首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subtype of the beta-adrenergic receptor expressed in 3T3-L1 preadipocytes and adipocytes differentiated with dexamethasone and methylisobutylxanthine was determined by comparing the affinity of the receptors for epinephrine, norepinephrine, and beta-1 and beta-2 selective antagonist, 8-fold more avidly than adipocyte receptors. In contrast, adipocyte beta-receptors had a 10-fold higher affinity for epinephrine than for norepinephrine and complexed the beta-2 selective agonist zinterol with a 20-fold higher affinity than preadipocyte receptors. Hofstee plots and computer analyses of the binding data revealed that the populations of beta-1 receptors in preadipocytes and beta-2 receptors in adipocytes were nearly homogeneous. Preliminary characterizations of the beta-receptor phenotype in (nondifferentiating) 3T3-C2 cells treated with dexamethasone and methylisobutylxanthine and 3T3-422A adipocytes differentiated with insulin indicated that the expression of beta-2 receptors was not correlated with differentiation, but rather with exposure of the cells to dexamethasone and methylisobutylxanthine. The regulator of beta-receptor subtype was identified as the glucocorticoid analog, dexamethasone, by employing 3T3-L1 adipocytes which were stimulated to differentiate with methylisobutylxanthine and insulin. Detailed binding studies showed that under these conditions the adipocyte receptors retain beta-1 character. Subsequent treatment with 0.5 microM dexamethasone promoted the loss of beta-1 receptors, the appearance of beta-2 receptors, and a net 2- to 3-fold increase in the number of beta-receptors. Dexamethasone effected a complete switch from beta-1 to beta-2 subtype at concentrations as low as 2.5 nM while other steroids were ineffective below a concentration of 10 microM.  相似文献   

2.
Murine 3T3-L1 preadipocytes proliferate normally in medium containing fetal calf serum depleted of insulin, growth hormone, and insulin-like growth factor-I (IGF-I). However, the cells do not differentiate into adipocytes in the presence of the hormone-depleted serum. Supplementation of the growth medium with 10-20 nM IGF-I or 2 microM insulin restores the ability of 3T3-L1 cells to develop into adipocytes. The cells acquire an adipocyte morphology, accumulate triglycerides, and express a 450-fold increase in the activity of the lipogenic enzyme glycerol-3-phosphate dehydrogenase. The increase in glycerol-3-phosphate dehydrogenase activity is paralleled by the accumulation of glycerol-3-phosphate dehydrogenase mRNA and mRNA for the myelin P2-like protein aP2, another marker for fat cell development. IGF-I or insulin-stimulated adipogenesis in 3T3-L1 cells is not dependent on growth hormone. Occupancy of preadipocyte IGF-I receptors by IGF-I (or insulin) is implicated as a central step in the differentiation process. The IGF-I receptor binds insulin with a 70-fold lower affinity than IGF-I, and 30-70-fold higher levels of insulin are required to duplicate the effects of an optimal amount of IGF-I. The effects of 10-20 nM IGF-I are likely to be mediated by high affinity (KD = 5 nM) IGF-I receptors that are expressed at a density of 13,000 sites/preadipocyte. In undifferentiated cells the IGF-I receptor concentration is twice that of the insulin receptor. After adipocyte differentiation is triggered, the number and affinity of IGF-I receptors remain constant while insulin receptor number increases approximately 25-fold as developing adipocytes become responsive to insulin at the level of metabolic regulation. Thus, preadipocytes have the potential for a maximal response to IGF-I, whereas the accumulation of more than 95% of adipocyte insulin receptors and the appearance of responsiveness to insulin are consequences of differentiation. IGF-I or insulin is essential for the induction of a variety of abundant and nonabundant mRNAs characteristic of 3T3-L1 adipocytes.  相似文献   

