首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear Overhauser effects, with preirradiation of glycoside bond anomeric protons, coupling constants 3J C3, H1' and 3J C1', H4 and linkage optical rotations A were measured for L-Rha beta 1-3-L-Rha alpha 1-OMe and L-Rha alpha 1-3-L-Rha alpha 1-OMe which are the models of the disaccharide units of the Pseudomonas cepacia polysaccharide. Theoretical conformational analysis was carried out in terms of a mechanical molecular model approximation. The spatial structures of these disaccharides as well as of D-Rha alpha 1-2-D-Rha beta 1-OMe in aqueous solutions were discussed basing on the obtained results.  相似文献   

2.
The structure of the capsular polysaccharide (CPS) produced by Leuconostoc mesenteroides ssp. cremoris PIA2 has been determined using component analysis and NMR spectroscopy. (1)H and (13)C resonances were assigned using 2D NMR experiments, and sequential information was obtained by (1)H,(1)H-NOESY and (1)H,(13)C-HMBC experiments. The CPS consists of linear pentasaccharide repeating units with the following structure: →3)-β-D-Galf-(1→6)-β-D-Galf-(1→2)-β-D-Galf-(1→6)-β-D-Galf-(1→3)-β-D-Galp-(1→, in which four out of the five sugar residues have the furanoid ring form, a structural entity found in bacteria but not in mammals. The analysis of the magnitude of the homonuclear three-bond coupling constants of the anomeric protons for the five-membered sugar rings indicates that the sugar residues substituted at a primary carbon atom show one kind of conformational preferences, whereas those substituted at a secondary carbon atom show another kind of conformational preferences.  相似文献   

3.
Two lipopolysaccharide preparations were obtained from Escherichia coli 058 by extraction with 45% aqueous phenol and fractional precipitation with cetyltrimethyl ammonium bromide (Cetavlon). Chemical analysis and polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate showed that the two preparations differed only in the extent of the O-specific polysaccharide moiety. The O-specific polysaccharide was characterized with proton magnetic resonance and infrared spectroscopy, optical rotation and paper electrophoresis. Using gas-liquid chromatography and ion-exchange chromatography, it was shown to contain D-mannose, 2-acetamido-2-deoxy-D-glucose, 3-O-(R-1'-carboxyethyl)-L-rhamnose (rhamnolactylic acid), and O-acetyl groups in the molar ratios of 2:1:1:1. The polysaccharide and oligosaccharides obtained from it were subjected to methylation and chromic acid oxidation. The results obtained indicated that the polysaccharide consists of tetrasaccharide repeating units in which the trisaccharide beta-GlcNAc1 - 4alphaMan-1 - 4(2/3-O-Ac)-Man is substituted at C-3 of the non-acetylated mannose with rhamnolactylic acid. The repeating units are joined through alpha-mannosyl-1 - 3-glucosamine bonds. This structure is identical with that of the cell wall polysaccharide of Shigella dysenteriae type 5.  相似文献   

4.
The O-specific polysaccharide of the 0114 antigen (lipopolysaccharide) of Escherichia coli 0114 and oligosaccharides obtained from it by Smith degradation and hydrogen fluoride solvolysis were analyzed, using proton and 13C nuclear magnetic resonance spectroscopy and methylation. The results indicated that the 0114 polysaccharide has the tetrasaccharide repeating unit alpha-N-acetylglucosamine(1 leads to 4) beta-3,6-dideoxy-3-(N-acetyl-L-seryl)aminoglucose(1 leads to 3) beta-ribofuranose(1 leads to 4)galactose. In the polysaccharide the repeating units are joined through beta 1 leads to 3-galactosyl linkages. This structure is compared with that of the serologically cross-reacting Shigella boydii 08 antigen and the serological similarity is discussed.  相似文献   

