首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Local competitive interactions strongly influence plant community dynamics. To maintain their performance under competition, clonal plants may plastically modify their network architecture to grow in the direction of least interference. The adaptive value of this plastic avoidance response may depend, however, on traits linked with the plant’s structural blueprint and ontogeny. We tested this hypothesis using virtual populations. We used an Individual Based Model to simulate competitive interactions among clones within a plant population. Clonal growth was studied under three competition intensities in plastic and non-plastic individuals. Plasticity buffered the negative impacts of competition at intermediate densities of competitors by promoting clone clumping. Success despite competition was promoted by traits linked with (1) the plant’s structural blueprint (weak apical dominance and sympodial growth) and (2) ontogenetic processes, with an increasing or a decreasing dependence of the elongation process on the branch generation level or length along the competition intensity gradient respectively. The adaptive value of the plastic avoidance response depended on the same traits. This response only modulated their importance for clone success. Our results show that structural blueprint and ontogeny can be primary filters of plasticity and can have strong implications for evolutionary ecology, as they may explain why clonal plants have developed many species-specific plastic avoidance behaviours.  相似文献   

2.
Populations of the marine gastropod Littorina saxatilis from exposed rocky shores of NW Spain provide one of the few putative cases of sympatric ecological speciation. Two ecotypes with large differences in shell morphology and strong assortative mating are living at different vertical levels of the shore separated by a few meters. It has been hypothesized that shell size is the main determinant for the reproductive isolation observed between the ecotypes, and that several shell shape traits are subject to divergent natural selection and are responsible for the adaptation of each ecotype to its respective habitat. Using embryos extracted from wild females we obtain estimates of genetic variation for shell size and shape and compare them with those from neutral molecular markers. Estimates of heritability are significantly larger for the ecotype found in the upper shore than for that in the lower shore, in concordance with a similar result observed for heterozygosity of neutral markers. The large genetic differentiation between ecotypes for the shell traits, contrasting the smaller close to neutral differentiation between populations of the same ecotype, supports the implication of the traits in adaptation.  相似文献   

3.
4.
To examine constraints on evolution of larger body size in two stunted populations of brook charr (Salvelinus fontinalis) from a single river in Cape Race, Newfoundland, Canada, we measured viability selection acting on length-at-age traits, and estimated quantitative genetic parameters in situ (following reconstruction of pedigree information from microsatellite data). Furthermore we tested for phenotypic differentiation between the populations, and for association of high juvenile growth with early maturity that is predicted by life history theory. Within each population, selection differentials and estimates of heritabilities for length-at-age traits suggested that evolution of larger size is prevented by both selective and genetic constraints. Between the populations, phenotypic differentiation was found in length-at-age and age of maturation traits, whereas early maturation was associated with increased juvenile growth (relative to adult growth) both within and between populations. The results suggest an adaptive plastic response in age of maturation to juvenile growth rates that have a largely environmental basis of determination.  相似文献   

5.
Summary We present models of adaptive change in continuous traits for the following situations: (1) adaptation of a single trait within a single population in which the fitness of a given individual depends on the population's mean trait value as well as its own trait value; (2) adaptation of two (or more) traits within a single population; (3) adaptation in two or more interacting species. We analyse a dynamic model of these adaptive scenarios in which the rate of change of the mean trait value is an increasing function of the fitness gradient (i.e. the rate of increase of individual fitness with the individual's trait value). Such models have been employed in evolutionary game theory and are often appropriate both for the evolution of quantitative genetic traits and for the behavioural adjustment of phenotypically plastic traits. The dynamics of the adaptation of several different ecologically important traits can result in characters that minimize individual fitness and can preclude evolution towards characters that maximize individual fitness. We discuss biological circumstances that are likely to produce such adaptive failures for situations involving foraging, predator avoidance, competition and coevolution. The results argue for greater attention to dynamical stability in models of the evolution of continuous traits.  相似文献   