3.
3T3-L1 preadipocytes, when treated with 3-isobutyl-1-methylxanthine, dexamethasone, and insulin, differentiate into cells with the morphological and biochemical properties of adipocytes; the closely related 3T3-C2 cells, under identical conditions, exhibit a low frequency of adipocyte conversion. During differentiation, 3T3-L1 preadipocytes acquire an increased responsiveness to certain agonists (e.g. isoproterenol and adrenocorticotropic hormone) that influence lipolysis and lipogenesis through activation of adenylate cyclase, whereas 3T3-C2 cells do not. It has been suggested that changes in hormone responsiveness of 3T3-L1 cells during differentiation result from increased amounts of the guanyl nucleotide-binding protein of adenylate cyclase, as demonstrated by choleragen-catalyzed [32P]ADP ribosylation of 42 and 49-50-kilodalton particulate peptides. Particulate fractions from nondifferentiating 3T3-C2 cells, like those from 3T3-L1 cells, contained choleragen substrates of 42 and 46-47 (doublet) kilodaltons. Incubation of intact 3T3-L1 or 3T3-C2 cells with choleragen prior to preparation of particulate fractions prevented the subsequent in vitro choleragen-dependent [32P]ADP ribosylation of only these peptides. Increased incorporation of radioactivity into both the 42 and 46-47-kilodalton peptides was observed during differentiation of 3T3-L1 cells. However, a similar increase was also observed in nondifferentiating 3T3-C2 cells subjected to the differentiation protocol. Therefore, increased hormone responsiveness of 3T3-L1 adipocytes cannot be explained solely on the basis of increased labeling, and perhaps increased amounts, of the guanyl nucleotide-binding protein.  相似文献   

4.
Cells of a clonal cell line (ob 17) isolated from the epididymal fat pad of ob/ob mouse possess insulin receptors. Their number was increased 1.5-fold after growth arrest, with no significant change in the Kd values of the "high affinity" sites determined by extrapolation of the high affinity portion of the curvilinear Scatchard plots. With chronic insulin exposure for 3 to 11 days after confluence, ob 17 cells showed a decrease in insulin receptor concentrations from 8,000 to 1,600 high affinity sites/cell (Kd from 0.45 to 1.10(-9) M) while similar levels of "low affinity" sites were found (80,000 to 100,000 sites/cell; Kd from 10(-8) to 3 x 10(-8) M). The loss of the high affinity binding sites is accompanied by the disappearance of the stimulatory effect by insulin of alpha-aminoisobutyrate uptake. Therefore, in contrast to 3T3-L1 fibroblasts, the ob 17 cells present, in culture, a self-modulation of insulin receptors and a loss of insulin sensitivity after chronic exposure to insulin.  相似文献   

5.
In order to determine whether the human insulin receptor ectodomain can be expressed as a functional protein, the coding regions for the transmembrane and cytoplasmic domain of a full-length human insulin receptor cDNA were deleted by site-directed mutagenesis, and the resultant construct was inserted into a bovine papilloma virus vector under the control of the mouse metallothionein promoter. After transfection of mouse NIH3T3 cells, a cell line secreting an insulin binding protein was isolated. The insulin binding alpha subunit had an Mr of 138,000 and a beta subunit of Mr 48,000 (compared to 147,000 and 105,000 for the full-length human insulin receptor expressed in NIH3T3 cells). This difference in size of the alpha subunit was due to a difference in glycosylation as N-glycanase digestion reduced the apparent size of the alpha subunits of secreted and normal membrane-bound receptors to identical values. The secreted receptor formed disulfide-linked heterotetrameric structures with an Mr of 280,000. It was synthesized as an Mr 160,000 precursor which was cleaved into mature subunits with a t1/2 of 3 h. Increasing expression of the cDNA by induction with sodium butyrate lead to the appearance of an Mr 180,000 protein in the medium as well as the mature alpha and beta subunits. A Scatchard plot of insulin binding to the secreted receptor was curvilinear with a Kd of 7 X 10(-10) M for the high affinity sites and 10(-7) M for the low affinity site (compared to Kd values of 1.1 X 10(-9) M and 10(-7) M, respectively, for human insulin receptors expressed in these cells.  相似文献   