5.
The O-specific polysaccharide obtained from the lipopolysaccharide of Shigella dysenteriae type 1 (Shigella shiga) by mild acid hydrolysis followed by fractionation on Sephadex G-50 was found to be identical to that desribed by Morgan's group and was composed of L-rhamnose, D-galactose and N-acetyl-D-glycosamine in a ratio 2:1:1. On the basis of methylation analysis data the polysaccharide was proved to be a linear chain of monosaccharide residues in pyranose forms substituted at position 3, except for that of galactose substituted at position 2. Selective cleavage, based on the N-deacetylation reaction of the polymer, together with determination of linkage configurations by chromic anhydride oxidation showed that the O-specific polysaccharide is built up of repeating tetrasaccharide units whose proposed structure is given below -3)-alpha-L-Rhap (1-3)-alpha-L-Rhap(1-2)-alpha-D-Galp(1-3)-alphapD-GlcNAcp(1- where RHAP = rhamnopyranose, Galp = galactopyranose, and GlcNAcp = N-acetyl-glucosamine. The present findings confirmed the considerations of Heidelberger on the substitution patterns of L-rhamnose and D-galactose residues from the results of serological studies.  相似文献   

6.
The structure of the O-specific polysaccharide of the somatic antigen (lipopolysaccharide) of Shigella boydii, type 12, was established by 1H- and 13C-NMR, methylation analysis and partial acid hydrolysis methods. The polysaccharide consists of pentasaccharide repeating units of the following structure: (formula; see text) The amount of O-acetyl groups was far less than stoichiometric, only about 2 for 3-4 repeating units. Nevertheless, the results of serological studies revealed 3-O-acetyl-alpha-L-rhamnose residue to be the major immunodominant group. In spite of the presence of similar trisaccharide fragments, the lipopolysaccharide and polysaccharide from Shigella boydii type 12 gave no crossreaction with lipopolysaccharide and polysaccharide from Escherichia coli 07. The possible reasons of the absence of serological relatedness between the Sh. boydii, type 12, and E. coli 07 cells were discussed.  相似文献   

7.
O-specific polysaccharide has been isolated on mild hydrolysis of lipopolysaccharide from Yersinia aldovae and shown to consist of 2-acetamido-2-deoxy-D-glucose, D-glucose, 2-acetamido-2-deoxy-D-galactose, and 3,6-dideoxy-3- [(R)-3-hydroxybutyramido]-D-galactose in molar ratio 2:2:1:1. Acid hydrolysis, methylation, solvolysis with anhydrous hydrogen fluoride, 1H and 13C NMR studies indicated the polysaccharide to be composed of hexasaccharide repeating units of the following structure: [formula see text].  相似文献   

8.
A complex polysaccharide, Ths-3, consisting mainly of rhamnopyranosyl and galactofuranosyl units, has been isolated from the water extract of the lichen Thamnolia subuliformis using ethanol fractionation, dialysis, ion-exchange chromatography, gel filtration and preparative GP-HPLC. The mean M(r) of Ths-3 was determined to be 1450 kD, and the monosaccharide composition is gal/rha/glc/xyl/man in the ratio of 40:31:13:10:6. The structure of Ths-3 was further elucidated by methylation analysis by GC-MS and NMR spectroscopy and found to be basically composed of (1-->3)-linked beta-D-galactofuranosyl units with branches on C6, and rhamnosyl units being predominantly (1-->2)-linked with branches on C3 and C4, while some units are (1-->3)-linked. Glucose, mannose and galactofuranose are found as terminal units and glucose and mannose are also (1-->4)-linked, while xylose is only present as terminal units. The trisaccharide xylglcglc was detected after partial hydrolysis of the polysaccharide. The immunomodulating activity of Ths-3 was tested in an in vitro phagocytosis assay and the classical anticomplementary assay, and proved to be active in both tests. The authors suggest the trivial name thamnolan for Ths-3.  相似文献   

