首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under the leadership of Corresponding Member of the Russian Academy of Sciences L.I. Korochkin, the Laboratory of Neurogenetics and Developmental Genetics (Institute of Gene Biology, Russian Academy of Sciences) for many years has been conducting studies of nervous system development, neural cell differentiation, and application of gene and cell technology to cure neurodegenerative diseases. The results of the study initiated by L.I. Korochkin and continued by his scientific successors support the direction of allocation of transgenic neurotrofic factors and heat-shock proteins as neuroprotectors for cell therapy. Potential for usage of promoter of HSP70 heat-shock gene of Drosophila to create transgenic constructs for therapy has been shown. Further improvement of technology of nonvirus transfer for therapeutic genes, as well as production of multicomponent genetic constructs coding several therapeutic factors with synergy effect, would stimulate creation of efficient cell medicals to cure neurodegenerative diseases.  相似文献   

2.
Pioneer works on studying molecular mechanisms of mutagenesis were published in the journal Genetika in the 1960s. In the laboratory of S.I. Alikhanian, studies on molecular mechanisms of genetic transposition were initiated in the late 1960s on the model of bacteriophage transposon Mu (Mutator). Parallel to these studies conducted in the laboratory of plant molecular genetics (Institute of Molecular Genetics, Academy of Sciences of the USSR), which was later named the Laboratory of Functional Genomics (Vavilov Institute of General Genetics, Russian Academy of Sciences), studies on transposition of Ti-plasmid T-DNA of Agrobacterium tumefaciens and works on construction of transgenic plants began in this laboratory. Transgenic plants with the expressed bacterial genes provided a model for the functional genomics. This topic is considered here in detail.__________Translated from Genetika, Vol. 41, No. 4, 2005, pp. 440–454.Original Russian Text Copyright © 2005 by Piruzian.In connection with the anniversary of the Russian Journal of Genetics, this review is dedicated to the memory of one of the founders of this journal, an outstanding Russian geneticist, my mentor Professor S.I. Alikhanyan.  相似文献   

3.
4.
Joel N. Buxbaum 《FEBS letters》2009,583(16):2663-2673
The amyloidoses are the prototype gain of toxic function protein misfolding diseases. As such, several naturally occurring animal models and their inducible variants provided some of the first insights into these disorders of protein aggregation. With greater analytic knowledge and the increasing flexibility of transgenic and gene knockout technology, new models have been generated allowing the interrogation of phenomena that have not been approachable in more reductionist systems, i.e. behavioral readouts in the neurodegenerative diseases, interactions among organ systems in the transthyretin amyloidoses and taking pre-clinical therapeutic trials beyond cell culture. The current review describes the features of both transgenic and non-transgenic models and discusses issues that appear to be unresolved even when viewed in their organismal context.  相似文献   

5.
Piruzian ES 《Genetika》2005,41(4):440-454
Pioneer works on studying molecular mechanisms of mutagenesis were published in the journal Genetika in the 1960s. In the laboratory of S.I. Alikhanian, studies on molecular mechanisms of genetic transposition were initiated in the late 1960s on the model of bacteriophage transposon Mu (Mutator). Parallel to these studies conducted in the laboratory of plant molecular genetics (Institute of Molecular Genetics, Academy of Sciences of the USSR), which was later named the Laboratory of Functional Genomics (Vavilov Institute of General Genetics, Russian Academy of Sciences), studies on transposition of Ti-plasmid T-DNA of Agrobacterium tumefaciens and works on construction of transgenic plants began in this laboratory. Transgenic plants with the expressed bacterial genes provided a model for the functional genomics. This topic is considered here in detail.  相似文献   

6.
A new approach for assessing the state of health of cosmonauts, athletes, pilots, drivers, operators, and persons exposed to occupational hazards is considered. It has been created and developed at the Institute of Biomedical Problems of the Russian Academy of Sciences under the direction of Academician A.I. Grigor’ev. The results of the work of the last decade performed in the Program of the Presidium of the Russian Academy of Sciences “Fundamental Sciences for Medicine” are presented. A new system for estimating the functional state of the body under stressful influences is provided. The methodology of remotely studying the influence of environmental factors on health that initiated a new branch of science and public health—environmental telemedicine—has been elaborated. Issues of the further introduction of the new concept of health and technologies of prenosological diagnostics in the practice of public health services are discussed.  相似文献   