6.
Rhodamine-labelled epidermal growth factor (Rh-EGF) was shown to bind to A431 cells grown at low density both to a small number of high affinity receptors (KD = 2.8 X 10(-10) M; fraction of total binding sites approximately 0.12) and also to a large number of low affinity receptors (KD = 4 X 10(-9) M; fraction of total binding sites approximately 0.88). Measurements of the lateral diffusion of EGF receptors on the cell surface were made using Rh-EGF and the technique of fluorescence photobleaching recovery. The high affinity receptors (labelled with 1.6 X 10(-10) M Rh-EGF, 5% of EGF binding sites occupied) did not show lateral mobility over the temperature range 3 degrees-37 degrees C. The low affinity receptors (labelled with 2.4 X 10(-7) M Rh-EGF, 90% of EGF sites occupied) showed at least 75% fluorescence recovery after photobleaching, and lateral diffusion coefficients of approximately 2 X 10(-10) cm2/s. These results show that the two populations of EGF receptors defined by binding studies differ in their freedom to diffuse laterally. The observation that the high affinity receptors are immobile indicates that lateral diffusion of receptors, at least over a distance of a few hundred nanometres or more, may not be required for the action of low concentrations of EGF.  相似文献   

7.
Insulin and prostaglandin F2 (PGF) stimulate undine and 2-deoxy-d-glucose transport by 3T3-L1 and 3T3-C2 cells. Maximal stimulation of both transport systems is achieved with 1.5 μM PGF. Maximal stimulation of uridine transport is achieved with 34 nM (200 ng/ml) insulin. The basal (control) level of uridine uptake is lower in 3T3-L1 than in 3T3-C2 cells, while the basal level of 2-deoxy-d-glucose uptake is slightly higher in 3T3-L1 cells. The stimulatory effect of PGF on both transport systems is abolished in the course of differentiation of 3T3-L1 cells to adipocytes. Removal of the inducers of differentiation (insulin plus indomethacin) from the medium of differentiated cells does not restore responsiveness of either transport system to PGF. In contrast the stimulatory effect of insulin on either transport system is not abolished during differentiation. Treatment of the non-differentiating 3T3-C2 cell line with inducers of differentiation reduces the basal level of 2-deoxy-d-glucose transport by 70% and only slightly decreases the basal level of uridine transport without affecting the stimulatory effect of PGF on either transport system.  相似文献   

8.
Differentiation of 3T3-L1 preadipocytes, induced by methyl-isobutylxanthine (MIX), dexamethasone (DEX), and insulin, results in cells with the morphological and biochemical characteristics of adipocytes. Following incubation of 3T3-L1 cells with MIX, DEX, and insulin, poly(ADP-ribose) synthetase activity decreased abruptly, remained low for several hours and then increased; this rise was delayed by readdition of MIX, DEX, and insulin. The transient reduction in poly(ADP-ribose) synthetase activity in 3T3-L1 cells occurred prior to the appearance of the adipocyte phenotype induced by the above agents. It was not observed when preparations were assayed in the presence of DNase I, indicating that poly(ADP-ribose) synthetase activity was masked following treatment with MIX, DEX, and insulin. The change in synthetase activity represents the earliest alteration of a specific enzyme yet detected during the differentiation of 3T3-L1 cells. It appears to be differentiation specific since nondifferentiating 3T3-C2 control cells did not exhibit changes in poly(ADP-ribose) synthetase activity when treated with MIX, DEX, and insulin. The transient reduction in activity may be an early event in differentiation which reflects changes in chromatin structure.  相似文献   

9.
The tetradecapeptide bombesin converts epidermal growth factor (EGF) receptors on Swiss 3T3 cells from a high affinity state (KD = 9.8 X 10(-11)M) to a lower affinity state (KD = 1.8 X 10(-9)M). This conversion occurs when the cells are incubated with bombesin at 37 degrees C but not when incubated at 4 degrees C. Previously, a number of other (chemically unrelated) cell growth-promoting peptides and polypeptides have been shown to induce a similar indirect, temperature-dependent reduction of EGF receptor affinity. We have now demonstrated that hormones and growth factors which cross-regulate EGF receptor affinity in Swiss 3T3 cells have a common ability to stimulate the breakdown of phosphoinositides in these cells. We propose that the reduction of EGF receptor affinity is a consequence of the activation of protein kinase C by the diacylglycerol generated by this breakdown. In support of this proposal we have found that exogenously added diacylglycerol reduces the affinity of the Swiss 3T3 cell EGF receptor.  相似文献   