6.
Invasive species often exhibit either evolved or plastic adaptations in response to spatially varying environmental conditions. We investigated whether evolved or plastic adaptation was driving variation in shell morphology among invasive populations of the New Zealand mud snail (Potamopyrgus antipodarum) in the western United States. We found that invasive populations exhibit considerable shell shape variation and inhabit a variety of flow velocity habitats. We investigated the importance of evolution and plasticity by examining variation in shell morphological traits 1) between the parental and F1 generations for each population and 2) among populations of the first lab generation (F1) in a common garden, full‐sib design using Canonical Variate Analyses (CVA). We compared the F1 generation to the parental lineages and found significant differences in overall shell shape indicating a plastic response. However, when examining differences among the F1 populations, we found that they maintained among‐population shell shape differences, indicating a genetic response. The F1 generation exhibited a smaller shell morph more suited to the low‐flow common garden environment within a single generation. Our results suggest that phenotypic plasticity in conjunction with evolution may be driving variation in shell morphology of this widespread invasive snail.  相似文献   

7.
8.
Parallel (and convergent) phenotypic variation is most often studied in the wild, where it is difficult to disentangle genetic vs. environmentally induced effects. As a result, the potential contributions of phenotypic plasticity to parallelism (and nonparallelism) are rarely evaluated in a formal sense. Phenotypic parallelism could be enhanced by plasticity that causes stronger parallelism across populations in the wild than would be expected from genetic differences alone. Phenotypic parallelism could be dampened if site‐specific plasticity induced differences between otherwise genetically parallel populations. We used a common‐garden study of three independent lake–stream stickleback population pairs to evaluate the extent to which adaptive divergence has a genetic or plastic basis, and to investigate the enhancing vs. dampening effects of plasticity on phenotypic parallelism. We found that lake–stream differences in most traits had a genetic basis, but that several traits also showed contributions from plasticity. Moreover, plasticity was much more prevalent in one watershed than in the other two. In most cases, plasticity enhanced phenotypic parallelism, whereas in a few cases, plasticity had a dampening effect. Genetic and plastic contributions to divergence seem to play a complimentary, likely adaptive, role in phenotypic parallelism of lake–stream stickleback. These findings highlight the value of formally comparing wild‐caught and laboratory‐reared individuals in the study of phenotypic parallelism.  相似文献   

9.
Species can adapt to new environmental conditions either through individual phenotypic plasticity, intraspecific genetic differentiation in adaptive traits, or both. Wild emmer wheat, Triticum dicoccoides, an annual grass with major distribution in Eastern Mediterranean region, is predicted to experience in the near future, as a result of global climate change, conditions more arid than in any part of the current species distribution. To understand the role of the above two means of adaptation, and the effect of population range position, we analyzed reaction norms, extent of plasticity, and phenotypic selection across two experimental environments of high and low water availability in two core and two peripheral populations of this species. We studied 12 quantitative traits, but focused primarily on the onset of reproduction and maternal investment, which are traits that are closely related to fitness and presumably involved in local adaptation in the studied species. We hypothesized that the population showing superior performance under novel environmental conditions will either be genetically differentiated in quantitative traits or exhibit higher phenotypic plasticity than the less successful populations. We found the core population K to be the most plastic in all three trait categories (phenology, reproductive traits, and fitness) and most successful among populations studied, in both experimental environments; at the same time, the core K population was clearly genetically differentiated from the two edge populations. Our results suggest that (1) two means of successful adaptation to new environmental conditions, phenotypic plasticity and adaptive genetic differentiation, are not mutually exclusive ways of achieving high adaptive ability; and (2) colonists from some core populations can be more successful in establishing beyond the current species range than colonists from the range extreme periphery with conditions seemingly closest to those in the new environment.  相似文献   

10.
Human‐induced environmental changes differ from most natural changes in which they happen at a faster rate and require quicker responses from populations. The first response of populations is usually phenotypically plastic alterations of morphology, physiology and behaviour. This plasticity can be favourable and move the population closer to an adaptive peak in the altered environment and, hence, maintain a viable population, or be maladaptive and move the population further from the peak and increase the risk of extinction. The radiation of the three‐spined stickleback Gasterosteus aculeatus from the ocean to different freshwater habitats has provided much information on adaptation to new environmental conditions. Currently, human‐induced eutrophication is changing the breeding areas of these fish, which creates a model system for investigation of responses to rapid environmental disturbance. Results show that a primary reaction is plastic alterations of behaviour, with some adjustments being adaptive while others are not. At the same time, the strength of sexual selection on several traits is relaxed, which could increase the relative importance of survival selection. Whether this will restore population viability depends on the amount of standing genetic variation in the right direction. Human disturbances can be dramatic and resolution of the limit of flexibility and the possibility of genetic adaptation should be important targets of future research.  相似文献   

