首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
Intracellular catabolism of NAD in mammalian cells occurs mainly via reaction catalyzed by poly(ADP-ribose) polymerase (PARP) with the release of nicotinamide, which is then metabolized predominantly to N-methyl-2-pyridone-5-carboxamide (2PY). PARP could be activated by binding to broken DNA and is known to be involved in DNA repair mechanisms, cell stress response and regulation of apoptosis. 2PY may accumulate under disease conditions resulting in accelerated DNA damage and retention of catabolic products. Our hypothesis was that chronic renal failure would lead to elevation of 2PY and potentially to inhibition of PARP and related physiological mechanisms. In the present study we: (a) compared plasma 2PY concentration in healthy subjects and in patients with chronic renal failure (CRF); (b) evaluated the relationship between plasma 2PY concentration and the severity of CRF; (c) evaluated the effect of hemodialysis treatment and kidney transplantation on 2PY concentration.We found that the plasma 2PY concentration in healthy subjects is 0.83 ± 0.18 M but it could increase up to 40 M in patients with CRF. A significant correlation was found in CRF between plasma 2PY and creatinine concentration. A single hemodialysis treatment was associated with significant reduction of plasma 2PY concentration after the hemodialysis, but it increased rapidly 48 h after the end of treatment. Successful kidney transplantation was associated with return of 2PY concentration to the normal range.In conclusion, our results indicated significant production of 2PY in humans. In healthy subjects 2PY is cleared from the plasma by excretion in the urine. Altered excretion by the kidney leads to increase in plasma concentration of 2PY. It is possible that 2PY may play a significant role in the development of uremic toxemia, especially as an inhibitor of poly(ADP-ribose)polymerase.  相似文献   

8.
Florea SM  Blatter LA 《Cell calcium》2008,43(4):405-415
Oxidative stress imposed by the accumulation of oxygen free radicals (reactive oxygen species, ROS) has profound effects on Ca2+ homeostasis in the vascular endothelium, leading to endothelial dysfunctions and the development of cardiovascular pathologies. We tested the effect of the oxidant and ROS generator tert-butyl-hydroperoxide (tBuOOH) on Ca2+ signaling in single cultured calf pulmonary artery endothelial (CPAE) cells loaded with the fluorescent Ca2+ indicator indo-1. Acute brief (5 min) exposures to tBuOOH had no effect on basal cytosolic free Ca2+ ([Ca2+](i)), agonist (ATP)-induced Ca2+ release from the endoplasmic reticulum (ER) and on Ca(2+) store depletion-dependent capacitative Ca2+ entry (CCE). Prolonged (60 min) exposure to tBuOOH did not affect intracellular Ca2+ release, but caused a profound inhibition of CCE. After 120 min of treatment with tBuOOH not only was CCE further reduced, but also ATP-induced Ca2+ release due to a slow depletion of the stores that resulted from CCE inhibition. The antioxidant Trolox (synthetic vitamin E analog) prevented the inhibition of CCE by tBuOOH and attenuated the increase of [ROS](i), indicating that inhibition of CCE was due to the oxidant effects of tBuOOH. The data suggest that in vascular endothelial cells oxidative stress primarily affects Ca2+ influx in response to Ca2+ loss from internal stores. [Ca2+](i) is an important signal for the production and release of endothelium-derived factors such as nitric oxide (NO). Since CCE is the preferential Ca2+ source for NO synthase activation, the finding that oxidative stress inhibits CCE may explain how oxidative stress contributes to endothelial dysfunction-related cardiovascular pathologies.  相似文献   

9.
Nicotinamide N-oxide is a major nicotinamide catabolite in mice but not in humans and rats. A high-performance liquid chromatographic method for the simultaneous measurement of nicotinamide, nicotinamide N-oxide, N1-methyl-2-pyridone-5-carboxamide, and N1-methyl-4-pyridone-3-carboxamide in mice urine was developed by modifying the mobile phase of a reported method for measurement of nicotinamide N-oxide.  相似文献   