10.
Analyses of insulin binding to human erythrocytes and to resealed right-side-out and inside-out erythrocyte membrane vesicles have revealed that high affinity insulin binding receptors are present on both sides of the erythrocyte membranes. Insulin binding to human erythrocytes was examined with the use of a binding assay designed to minimize the potential errors arising from the low binding capacity of this cell type and from non-specific binding in the assay. Scatchard analysis of equilibrium binding to the cells revealed a class of high affinity sites with a dissociation constant (Kd) of (1.5 +/- 0.5) X 10(-8) M and a maximum binding capacity of 50 +/- 5 sites per cell. Interestingly, both resealed right-side-out and inside-out membrane vesicles exhibited nearly identical specific sites for insulin binding. At the high affinity binding sites, for both right-side-out and inside-out vesicles, the dissociation constant (Kd) was (1.5 +/- 0.5) X 10(-8) M, and the maximum binding capacity was 17 +/- 3 sites per cell equivalent. These findings suggest that insulin receptors are present on both sides of the plasma membrane and are consistent with the participation of the erythrocyte insulin receptors in an endocytic/recycling pathway which mediates receptor-ligand internalization/externalization.  相似文献   

11.
Sulfonylurea compounds are hypoglycemic agents which by unknown mechanisms alter the amount of insulin receptor and the rate of glucose utilization in tissues exposed to the drugs. In this study the effects on insulin binding and uptake of 2-deoxyglucose by 3T3-L1 adipocytes were assessed after maintaining cell monolayers for 1-3 days in medium containing different concentrations of the sulfonylurea, tolbutamide. The amount of 125I-insulin bound by treated monolayers gradually increased to values 150-250% of those of control monolayers after 2-3 days of exposure to 1.5 mM tolbutamide. Such increases in insulin binding capacity arose primarily from an increase in receptor number and not from an alteration in the affinity of the receptor for insulin. Concomitant with the changes observed for the insulin receptor, tolbutamide-treated monolayers expressed 1.5-2-fold higher rates of uptake of 2-deoxyglucose relative to control monolayers at concentrations of insulin between 0 and 10(-10) M. This study thus demonstrates the responsiveness of adipocytes to tolbutamide and also establishes the usefulness of 3T3-L1 cells as a model system in which to study the mechanism of tolbutamide action, both as it relates to the use of sulfonylurea compounds in clinical applications and as possible probes for perturbing and studying relatively uncharacterized regulatory pathways controlling receptor level and biological responses to insulin.  相似文献   

12.
Insulin and prostaglandin F2 (PGF) stimulate undine and 2-deoxy- -glucose transport by 3T3-L1 and 3T3-C2 cells. Maximal stimulation of both transport systems is achieved with 1.5 μM PGF. Maximal stimulation of uridine transport is achieved with 34 nM (200 ng/ml) insulin. The basal (control) level of uridine uptake is lower in 3T3-L1 than in 3T3-C2 cells, while the basal level of 2-deoxy- -glucose uptake is slightly higher in 3T3-L1 cells. The stimulatory effect of PGF on both transport systems is abolished in the course of differentiation of 3T3-L1 cells to adipocytes. Removal of the inducers of differentiation (insulin plus indomethacin) from the medium of differentiated cells does not restore responsiveness of either transport system to PGF. In contrast the stimulatory effect of insulin on either transport system is not abolished during differentiation. Treatment of the non-differentiating 3T3-C2 cell line with inducers of differentiation reduces the basal level of 2-deoxy- -glucose transport by 70% and only slightly decreases the basal level of uridine transport without affecting the stimulatory effect of PGF on either transport system.  相似文献   