7.
I. P. Pavlov, the great Russian physiologist, the founder of a leading scientific school of physiology, first Russian scientist to be awarded the Nobel Prize. Pavlov's work received wide international recognition. He was elected full or honorary member of more than 120 academies, scientific societies and universities. In 1907 he was elected a Full Member (Academician) of Russian Academy of Sciences and headed the Physiological Laboratory of the Academy. In 1925, at his petition, the Laboratory was transformed into the Physiological Institute, remaining his head until 1936, when he had died. Since 1950 this is the Pavlov Institute of Physiology of the Russian Academy of Sciences.  相似文献   

8.
Various neuroprotective factors have been shown to help prevention of neuronal cell death, which is responsible for the progression of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). However, most of these therapeutic potentials have been tested by administration of recombinant proteins, transgenic expression or virus vector-mediated gene transfer. Therefore, it remains to be clarified whether any endogenous factors has advantage for neuroprotection in a pathological nervous system. Here we show the role of BAFF-R signaling pathway in the control of neural cell survival. Both B cell–activating factor (BAFF) and its receptor (BAFF-R) are expressed in mouse neurons and BAFF-R deficiency reduces the survival of primary cultured neurons. Although many studies have so far addressed the functional role of BAFF-R on the differentiation of B cells, impaired BAFF-R signaling resulted in accelerated disease progression in an animal model of inherited ALS. We further demonstrate that BAFF-R deficient bone marrow cells or genetic depletion of B cells does not affect the disease progression, indicating that BAFF-mediated signals on neurons, not on B cells, support neural cell survival. These findings suggest opportunities to improve therapeutic outcome for patients with neurodegenerative diseases by synthesized BAFF treatment.  相似文献   

9.
Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis, are a group of incurable neurological disorders, characterized by the chronic progressive loss of different neuronal subtypes. However, despite its increasing prevalence among the ever-increasing aging population, little progress has been made in the coincident immense efforts towards development of therapeutic agents. Research interest has recently turned towards stem cells including stem cells-derived exosomes, neurotrophic factors, and their combination as potential therapeutic agents in neurodegenerative diseases. In this review, we summarize the progress in therapeutic strategies based on stem cells combined with neurotrophic factors and mesenchymal stem cells-derived exosomes for neurodegenerative diseases, with an emphasis on the combination therapy.  相似文献   

10.
11.
When Ectothiorhodospira shaposhnikovii VKM B-1525 was used for desuphurization of biogas in the laboratory and in a pilot plant, there was complete oxidation of H2S, the main product being elemental sulphur. The advatage of this culture over green bacteria is discussed.M.B. Vainshtein, G.I. Gogotova and N.-J. Heinritz are with the Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142292 Russia  相似文献   

12.
With the advent of the era of International Space Station (ISS) and Mars exploration, it is important more than ever to develop means to cure genetic and acquired diseases, which include cancer and AIDS, for these diseases hamper human activities. Thus, our ultimate goal is to develop protocols for gene therapy, which are suitable to humans on the earth as well as in space. Specifically, we are trying to cure the hemoglobinopathies, beta-thalassemia (Cooley's anemia) and sickle cell anemia, by gene therapy. These well-characterized molecular diseases serve as models for developing ex vivo gene therapy, which would apply to other disorders as well. For example, the procedure may become directly relevant to treating astronauts for space-anemia, immune suppression and bone marrow derived tumors, e.g. leukemia. The adeno-associated virus serotype 2 (AAV2) is a non-pathogenic human parvovirus with broad host-range and tissue specificity. Exploiting these characteristics we have been developing protocols for recombinant AAV2 (rAAV)-based gene therapy. With the rAAV constructs and hematopoietic stem cell (HSC) culture systems in hand, we are currently attempting to cure the mouse model of beta-thalassemia [C57BL/6- Hbbth/Hbbth, Hb(d-minor)] by HSC transplantation (HST) as well as by gene therapy. This paper describes the current status of our rAAV-gene therapy research.  相似文献   