11.
It has been predicted that environmental changes will radically alter the selective pressures on phenological traits. Long‐lived species, such as trees, will be particularly affected, as they may need to undergo major adaptive change over only one or a few generations. The traits describing the annual life cycle of trees are generally highly evolvable, but nothing is known about the strength of their genetic correlations. Tight correlations can impose strong evolutionary constraints, potentially hampering the adaptation of multivariate phenological phenotypes. In this study, we investigated the evolutionary, genetic and environmental components of the timing of leaf unfolding and senescence within an oak metapopulation along an elevation gradient. Population divergence, estimated from in situ and common‐garden data, was compared to expectations under neutral evolution, based on microsatellite markers. This approach made it possible (1) to evaluate the influence of genetic correlation on multivariate local adaptation to elevation and (2) to identify traits probably exposed to past selective pressures due to the colder climate at high elevation. The genetic correlation was positive but very weak, indicating that genetic constraints did not shape the local adaptation pattern for leaf phenology. Both spring and fall (leaf unfolding and senescence, respectively) phenology timings were involved in local adaptation, but leaf unfolding was probably the trait most exposed to climate change‐induced selection. Our data indicated that genetic variation makes a much smaller contribution to adaptation than the considerable plastic variation displayed by a tree during its lifetime. The evolutionary potential of leaf phenology is, therefore, probably not the most critical aspect for short‐term population survival in a changing climate.  相似文献   

12.
Paul E. Bourdeau 《Oecologia》2010,162(4):987-994
Reliable cues that communicate current or future environmental conditions are a requirement for the evolution of adaptive phenotypic plasticity, yet we often do not know which cues are responsible for the induction of particular plastic phenotypes. I examined the single and combined effects of cues from damaged prey and predator cues on the induction of plastic shell defenses and somatic growth in the marine snail Nucella lamellosa. Snails were exposed to chemical risk cues from a factorial combination of damaged prey presented in isolation or consumed by predatory crabs (Cancer productus). Water-borne cues from damaged conspecific and heterospecific snails did not affect plastic shell defenses (shell mass, shell thickness and apertural teeth) or somatic growth in N. lamellosa. Cues released by feeding crabs, independent of prey cue, had significant effects on shell mass and somatic growth, but only crabs consuming conspecific snails induced the full suite of plastic shell defenses in N. lamellosa and induced the greatest response in all shell traits and somatic growth. Thus the relationship between risk cue and inducible morphological defense is dependent on which cues and which morphological traits are examined. Results indicate that cues from damaged conspecifics alone do not trigger a response, but, in combination with predator cues, act to signal predation risk and trigger inducible defenses in this species. This ability to “label” predators as dangerous may decrease predator avoidance costs and highlights the importance of the feeding habits of predators on the expression of inducible defenses.  相似文献   

13.
Adaptation to heterogeneous environments can occur via phenotypic plasticity, but how often this occurs is unknown. Reciprocal transplant studies provide a rich dataset to address this issue in plant populations because they allow for a determination of the prevalence of plastic versus canalized responses. From 31 reciprocal transplant studies, we quantified the frequency of five possible evolutionary patterns: (1) canalized response–no differentiation: no plasticity, the mean phenotypes of the populations are not different; (2) canalized response–population differentiation: no plasticity, the mean phenotypes of the populations are different; (3) perfect adaptive plasticity: plastic responses with similar reaction norms between populations; (4) adaptive plasticity: plastic responses with parallel, but not congruent reaction norms between populations; and (5) nonadaptive plasticity: plastic responses with differences in the slope of the reaction norms. The analysis included 362 records: 50.8% life‐history traits, 43.6% morphological traits, and 5.5% physiological traits. Across all traits, 52% of the trait records were not plastic, and either showed no difference in means across sites (17%) or differed among sites (83%). Among the 48% of trait records that showed some sort of plasticity, 49.4% showed perfect adaptive plasticity, 19.5% adaptive plasticity, and 31% nonadaptive plasticity. These results suggest that canalized responses are more common than adaptive plasticity as an evolutionary response to environmental heterogeneity.  相似文献   