13.
Neuronal cells from 1-day-old rat brain in primary culture have been utilized in the present study to characterize insulin-binding sites and a possible action of insulin on these cells. Binding of 125I-insulin to neuronal cultures was 90% specific and time-dependent and reached equilibrium in 120 min. Specific binding was reversible with greater than 90% of binding dissociable within 120 min with a t1/2 of dissociation of 15 min. Various insulin analogues competed for 125I-insulin binding to neuronal cultures according to their known biological potencies. Scatchard analysis of competition data yielded a typical curvilinear plot providing a class of high affinity (Kd = 11 nM) and low affinity (Kd = 65 nM) binding sites. Light microscopic autoradiographic analysis of 125I-insulin bound to neuronal cultures revealed the presence of silver grains predominantly on the neurites with occasional occurrence on the cell soma. Insulin had no effect on neuronal 2-deoxyglucose uptake in contrast with our previous findings demonstrating a 2-fold stimulation of 2-dGlc uptake into astrocyte glial cells from rat brain (Clarke, D.W., Boyd, F.T., Jr., Kappy, M.S., and Raizada, M. K. (1984) J. Biol. Chem. 259, 11672-11675). Incubation of neuronal cultures with insulin caused a dose-dependent inhibition of [3H]norepinephrine uptake with significant inhibition occurring at 1.67 X 10(-11) M. These findings demonstrate that: 1) neuronal cells in primary culture possess specific insulin receptors which are predominantly located on neurites and 2) insulin modulates monoamine uptake in these cultures which suggests that insulin may modulate neural signaling via specific neuronal insulin receptors.  相似文献   

14.
We previously observed that the neurotransmitter 5-hydroxytryptamine (5-HT, serotonin) binds with high- and low-affinity interactions to an actin-like protein prepared from rat brain synaptosomes. In this study, we examined its binding to highly purified actin obtained from rabbit skeletal muscle. Monomeric G-actin bound serotonin with high and low affinities, exhibiting equilibrium dissociation constants (KD values) of 5 X 10(-5) M and 4 X 10(-3) M, respectively. The serotonin binding site on actin was distinct from those sites previously characterized for divalent cations, nucleotides, and cytochalasin alkaloids. The binding of serotonin (1 microM) to G-actin was increased as much as 26-fold by divalent cations. Potassium iodine (KI) increased the affinity of G-actin for serotonin, KD values for this binding being 3 X 10(-7) M and X 10(-5) M. Serotonin bound with even higher affinity to polymerized F-actin, with KD values of 2 X 10(-8) M and 2 X 10(-5) M. However, the total number of binding sites on F-actin was only about 4% of the number of G-actin. The binding of serotonin (0.1 microM) to G-actin could be inhibited by phenothiazines (1 microM) or reserpine (10 microM), but not by classical antagonists of serotonin receptors or by drugs that release serotonin or inhibit its uptake. The binding of serotonin to actin in vivo may participate in a contractile process related to neurotransmitter release.  相似文献   

15.
Stimulation of FA and phosphatase-1 activities by insulin in 3T3-L1 cells   总被引:1,自引:0,他引:1  
E Villa-Moruzzi 《FEBS letters》1989,258(2):208-210
The phosphatase-1 activator FA and phosphatase-1 were assayed in 3T3-L1 cells exposed to insulin. The cytosolic FA activity was transiently stimulated (7-8-fold) 1 and 2 min after exposure to 10(-8) M insulin and returned to control values within 5-10 min. Cytosolic phosphatase-1 (assayed after trypsin treatment) was activated (120-140% of controls) between 2 and 5 min and returned to control values within 10 min. Insulin effects were dose-dependent, with maximum stimulation of both activities at 10(-8) M insulin. The possibility that FA and other kinases mediate phosphatase activation by insulin is discussed.  相似文献   

16.
Expression of interleukin 2 receptors on interleukin 3-dependent cell lines   总被引:8,自引:0,他引:8  
Several mouse IL 3-dependent cell lines, IC2, LT4, FDC-P2, and PB-3C, derived from spleen or bone marrow cells were shown to express low affinity receptors for IL 2 (Kd; 0.5 to 8 X 10(-8) M). High affinity receptors for IL 2 were not detected on the IL 3-dependent cells within the experimental limitation of this study. The clones did not respond to IL 2 at all at the concentration as high as 25 micrograms/ml. The number of the receptors expressed on those clones was estimated to be 0.2 to 2 X 10(5)/cell, which is comparable with the number of those on IL 2-dependent T cell clones. Expression of IL 2 receptor was confirmed in mRNA levels for both IC2 and LT4 cells. A relatively low level expression of one (4.5 Kb) of four IL 2 receptor mRNA species was observed with those IL 3-dependent clones compared with IL 2-dependent T cells. It seems that these low affinity receptors may be expressed on IL 3-dependent cells that undergo differentiation or maturation in mast cell and some myeloid cell lineages.  相似文献   