9.
Polycondensation of 4-O-benzoyl-1,2-O-(1-cyanoethylidene)-3-O-(3,4-di-O-benzoyl-2-O-tr ityl-alpha-L- rhamnopyranosyl)-beta-L-rhamnopyranose in the presence of 6-phthalimidohexyl-3,4-di-O-benzoyl-2-O-trityl-alpha-L- rhamnopyranoside affords, after deprotection, the polysaccharide built up of the repeating dissaccharide units----2) Rha (alpha 1----3) Rha (alpha 1----and containing 6-aminohexyl residue at the reducing end. This polysaccharide possesses the structure of the group A-variant streptococcal polysaccharide. Synthesis of 6-aminohexyl glycosides of 2- and 3-O-alpha-L-rhamnopyranosyl-alpha-L-rhamnopyranoses, which corresponds to the repeating units of the above polysaccharide, is described.  相似文献   

10.
The sequence of monosaccharides in the biological repeating tetrasaccharide unit of Shigella flexneri variant Y O-antigenic polysaccharide chain was determined by subjecting three oligosaccharides of the polysaccharide, obtained by phage-Sf6-mediated enzymatic hydrolysis, to methylation analysis and proton nuclear magnetic resonance spectroscopy. The smallest saccharide was shown to be a tetrasaccharide with the structure alpha-L-Rhap-(1-2)-L-Rha. The next saccharide, an octasaccharide, was shown to be a dimer of the tetrasaccharide with the L-Rha residues linked alpha 1.3. The longest saccharide was shown to be a decasaccharide with the following structure: alpha-L-Rhap-(1-2)-alpha-L-Rhap-(1-3)-alpha-L-Rhap-(1- 3)-beta-D-GlcpNAc-(1-2)-alpha-L-Rhap-(1-2)-alpha-L-Rhap++ + +-(1-3)-alpha-L-Rhap-(1-3)-beta-D-GlcpNAc-(1-2)-alpha-L-R hap-(1-2)-L-Rha. Thus the decasaccharide differed from the octasaccharide and tetrasaccharide by having the alpha-L-Rhap-(1-2)-L-Rhap disaccharide added in the terminal non-reducing end of the saccharide chain. This shows that the alpha-L-Rhap-(1-2)-alpha-L-Rhap-(1-3)-alpha-L-Rhap-(1- 3)-D-GlcpNAc tetrasaccharide is the biological repeating unit of the O chain and that the repeating units are joined through a beta-D-GlcpNAc-(1-2)-L-Rhap linkage. Inhibition experiments utilizing the enzyme-linked immunosorbent assay (ELISA) with S. flexneri Y lipopolysaccharide/S. flexneri Y rabbit antiserum showed that the decasaccharide was the best inhibitor (threefold as active as the octasaccharide and sixtyfold as active as the tetrasaccharide); this supports the postulated structure of the biological repeating unit.  相似文献   

11.
The O-specific polysaccharide of Shigella dysenteriae type 1, which has the repeating tetrasaccharide unit -->3)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->2)-alpha-D-Galp-(1-->3)-alpha-D-GlcNAcp-(1--> (A-B-C-D), is a major virulence factor, and it is believed that antibodies against this polysaccharide confer protection to the host. The conformational properties of fragments of this O-antigen were explored using systematic search with a modified HSEA method (GLYCAN) and with molecular mechanics MM3(96). The results show that the alpha-D-Gal-(1-->3)-alpha-D-GlcNAc linkage adopts two favored conformations, phi/psi approximately equal to -40 degrees /-30 degrees (I) and approximately 15 degrees /30 degrees (II), whereas the other glycosidic linkages only have a single favored phi/psi conformational range. MM3 indicates that the trisaccharide B-C-D and tetrasaccharides containing the B-C-D moiety exist as two different conformers, distinguished by the conformations I and II of the C-D linkage. For the pentasaccharide A-B-C-D-A' and longer fragments, the calculations show preference for the C-D conformation II. These results can explain previously reported nuclear magnetic resonance data. The pentasaccharide in its favored conformation II is sharply bent, with the galactose residue exposed at the vertex. This hairpin conformation of the pentasaccharide was successfully docked with the binding site of a monoclonal IgM antibody (E3707 E9) that had been homology modeled from known crystal structures. For fragments made of repetitive tetrasaccharide units, the hairpin conformation leads to a left-handed helical structure with the galactose residues protruding radially at the helix surface. This arrangement results in a pronounced exposure of the galactose and also the adjacent rhamnose in each repeating unit, which is consistent with the known role of the as alpha-L-Rhap-(1-->2)-alpha-D-Galp moiety as a major antigenic epitope of this O-specific polysaccharide.  相似文献   