14.
Local adaptation to contrasting biotic or abiotic environments is an important evolutionary step that presumably precedes floral diversification at the species level, yet few studies have demonstrated the adaptive nature of intraspecific floral divergence in wild plant populations. We combine a population‐genomic approach with phenotypic information on floral traits to examine whether the differentiation in metric floral traits exhibited by 14 populations of the southern Spanish hawk moth‐pollinated violet Viola cazorlensis reflects adaptive divergence. Screening of many amplified fragment length polymorphism (AFLP) loci using a multiple‐marker‐based neutrality test identified nine outlier loci (2.6% of the total) that departed from neutral expectations and were potentially under selection. Generalized analysis of molecular variance revealed significant relationships between genetic distance and population divergence in three floral traits when genetic distance was based on outlier loci, but not when it was based on neutral ones. Population means of floral traits were closely correlated with population scores on the first principal coordinate axis of the genetic distance matrix using outlier loci, and with the allelic frequencies of four of the outlier loci. Results strongly support the adaptive nature of intraspecific floral divergence exhibited by V. cazorlensis and illustrate the potential of genome scans to identify instances of adaptive divergence when used in combination with phenotypic information.  相似文献   

15.
While evolution occurs when selection acts on a heritable trait, empirical studies of natural systems have frequently reported phenotypic stasis under these conditions. We performed quantitative genetic analyses of weight and hindleg length in a free-living population of Soay sheep (Ovis aries) to test whether genetic constraints can explain previously reported stasis in body size despite evidence for strong positive directional selection. Genetic, maternal and environmental covariance structures were estimated across ontogeny using random regression animal models. Heritability increased with age for weight and hindleg length, though both measures of size were highly heritable across ontogeny. Genetic correlations among ages were generally strong and uniformly positive, and the covariance structures were also highly integrated across ontogeny. Consequently, we found no constraint to the evolution of larger size itself. Rather we expect size at all ages to increase in response to positive selection acting at any age. Consistent with expectation, predicted breeding values for age-specific size traits have increased over a twenty-year period, while maternal performance for offspring size has declined. Re-examination of the phenotypic data confirmed that sheep are not getting larger, but also showed that there are significant negative trends in size at all ages. The genetic evolution is therefore cryptic, with the response to selection presumably being masked at the phenotypic level by a plastic response to changing environmental conditions. Density-dependence, coupled with systematically increasing population size, may contribute to declining body size but is insufficient to completely explain it. Our results demonstrate that an increased understanding of the genetic basis of quantitative traits, and of how plasticity and microevolution can occur simultaneously, is necessary for developing predictive models of phenotypic change in nature.  相似文献   

16.
Widespread species often occur across a range of climatic conditions, through a combination of local genetic adaptations and phenotypic plasticity. Species with greater phenotypic plasticity are likely to be better positioned to cope with rapid anthropogenic climate changes, while those displaying strong local adaptations might benefit from translocations to assist the movement of adaptive genes as the climate changes. Eucalyptus tricarpa occurs across a climatic gradient in south‐eastern Australia, a region of increasing aridity, and we hypothesized that this species would display local adaptation to climate. We measured morphological and physiological traits reflecting climate responses in nine provenances from sites of 460 to 1040 mm annual rainfall, in their natural habitat and in common gardens near each end of the gradient. Local adaptation was evident in functional traits and differential growth rates in the common gardens. Some traits displayed complex combinations of plasticity and genetic divergence among provenances, including clinal variation in plasticity itself. Provenances from drier locations were more plastic in leaf thickness, whereas leaf size was more plastic in provenances from higher rainfall locations. Leaf density and stomatal physiology (as indicated by δ13C and δ18O) were highly and uniformly plastic. In addition to variation in mean trait values, genetic variation in trait plasticity may play a role in climate adaptation.  相似文献   

