterations of the phospholipid and fatty acid composition of alveolar surfactant. We suggest that the increased populations of inflammatory cells, which basically participate in internalization and secretion of surfactant components, contributed to the observed alterations of alveolar phospholipids. These studies would be useful for clarification of the pathogenic mechanisms underlying the occurrence of pulmonary disorders that accompany acute inflammatory conditions, such as peritonitis and sepsis.  相似文献   

15.
In addition to their role in gastric acid secretion, parietal cells secrete a number of growth factors that may influence the differentiation of other gastric lineages. Indeed, oxyntic atrophy is considered the most significant correlate with increased risk for gastric adenocarcinoma. We studied the alterations in gastric mucosal lineages elicited by acute oxyntic atrophy induced by treatment of C57BL/6 and gastrin-deficient mice with the parietal cell protonophore [S-(R*,S*)]-N-[1-(1,3-benzodioxol-5-yl)butyl]-3,3-diethyl-2-[4-[(4-methyl-1-piperazinyl)carbonyl]phenoxy]-4-oxo-1-azetidinecarboxamide (DMP-777). In both wild-type and gastrin knockout mice, DMP-777 elicited the rapid loss of parietal cells within 2 days of treatment. In wild-type mice, oxyntic atrophy was accompanied by a rapid increase in 5-bromo-2'-deoxyuridine-labeled proliferative cells and attendant increase in surface cell numbers. However, gastrin knockout mice did not demonstrate significant foveolar hyperplasia and showed a blunted proliferative response. After 7 days of treatment in wild-type mice, a second proliferative population emerged at the base of fundic glands along with the development of a mucous cell metaplasia expressing TFF2/spasmolytic polypeptide (SPEM). However, in gastrin knockout mice, SPEM expressing both TFF2 mRNA and protein developed after only 1 day of DMP-777 treatment. In wild-type mice, all changes induced by DMP-777 were reversed 14 days after cessation of treatment. In gastrin-deficient mice, significant SPEM was still present 14 days after the cessation of treatment. The results indicate that foveolar hyperplasia requires the influence of gastrin, whereas SPEM develops in response to oxyntic atrophy independent of gastrin, likely through transdifferentiation of chief cells.  相似文献   

16.
The influence of ConA on the energy metabolism of quiescent rat thymocytes was investigated by measuring the effects of inhibitors of protein synthesis, proteolysis, RNA/DNA synthesis, Na+K+-ATPase, Ca2+-ATPase and mitochondrial ATP synthesis on respiration. Only about 50% of the coupled oxygen consumption of quiescent thymocytes could be assigned to specific processes using two different media. Under these conditions the oxygen is mainly used to drive mitochondrial proton leak and to provide ATP for protein synthesis and cation transport, whereas oxygen consumption to provide ATP for RNA/DNA synthesis and ATP-dependent proteolysis was not measurable. The mitogen ConA produced a persistent increase in oxygen consumption by about 30% within seconds. After stimulation more than 80% of respiration could be assigned to specific processes. The major oxygen consuming processes of ConA-stimulated thymocytes are mitochondrial proton leak, protein synthesis and Na+K+-ATPase with about 20% each of total oxygen consumption, while Ca2+-ATPase and RNA/DNA synthesis contribute about 10% each. Quiescent thymocytes resemble resting hepatocytes in that most of the oxygen consumption remains unexplained. In constrast, the pattern of energy metabolism in stimulated thymocytes is similar to that described for Ehrlich Ascites tumour cells and splenocytes, which may also be in an activated state. Most of the oxygen consumption is accounted for, so the unexplained process(es) in unstimulated cells shut(s) off on stimulation.  相似文献   