10.
Hydrogen peroxide, produced by inflammatory and vascular cells, induces oxidative stress that may contribute to endothelial dysfunction. In smooth muscle cells, H2O2 induces production of O2 by activating NADPH oxidase. However, the mechanisms whereby H2O2 induces oxidative stress in endothelial cells are poorly understood. We examined the effects of H2O2 on O2 levels on porcine aortic endothelial cells (PAEC). Treatment with 60 μmol/L H2O2 markedly increased intracellular O2 levels (determined by conversion of dihydroethidium to hydroxyethidium) and produced cytotoxicity (determined by propidium iodide staining) in PAEC. Overexpression of human manganese superoxide dismutase in PAEC reduced O2 levels and attenuated cytotoxicity resulting from treatment with H2O2. L-NAME, an inhibitor of nitric oxide synthase (NOS), and apocynin, an inhibitor of NADPH oxidase, reduced O2 levels in PAEC treated with H2O2, suggesting that both NOS and NADPH oxidase contribute to H2O2-induced O2 in PAEC. Inhibition of NADPH oxidase using apocynin and NOS rescue with L-sepiapterin together reduced O2 levels in PAEC treated with H2O2 to control levels. This suggests interaction-distinct NOS and NADPH oxidase pathways to superoxide. We conclude that H2O2 produces oxidative stress in endothelial cells by increasing intracellular O2 levels through NOS and NADPH oxidase. These findings suggest a complex interaction between H2O2 and oxidant-generating enzymes that may contribute to endothelial dysfunction.  相似文献   

11.
12.
目的:建立离体大鼠主动脉内皮细胞氧化应激损伤模型,为细胞损伤及细胞凋亡的调控研究提供基础。方法:大鼠断头处死在无菌条件下开胸取主动脉,经组织块培养法后传代培养得到充足主动脉内皮细胞,接种于96孔板或爬片培养,每组设6个复孔,用于之后的各项试验检测。以不加H2O2的组作为对照组,以不同浓度的H2O2(100、200、300、400、500 μmol/L)作用于内皮细胞相同时间12 h,来筛选最佳作用浓度;依据结果以相同浓度的H2O2(100和200 μmol/L)分别作用不同时间(3、6、9、12及24 h),来筛选最佳作用时间。通过免疫荧光法鉴定、细胞存活率检测、生化指标(LDH-L、NO、MDA、SOD)检测及内皮细胞凋亡指数等变化,评价及验证模型的建立。结果:对细胞内Ⅷ型胶原抗原进行免疫荧光染色后鉴定血管内皮细胞培养成功;在12 h的相同作用时间下,随着H2O2浓度的加大,细胞存活率呈显著下降(77.63%±5.20%~40.90%±2.10%);相同浓度(100 μmol/L组和200 μmol/L组)随着作用时间的增加,细胞存活率呈显著递减(100 μmol/L组为86.83%±12.11%~44.26%±5.70%,200 μmol/L组为78.28%±11.98%~34.45%±5.87%);以H2O2浓度为100 μmol/L作用3、6、9、12及24 h,培养液中生化指标在9 h后LDH-L与MDA呈显著递增,NO与SOD呈显著递减;在H2O2浓度为100 μmol/L与作用时间12 h的条件下,流式检测结果显示内皮细胞凋亡率为16.92%±2.37%,显著高于对照组2.68%±0.47%(P<0.01); TUNEL检测内皮细胞凋亡指数为17.65%±2.36%,显著高于对照组的3.23%±0.57%(P<0.01)。结论:该方法成功建立了体外血管内皮细胞氧化应激损伤模型,探索了轻重适度的诱导细胞损伤和细胞凋亡的造模方法,可以成为开展多种血管内皮细胞损伤及凋亡调控机制研究的基础。  相似文献   

13.
1-methylnicotinamide (MNA) is a primary metabolite of nicotinamide. In recent years several activities of MNA have been described, such as anti-inflammatory activity in skin diseases, induction of prostacyclin synthesis via COX-2, aortal endothelium protection in diabetes and hypertriglyceridaemia and increased survival rate of diabetic rats. 1-methylnicotinamide was also suggested to protect pancreatic cells from streptozotocin in vivo. Streptozotocin toxicity is known to be mediated by poly-ADP-ribose polymerase. Nicotinamide and its derivatives have been shown to ameliorate poly-ADP-ribose polymerase-dependent nucleotide pool reduction. We aimed to verify if 1-methylnicotinamide and its metabolite, N-methyl-2-pyridone-5-carboxamide, can protect insulinoma cells from streptozotocin-induced toxicity. We found that N-methyl-2-pyridone-5-carboxamide, but not 1-methylnicotinamide, restores the pool of ATP and NAD+ in streptozotocin-treated cells, but neither compound improved the cell viability. We conclude that inhibition of poly-ADP-ribose polymerase-dependent nucleotide pool reduction may not be sufficient to protect cells from streptozotocin toxicity.  相似文献   