17.
The geography of adaptive genetic variation is crucial to species conservation yet poorly understood in marine systems. We analyse the spatial scale of genetic variation in traits that broadly display adaptation throughout the range of a highly dispersive marine species. We conducted common garden experiments on the Atlantic silverside, Menidia menidia, from 39 locations along its 3000 km range thereby mapping genetic variation for growth rate, vertebral number and sex determination. Each trait displayed unique clinal patterns, with significant differences (adaptive or not) occurring over very small distances. Breakpoints in the cline differed among traits, corresponding only partially with presumed eco-geographical boundaries. Because clinal patterns are unique to each selected character, neutral genes or those coding for a single character cannot serve as proxies for the genetic structure as a whole. Conservation plans designed to protect essential genetic subunits of a species will need to account for such complex spatial structures.  相似文献   

18.
Understanding and predicting how adaptation will contribute to species' resilience to climate change will be paramount to successfully managing biodiversity for conservation, agriculture, and human health‐related purposes. Making predictions that capture how species will respond to climate change requires an understanding of how key traits and environmental drivers interact to shape fitness in a changing world. Current trait‐based models suggest that low‐ to mid‐latitude populations will be most at risk, although these models focus on upper thermal limits, which may not be the most important trait driving species' distributions and fitness under climate change. In this review, we discuss how different traits (stress, fitness and phenology) might contribute and interact to shape insect responses to climate change. We examine the potential for adaptive genetic and plastic responses in these key traits and show that, although there is evidence of range shifts and trait changes, explicit consideration of what underpins these changes, be that genetic or plastic responses, is largely missing. Despite little empirical evidence for adaptive shifts, incorporating adaptation into models of climate change resilience is essential for predicting how species will respond under climate change. We are making some headway, although more data are needed, especially from taxonomic groups outside of Drosophila, and across diverse geographical regions. Climate change responses are likely to be complex, and such complexity will be difficult to capture in laboratory experiments. Moving towards well designed field experiments would allow us to not only capture this complexity, but also study more diverse species.  相似文献   

19.
Hyma KE  Caicedo AL 《Molecular ecology》2011,20(17):3491-3493
Plasticity allows for changes in phenotype in response to environmental cues, often facilitating local adaptation to seasonal environments. Phenotypic plasticity alone, however, may not always be sufficient to ensure adaptation to new localities. In particular, changing cues associated with shifting seasonal regimes may no longer induce appropriate phenotypic responses in new environments ( Nicotra et al. 2010 ). Plastic responses must thus evolve to avoid being maladaptive. To date, the extent to which plastic responses can change and the genetic mechanisms by which this can happen have remained elusive. In this issue of Molecular Ecology, Blackman et al. (2011a) harness natural variation in flowering time among populations of the wild sunflower, Helianthus annuus, to demonstrate that plasticity has indeed evolved in this species. Remarkably, they are able to detect changes in gene expression that are associated with both a loss of plasticity and a reversal of the plastic response. These changes occur in two separate, but integrated, regulatory pathways controlling the transition to flowering, suggesting that complex regulatory networks that incorporate multiple environmental and developmental cues may facilitate the evolution of plastic responses. This study leverages knowledge from plant genetic models to provide a surprising level of insight into the evolution of an adaptive trait in a non‐model species. Through discoveries of the roles of gene duplication and network modularity in the evolution of plastic responses, the study raises questions about the degree to which species‐specific network architectures may act as a constraint to the potential of adaptation.  相似文献   

20.
Assessment of plastic and heritable components of phenotypic variation is crucial for understanding the evolution of adaptive character traits in heterogeneous environments. We assessed the above in relation to adaptive shell morphology of the rocky intertidal snail Nucella lapillus by reciprocal transplantation of snails between two shores differing in wave action and rearing snails of the same provenance in a common garden. Results were compared with those reported for similar experiments conducted elsewhere. Microsatellite variation indicated limited gene flow between the populations. Intrinsic growth rate was greater in exposed-site than sheltered-site snails, but the reverse was true of absolute growth rate, suggesting heritable compensation for reduced foraging opportunity at the exposed site. Shell morphology of reciprocal transplants partially converged through plasticity toward that of native snails. Shell morphology of F(2)s in the common garden partially retained characteristics of the P-generation, suggesting genetic control. A maternal effect was revealed by greater resemblance of F(1)s than F(2)s to the P-generation. The observed synergistic effects of plastic, maternal and genetic control of shell-shape may be expected to maximise fitness when environmental characteristics become unpredictable through dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号