13.
Amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD) are debilitating neurodegenerative conditions for which there is no effective cure. Genetic determinants of both diseases have been identified, providing insight into neuropathological mechanisms and opportunities for therapeutic intervention. Aggregation of mutant proteins is the most prominent phenotype of these neurodegenerative diseases as is the case in Alzheimer’s disease and Parkinson’s disease. Here we review transgenic animal models of ALS and HD in mouse, zebrafish, C. elegans, and Drosophila that have been developed to study different aspects of disease progression. We also cover some large mammal transgenic models that have been recently developed. To effectively tackle these conditions will likely require effective use of several of these animal models, as each offers distinct advantages and insights into disease pathology.  相似文献   

14.
Spires TL  Hannan AJ 《The FEBS journal》2005,272(10):2347-2361
Neurodegenerative disorders, such as Huntington's, Alzheimer's, and Parkinson's diseases, affect millions of people worldwide and currently there are few effective treatments and no cures for these diseases. Transgenic mice expressing human transgenes for huntingtin, amyloid precursor protein, and other genes associated with familial forms of neurodegenerative disease in humans provide remarkable tools for studying neurodegeneration because they mimic many of the pathological and behavioural features of the human conditions. One of the recurring themes revealed by these various transgenic models is that different diseases may share similar molecular and cellular mechanisms of pathogenesis. Cellular mechanisms known to be disrupted at early stages in multiple neurodegenerative disorders include gene expression, protein interactions (manifesting as pathological protein aggregation and disrupted signaling), synaptic function and plasticity. Recent work in mouse models of Huntington's disease has shown that enriching the environment of transgenic animals delays the onset and slows the progression of Huntington's disease-associated motor and cognitive symptoms. Environmental enrichment is known to induce various molecular and cellular changes in specific brain regions of wild-type animals, including altered gene expression profiles, enhanced neurogenesis and synaptic plasticity. The promising effects of environmental stimulation, demonstrated recently in models of neurodegenerative disease, suggest that therapy based on the principles of environmental enrichment might benefit disease sufferers and provide insight into possible mechanisms of neurodegeneration and subsequent identification of novel therapeutic targets. Here, we review the studies of environmental enrichment relevant to some major neurodegenerative diseases and discuss their research and clinical implications.  相似文献   

15.
Assessing protein changes in the cerebral vasculature of brain disorders may increase our understanding of disease pathogenesis and facilitate diagnostic and therapeutic intervention. By combining perfusion of mice with a charged reactive biotin derivative and subsequent quantification of the biotinylated proteins, the proteome accessible from the vasculature in an APPPS1 transgenic mouse model of cerebral β-amyloidosis was identified and compared to that in non-transgenic control mice. Our results provide proof-of-concept of this technology for the identification of new targets for antibody-based therapy or pharmacodelivery, and for neuroimaging in neurodegenerative diseases.  相似文献   

16.
Human embryonic stem cells: Problems and perspectives   总被引:1,自引:0,他引:1  
Generation of human embryonic stem cell lines is one of the most important achievements in biological science in the 20th century. It has excited a wide scientific and social response, as embryonic stem cells (ESC) may, in the future, be regarded as an unlimited source of transplantation materials for replacement cell therapy. ESC lines are derived, cultured, inner cell mass from human blastocysts is used in the in vitro fertilization procedure. To date, human embryonic cell lines have been obtained in more than 20 countries. In our country, embryonic stem cell research is carried out in the Institute of Cytology, Russian Academy of Sciences and the Institute of Gene Biology, Russian Academy of Sciences. Studies with human ESC go in several directions. Much attention is paid to finding the most optimal conditions for ESC cultivation, mainly to the development of cultivation techniques excluding animal feeder cells and other components of animal origin. Another direction is a large-scale analysis of gene expression specific to the embryonic state of cells and the corresponding signaling pathways. Great efforts are being focused on the directed differentiation of ESC into various tissue-specific cells. It has been shown that in vitro ESC are able to differentiate into virtually any somatic cells. Works are in progress to develop methods for “therapeutic cloning,” i.e. the transfer of somatic nuclei into enucleated oocytes or embryonic stem cell cytoblasts and their reactivation. Of great importance is the standardization of the human ESC lines. However, standard requirements for cells utilized for research or therapeutic purposes may be different. It has been found that many permanent human ESC lines underwent genetic and epigenetic variations. Therefore, the cell line genetic stability should be periodically verified. The main purpose of the review is to provide a detailed consideration of research on the genetic stability of human and mouse ESC lines. Human ESC lines established both in our country and others could not thus far be used in clinical practice. It is highly probable that undifferentiated ESCs cannot be applied for therapeutic purposes, as there is a risk of their malignant transformation. Therefore, main efforts should be focused on the production ESC progenitor and highly differentiated cells suitable for transplantation.  相似文献   