17.
18.
The receptors for insulin and insulin-like growth factor I (IGF-I) have in common a high sequence homology and diverse overlapping functions, (e.g., the stimulation of acute metabolic events and the induction of cell growth.). In the present study, we have compared the potential of insulin and IGF-I receptors in stimulating glucose transport activity, glucose transporter gene expression, DNA-synthesis, and expression of proto-oncogene c-fos in 3T3-L1 adipocytes which express high levels of both receptors. Binding of both hormones to their own receptors was highly specific as compared with binding to the respective other receptor (insulin receptor: KD = 3.6 nM, KI of IGF-I greater than 500 nM; IGF-I receptor, KD = 1.1 nM, KI of insulin = 191 nM). Induction of proto-oncogene c-fos mRNA by insulin and IGF-I paralleled their respective receptor occupancy and was thus induced by both hormones via their own receptor (EC50 of insulin, 3.7; IGF-I, 3.9 nM). Similarly, both insulin and IGF-I increased DNA synthesis (EC50 of insulin, 5.8 nM; IGF-I, 4.0 nM), glucose transport activity (EC50 of insulin, 1.7 nM; IGF-I, 1.4 nM), and glucose transporter (GLUT4) mRNA levels in concentrations corresponding with their respective receptor occupancy. These data indicate that in 3T3-L1 cells the alpha-subunits of insulin and IGF-I receptors have an equal potential to stimulate a metabolic and a mitogenic response.  相似文献   

19.
To facilitate labeling cell surface insulin receptors and analyzing their metabolism by 3T3-L1 adipocytes, a characterization of both the interaction of photosensitive insulin analogs with 3T3-L1 adipocytes and the conditions for photocross-linking these derivatives to the insulin receptor are described. The synthesis and purification of two photoaffinity analogs of insulin are presented. Both B29-lysine- and A1-glycine-substituted N-(2-nitro-4-azidophenyl)glycyl insulin compete with 125I-insulin for binding to 3T3-L1 adipocytes, and the B29-derivative retains a biological activity similar to that for native insulin. An apparatus developed for these studies permits photolysis of cells in monolayer culture using the visible region of the lamp emission spectrum. Activation of the photoderivative by this apparatus occurs with a half-life of approximately 15 s and permits rapid photolabeling of a single species of receptor of 300,000 Da. The conditions for photolabeling permit a measurement of the turnover of covalent receptor-insulin complexes by 3T3-L1 adipocytes in monolayer culture. Degradation of this complex occurs as an apparent first order process with a half-life of 7 h. A comparison with previous studies (Reed, B. C., Ronnett, G. V., Clements, P. R., and Lane, M. D. (1981) J. Biol. Chem 256, 3917-3925; Ronnett, G. V., Knutson, V. P., and Lane, M. D. (1982) J. Biol. Chem. 257, 4285-4291) indicates that in a "down-regulated" state, 3T3-L1 adipocytes degrade covalent receptor-hormone complexes with kinetics similar to those for the degradation of dissociable receptor-hormone complexes.  相似文献   

20.
Fetal murine neuronal cells bear somatomedin receptors which can be classified according to their affinities for IGF-I, IGF-II and insulin. Binding of 125I-IGF-I is half-maximally displaced by 7 ng/ml IGF-I while 15- and 700-fold higher concentrations are required for, respectively, IGF-II and insulin. Linear Scatchard plots of competitive-binding data with IGF-I suggest one single class of type I IGF receptors (Ka = 2.6 X 10(9) M-1; Ro = 4500 sites per cell). The occurrence of IGF-II receptors appears from the specific binding of 125I-IGF-II and competition by unlabeled IGF-II; the IGF-II binding sites display a low affinity for IGF-II and no affinity for insulin. IGF-II also interacts with insulin receptors although 50- to 100-fold less potent than insulin in competing for 125I-insulin binding. The presence of distinct receptors for IGF-I, IGF-II and insulin on fetal neuronal cells is consistent with a role of these peptides in neuronal development, although our data also indicate that IGF-I receptors could mediate the growth promoting effects of insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号