17.
I. Yamamoto  I.K. Ho  H.H. Loh 《Life sciences》1977,20(8):1353-1362
The time course of inductions of N-demethylation and pentobarbital hydroxylation of hepatic drug metabolizing system in continuous pentobarbital administration by pentobarbital pellet implantation in the mouse is presented. The results also demonstrate that hepatic microsomal drug-metabolizing enzymes in the mouse could be induced much faster by a single pentobarbital pellet implantation than by the ordinary parenteral administration technique. The reduction of pentobarbital half-life (T12) in plasma, brain and liver of the animals which had been implanted with a pentobarbital pellet also substantiates the acceleration of pentobarbital metabolism in the mouse by the pellet implantation method. The results show that the T12 of pentobarbital in plasma, brain and liver of pentobarbital pellet implanted groups is only 12, 16and19 of that of the placebo control group, respectively. The studies on urinary excretion of pentobarbital and its metabolites also reveals that pentobarbital pellet implantation induced much faster rate of metabolism of pentobarbital in the mouse.  相似文献   

18.
Fixed chromosomes of mouse have been treated with Alu I, Eco RII, Hind III or Bam HI restriction endonucleases and subsequently stained with either Giemsa, Ethidium Bromide or Acridine Orange. The results obtained have been discussed in the light of preferential or non-preferential extraction of DNA from specific chromosome areas following enzyme digestion. The possible involvement of a particular structural organization of some classes of heterochromatin has been hypothesized to account for the findings after Alu I or Eco RII treatment. The meaning of the Giemsa banding observed after Hind III or Bam HI digestion has also been considered, in comparison to the different stain responses obtained by using a DNA-specific dye such as Ethidium Bromide.  相似文献   

19.
Energy metabolism, oxygen consumption rate (VO2), and respiratory quotient (RQ) in mice were monitored continuously throughout 12:12-h light-dark cycles before, during, and after time-restricted feeding (RF). Mice fed ad libitum showed robust daily rhythms in both parameters: high during the dark phase and low during the light phase. The daily profile of energy metabolism in mice under daytime-only feeding was reversed at the beginning of the first fasting night. A few days after daytime-only feeding began, RF also reversed the circadian core body temperature rhythm. Moreover, RF for 6 consecutive days shifted the phases of circadian expression patterns of clock genes in liver significantly by 8-10 h. When mice were fed a high-fat (HF) diet ad libitum, the daily rhythm of RQ dampened day by day and disappeared on the sixth day of RF, whereas VO2 showed a robust daily rhythm. Mice fed HF only in the daytime had reversed VO2 and RQ rhythms. Similarly, mice fed HF only in the daytime significantly phase shifted the clock gene expression in liver, whereas ad libitum feeding with HF had no significant effect on the expression phases of liver clock genes. These results suggested that VO2 is a sensitive indicator of entrainment in the mouse liver. Moreover, physiologically, it can be determined without any surgery or constraint. On the basis of these results, we hypothesize that a change in the daily VO2 rhythm, independent of the energy source, might drive phase shifts of circadian oscillators in peripheral tissues, at least in the liver.  相似文献   

20.
Alterations in membrane surfaces induced by attachment of carbohydrates   总被引:3,自引:0,他引:3  
We have examined the behavior of the dry phospholipid dipalmitoylphosphatidylcholine (DPPC) in the presence of several carbohydrate derivatives. These carbohydrate derivatives possess a hydrophobic portion which is incorporated directly into the DPPC membrane and a hydrophilic portion which places the carbohydrate structure at the membrane interface with the surrounding matrix. In the presence of these derivatives, the physical properties of the membrane are altered. These alterations are evident in changes observed in the phosphate and carbonyl vibrational modes of the phospholipid portion of the membrane. In addition, the phase transition behavior of the lipid is significantly altered as evidenced by a reduction in the gel to liquid-crystalline phase transition temperature. These results are consistent with those previously reported for free carbohydrates interacting with membranes in which a water replacement hypothesis has been used to explain the behavior. The attachment of carbohydrates to the membrane enhances these effects by localizing the agent responsible for these alterations at the membrane interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号