12.
Theoretical conformational analysis of four tetrasaccharide repeating units of the Shigella flexneri serogroup Y polysaccharide has been carried out. Interdependency of conformational states of neighbouring disaccharide units in the oligosaccharides has been investigated and conformational distribution of tetrasaccharides in solution calculated. Taking into account the entropy of oligosaccharide chains is shown to lead to significant correction of the results.  相似文献   

13.
The extracellular polysaccharide produced by Butyrivibrio fibrisolvens strain H10b, when grown under strictly anaerobic conditions with glucose as carbohydrate source, has been studied by chemical and spectroscopic techniques. The results demonstrate that the polysaccharide consists of hexasaccharide repeating units with the following structure: [structure: see text] The isolated polysaccharide was found to be approximately 65% acetylated at O-2 of the 3-O-[(S)-1-carboxyethyl]-beta-D-Glcp residue. The absolute configuration of the 1-carboxyethyl groups was determined by circular dichroism.  相似文献   

14.
Synthesis of a regular branched polysaccharide [6(Gal beta 1-4)GlcNAc beta 1-3Gal beta 1-4Glc beta 1]n whose structure corresponds to that of the capsular polysaccharide of Streptococcus pneumoniae type 14, is described, involving a stereospecific polycondensation of the tetrasaccharide monomer, deacylation, and N-acetylation.  相似文献   

15.
A polysaccharide composed of 3-O-methyl-D-mannose and D-mannose in a molar ratio of approximately 10:1 and containing 3 to 4 esterified acetyl residues has been isolated from Streptomyces griseus. This acetylated methylmannose polysaccharide (AMMP) is similar to the methylmannose polysaccharide (MMP) of Mycobacterium smegmatis (Gray, G. R., and Ballou, C. E. (1971) J. Biol. Chem. 246, 6835-6842) in its size and composition, the absence of acidic or basic groups, and the lack of a reducing end. It is different, however, in its content of esterified acetyl residues, and it is slightly different in its structure and in its gel filtration properties. The structure of AMMP has been established by proton magnetic resonance spectroscopy, and by combinations of methylation analysis and Smith degradation utilizing non-radioactively labeled polysaccharide and [3H]methyl-labeled polysaccharide obtained from cells grown in the presence of L-[methyl-3H]methionine. It is concluded that AMMP is a linear, nonreducing, neutral polysaccharide composed of a terminal D-mannose residue linked alpha(1 leads to 4) to a chain of 10 consecutive alpha(1 leads to 4)-linked 3-O-methyl-D-mannose residues. The reducing terminal 3-O-methyl-D-mannose residue exists, at least in part, as its alpha-methyl glycoside. The positions of attachment of the ester residues have not been established.  相似文献   

16.
The lactic acid bacterium Lactobacillus delbrueckii subsp. bulgaricus 291, when grown in skimmed milk, produced 80 mg/L exopolysaccharide with an average molecular mass of 1.4 x 10(3) kDa. Monosaccharide analysis, methylation analysis, MS, and 1D/2D NMR (1H and 13C) studies performed on the native polysaccharide, and on oligosaccharides obtained from a mild acid hydrolysate of the native polysaccharide, showed the polysaccharide to consist of branched pentasaccharide repeating units with the following structure: [structure: see text].  相似文献   