17.
Central nervous system (CNS)-derived neural cell lines have proven to be extremely useful for delineating mechanisms controlling such diverse phenomena as cell lineage choice and differentiation, synaptic maturation, neurotransmitter synthesis and release, and growth factor signalling. In addition, there has been hope that such lines might play pivotal roles in CNS gene therapy and repair. The ability of some neural cell lines to integrate normally into the CNS following transplantation and to express foreign, often corrective gene productsin situ might offer potential therapeutic approaches to certain neurodegenerative diseases. Five general strategies have evolved to develop neural cell lines: isolation and cloning of spontaneous or mutagenically induced malignancies, targeted oncogenesis in transgenic mice, somatic cell fusion, growth factor mediated expansion of CNS progenitor or stem cells, and retroviral transduction of neuroepithelial precursors. In this article, we detail recent progress in these areas, focusing on those cell lines that have enabled novel insight into the mechanisms controlling neuronal cell lineage choice and differentiation, both in vitro and in vivo.  相似文献   

18.
罗云  袁洁  蔡时青 《生命的化学》2020,40(4):463-467
衰老是自然界普遍存在的现象。衰老伴随着组织和器官功能的逐渐衰退,最终导致生物体死亡。衰老也是人们罹患老年性疾病如心血管疾病、神经退行性疾病、癌症、糖尿病等的主要风险因素。因此,延缓衰老对于预防和治疗衰老相关的疾病意义重大。衰老与遗传和表观遗传改变密切相关。最近,Nature杂志发表了中国科学院脑科学与智能技术卓越创新中心蔡时青研究组与中国科学院上海巴斯德研究所江陆斌研究组的合作成果。该研究发现了两个新的保守的表观调控因子妨碍健康衰老。  相似文献   

19.
The rat is a model of choice in biomedical research for over a century. Currently, the rat presents the best “functionally” characterized mammalian model system. Despite this fact, the transgenic rats have lagged behind the transgenic mice as an experimental model of human neurodegenerative disorders. The number of transgenic rat models recapitulating key pathological hallmarks of Alzheimer’s disease, Huntington’s disease, amyotrophic lateral sclerosis, or human tauopathies is still limited. The reason is that the transgenic rats remain more difficult to produce than transgenic mice. The gene targeting technology is not yet established in rats due to the lack of truly totipotent embryonic stem cells and cloning technology. This extremely powerful technique has given the mouse a clear advantage over the rat in generation of new transgenic models. Despite these limitations, transgenic rats have greatly expanded the range of potential experimental approaches. The large size of rats permits intrathecal administration of drugs, stem cell transplantation, serial sampling of the cerebrospinal fluid, microsurgical techniques, in vivo nerve recordings, and neuroimaging procedures. Moreover, the rat is routinely employed to demonstrate therapeutic efficacy and to assess toxicity of novel therapeutic compounds in drug development. Here we suggest that the rat constitutes a slightly underestimated but perspective animal model well-suited for understanding the mechanisms and pathways underlying the human neurodegenerative disorders.  相似文献   

20.
基因治疗在恶性肿瘤、癌症、遗传性疾病和心脑血管等疾病的治疗中开始应用,临床治疗效果明显。基因治疗中的关键技术是选用合适的载体将外源基因高效导入受体靶细胞,综述了基因治疗中病毒和非病毒载体的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号