14.
Vinorelbine (VNR), a vinca alkaloid anticancer drug, often causes vascular injury such as venous irritation, vascular pain, phlebitis, and necrotizing vasculitis. The purpose of this study was to identify the mechanisms that mediate the cell injury induced by VNR in porcine aorta endothelial cells (PAECs). PAECs were exposed to VNR for 10 min followed by further incubation in serum-free medium without VNR. The exposure to VNR (0.3–30 μM) decreased the cell viability concentration and time dependently. The incidence of apoptotic cells significantly increased at 12 h after transient exposure to VNR. At the same time, VNR increased the activity of caspases. Interestingly, VNR rapidly depleted intracellular glutathione (GSH) and increased intracellular reactive oxygen species (ROS) production. Moreover, VNR depolarized the mitochondrial membrane potential and decreased cellular ATP levels. These VNR-induced cell abnormalities were almost completely inhibited by GSH and N-acetylcysteine. On the other hand, l-buthionine-(S,R)-sulfoximine, a specific inhibitor of GSH synthesis, aggravated the VNR-induced loss of cell viability. These results clearly demonstrate that VNR induces oxidative stress by depleting intracellular GSH and increasing ROS production in PAECs, and oxidative stress plays an important role in the VNR-induced cell injury.  相似文献   

15.
16.
Leptin induces oxidative stress in human endothelial cells.   总被引:48,自引:0,他引:48  
  相似文献   

17.
18.
19.
目的观察金雀异黄素(又称染料木黄酮,genistein,Gen)对β淀粉样蛋白(Aβ)致大鼠氧化应激损伤的保护作用。方法 30只健康雄性SD大鼠随机分为假手术组、模型组和Gen干预组,每组10只。Gen组灌胃剂量为30 mg/(kg.d),假手术组和模型组灌胃等量的0.5%羧甲基纤维素钠。连续灌胃14 d后,模型组和Gen组大鼠双侧海马CA1区注射Aβ25-35,假手术组注射等量生理盐水,于术后7 d,生物化学方法检测脑组织中SOD、GSH-Px、MDA的活性或含量,HE染色观察大鼠海马的形态学改变。结果 (1)与假手术组比较,模型组脑组织SOD及GSH-Px活力明显降低,MDA含量明显升高(P0.01),而Gen组脑组织SOD及GSH-Px活力较模型组升高,MDA含量较模型组降低(P0.05)。(2)假手术组HE染色可见大鼠海马锥体细胞排列整齐、均匀,细胞结构完整,形态正常;模型组可见海马锥体细胞脱失、排列紊乱,结构不清,部分胞核固缩、深染;Gen组海马锥体细胞排列较整齐、均匀,结构尚清晰,形态基本正常。结论 Gen能保护海马神经细胞免受Aβ的损伤,这种作用可能与改善机体氧化还原状态,提高抗氧化水平有关。  相似文献   

20.
Context: Epidermal cells play an important role in regulating the regeneration of skin after burns and wounds.

Objective: The aim of our study is to explore the role of Tanshinone IIA (Tan IIA) in the apoptosis of epidermal HaCaT cells induced by H2O2, with a focus on mitochondrial homeostasis and inverted formin-2 (INF2).

Materials and methods: Cellular viability was determined using the MTT assay, TUNEL staining, western blot analysis and LDH release assay. Adenovirus-loaded INF2 was transfected into HaCaT cells to overexpress INF2 in the presence of Tan IIA treatment. Mitochondrial function was determined using JC-1 staining, mitochondrial ROS staining, immunofluorescence and western blotting.

Results: Oxidative stress promoted the death of HaCaT cells and this effect could be reversed by Tan IIA. At the molecular levels, Tan IIA treatment sustained mitochondrial energy metabolism, repressed mitochondrial ROS generation, stabilized mitochondrial potential, and blocked the mitochondrial apoptotic pathway. Furthermore, we demonstrated that Tan IIA modulated mitochondrial homeostasis via affecting INF2-related mitochondrial stress. Overexpression of INF2 could abolish the protective effects of Tan IIA on HaCaT cells viability and mitochondrial function. Besides, we also reported that Tan IIA regulated INF2 expression via the ERK pathway; inhibition of this pathway abrogated the beneficial effects of Tan IIA on HaCaT cells survival and mitochondrial homeostasis.

Conclusions: Overall, our results indicated that oxidative stress-mediated HaCaT cells apoptosis could be reversed by Tan IIA treatment via reducing INF2-related mitochondrial stress in a manner dependent on the ERK signaling pathway.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号