17.
Aeromonas salmonicida is a pathogenic aquatic bacterium and the causal agent of furunculosis in salmon. In the course of this study, it was found that when grown in vitro on tryptic soy agar, A. salmonicida strain 80204-1 produced a capsular polysaccharide with the identical structure to that of the lipopolysaccharide O-chain polysaccharide. A combination of 1D and 2D NMR methods, including a series of 1D analogues of 3D experiments, together with capillary electrophoresis-electrospray MS (CE-ES-MS), compositional and methylation analyses and specific modifications was used to determine the structure of these polysaccharides. Both polymers were shown to be composed of linear trisaccharide repeating units consisting of 2-acetamido-2-deoxy-D-galacturonic acid (GalNAcA), 3-[(N-acetyl-L-alanyl)amido]-3,6-dideoxy-D-glucose[3-[(N-acetyl-L-alanyl)amido]-3-deoxy-D-quinovose, Qui3NAlaNAc] and 2-acetamido-2,6-dideoxy-D-glucose (2-acetamido-2-deoxy-D-quinovose, QuiNAc) and having the following structure: [-->3)-alpha-D-GalpNAcA-(1-->3)-beta-D-QuipNAc-(1-->4)-beta-D-Quip3NAlaNAc-(1-]n, where GalNAcA is partly presented as an amide and AlaNAc represents N-acetyl-L-alanyl group. CE-ES-MS analysis of CPS and O-chain polysaccharide confirmed that 40% of GalNAcA was present in the amide form. Direct CE-ES-MS/MS analysis of in vivo cultured cells confirmed the formation of a novel polysaccharide, a structure also formed in vitro, which was previously undetectable in bacterial cells grown within implants in fish, and in which GalNAcA was fully amidated.  相似文献   

18.
The structure of the O-antigen polysaccharide from Escherichia coli O172 has been determined. In combination with sugar analysis, NMR spectroscopy shows that the polysaccharide is composed of pentasaccharide repeating units. Sequential information was obtained by mass spectrometry and two-dimensional NMR techniques. An O-acetyl group was present as 0.7 equivalent per repeating unit. Treatment of the O-deacetylated polysaccharide with aqueous 48% hydrofluoric acid rendered cleavage of the phosphodiester in the backbone of the polymer and the pentasaccharide isolated after gel permeation chromatography was structurally characterized. Subsequent NMR experiments on polymeric materials revealed the structure of the repeating unit of the O-polysaccharide from E. coli O172 as:-->P-4)-alpha-D-Glcp-(1-->3)-alpha-L-FucpNAc-(1-->3)-alpha-D- GlcpNAc-(1-->3)-alpha-L-FucpNAc-(1-->4)-alpha-D-Glcp6Ac-(1-->  相似文献   

19.
The O-specific polysaccharide of Salmonella arizonae O59 (Arizona 19) is composed of D-galactose, N-acetyl-D-glucosamine, and N-acetyl-L-fucosamine (FucNAc, 2-acetamido-2,6-dideoxy-L-galactose) in the ratio 1:1:1. The computerized calculation of the 13C NMR spectrum of the polysaccharide, based on the monosaccharide composition, spectra of the free monosaccharides and glycosydation effects, together with the chemical analysis (methylation and Smith degradation) showed that the polysaccharide is built up of trisaccharide repeating units of the following structure: ----3)-alpha-L-FucNAcp(1----3)-beta-D-GlcNAcp-(1----2)-beta- D-Galp-1(----. The molecular basis of serological interrelations between S. arizonae O59 and Pseudomonas aeruginosa O7 (Lányi) is discussed.  相似文献   

20.
Structural studies of the capsular polysaccharide of Klebsiella type 52   总被引:1,自引:0,他引:1  
The structure of the capsular polysaccharide from Klebsiella Type 52 has been investigated. Methylation analysis, characterization by gas-liquid chromatography-mass spectrometry of oligosaccharide derivatives obtained on partial hydrolysis of the methylated polysaccharide with acid, and specific degradation of the methylated polysaccharide by successive treatments with base and acid followed by characterization of the product, were the principal methods used. The polysaccharide is composed of hexasaccharide repeating-units containing D-glucuronic acid, D-galactose, and L-rhamnose, in the ratios 1:3:2. A structure for these units, disregarding the anomeric natures of the sugar residues, is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号