首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
α4β2 Nicotinic acetylcholine receptors play an important role in the reward pathways for nicotine. We investigated whether receptor up-regulation of α4β2 nicotinic acetylcholine receptors involves expression changes for non-receptor genes. In a microarray analysis, 10 μM nicotine altered expression of 41 genes at 0.25, 1, 8 and 24 h in hα4β2 SH-EP1 cells. The maximum number of gene changes occurred at 8 h, around the initial increase in 3[H]-cytisine binding. Quantitative RT-PCR corroborated gene induction of endoplasmic reticulum proteins CRELD2, PDIA6, and HERPUD1, and suppression of the pro-inflammatory cytokines IL-1β and IL-6. Nicotine suppresses IL-1β and IL-6 expression at least in part by inhibiting NFκB activation. Antagonists dihydro-β-erythroidine and mecamylamine blocked these nicotine-induced changes showing that receptor activation is required. Antagonists alone or in combination with nicotine suppressed CRELD2 message while increasing α4β2 binding. Additionally, small interfering RNA knockdown of CRELD2 increased basal α4β2 receptor expression, and antagonists decreased CRELD2 expression even in the absence of α4β2 receptors. These data suggest that endoplasmic reticulum proteins such as CRELD2 can regulate α4β2 expression, and may explain antagonist actions in nicotine-induced receptor up-regulation. Further, the unexpected finding that nicotine suppresses inflammatory cytokines suggests that nicotinic α4β2 receptor activation promotes anti-inflammatory effects similar to α7 receptor activation.  相似文献   

2.
Recently, we have shown that the α-helix present at the N-termini of α7 nicotinic acetylcholine receptors plays a crucial role in their biogenesis. Structural data suggest that this helix interacts with the loop linking β-strands β2 and β3 (loop 3). We studied the role of this loop as well as its interaction with the helix in membrane receptor expression. Residues from Asp62 to Val75 in loop 3 were mutated. Mutations of conserved amino acids, such as Asp62, Leu65 and Trp67 abolished membrane receptor expression in Xenopus oocytes. Others mutations, at residues Asn68, Ala69, Ser70, Tyr72, Gly74, and Val 75 were less harmful although still produced significant expression decreases. Steady state levels of wild-type and mutant α7 receptors (L65A, W67A, and Y72A) were similar but the formation of pentameric receptors was impaired in the latter (W67A). Mutation of critical residues in subunits of heteromeric nicotinic acetylcholine receptors (α3β4) also abolished their membrane expression. Complementarity between the helix and loop 3 was evidenced by studying the expression of chimeric α7 receptors in which these domains were substituted by homologous sequences from other subunits. We conclude that loop 3 and its docking to the α-helix is an important requirement for receptor assembly.  相似文献   

3.
Abstract: Studies determined whether α4β2 or α3β2 neuronal nicotinic receptors expressed in Xenopus oocytes are substrates for cyclic AMP-dependent protein kinase (PKA) and whether nicotine affects receptor phosphorylation. The cRNAs for the subunits were coinjected into oocytes, and cells were incubated for 24 h in the absence or presence of nicotine (50 n M for α4β2 and 500 n M for α3β2 receptors). Nicotine did not interfere with the isolation of the receptors. When receptors isolated from oocytes expressing α4β2 receptors were incubated with [γ-32P]ATP and the catalytic subunit of PKA, separated by electrophoresis, and visualized by autoradiography, a labeled phosphoprotein with the predicted molecular size of the α4 subunit was present. Phosphorylation of α4 subunits of α4β2 receptors increased within the first 5 min of incubation with nicotine and persisted for 24 h. In contrast, receptors isolated from oocytes expressing α3β2 receptors did not exhibit a labeled phosphoprotein corresponding to the size of the α3 subunit. Results suggest that the PKA-mediated phosphorylation of α4 and not α3 subunits may explain the differential inactivation by nicotine of these receptors subtypes expressed in oocytes.  相似文献   

4.
Homomeric α7 nicotinic acetylcholine receptors are a well-established, pharmacologically distinct subtype. The more recently identified α9 subunit can also form functional homopentamers as well as α9α10 heteropentamers. Current fluorescent probes for α7 nicotinic ACh receptors are derived from α-bungarotoxin (α-BgTx). However, α-BgTx also binds to α9* and α1* receptors which are coexpressed with α7 in multiple tissues. We used an analog of α-conotoxin ArIB to develop a highly selective fluorescent probe for α7 receptors. This fluorescent α-conotoxin, Cy3-ArIB[V11L;V16A], blocked ACh-evoked α7 currents in Xenopus laevis oocytes with an IC50 value of 2.0 nM. Observed rates of blockade were minute-scale with recovery from blockade even slower. Unlike FITC-conjugated α-BgTx, Cy3-ArIB[V11L;V16A] did not block α9α10 or α1β1δε receptors. In competition binding assays, Cy3-ArIB[V11L;V16A] potently displaced [125I]-α-BgTx binding to mouse hippocampal membranes with a K i value of 21 nM. Application of Cy3-ArIB[V11L;V16A] resulted in specific punctate labeling of KXα7R1 cells but not KXα3β2R4, KXα3β4R2, or KXα4β2R2 cells. This labeling could be abolished by pre-treatment with α-cobratoxin. Thus, Cy3-ArIB[V11L;V16A] is a novel and selective fluorescent probe for α7 receptors.  相似文献   

5.
All known nicotinic receptor α subunits include a conserved disulfide bond that is essential for function and is a site for labeling via biochemical modification. In an effort to develop a universal ligand for all subtypes of nicotinic receptors, we previously studied the effects of arsenylation with two compounds, ρ-aminophenyldichloroarsine (APA) and bromoacetyl-ρ-aminophenylarsenòxide (BAPA) on nicotinic receptors from Torpedo electroplax. Here we apply these reagents to immunoisolated receptors containing α4, β2, and possibly other subunits from chick brain that bind [3H]cytisine with high affinity (KD∼5 nM). These are distinct from another receptor subtype that also binds [3H]cytisine and [3H]nicotine and can be arsenylated with APA, but instead contains α5,β2, and probably other subunits. Reduction of α4 β2 receptors with dithiothreitol blocked [3H]cytisine binding and this effect was reversed upon reoxidation by dithiobisnitrobenzoic acid. APA or BAPA prevented the dithiobisnitrobenzoic acid reactivation of dithiothreitol-treated receptors with IC50 values of 15 and 70 n M , respectively. However, the antiarsenical dimercaptopropanesulfonic acid restored function to APA- or BAPA- "arsenylated" receptors (EC50∼100 μ M ). APA-treated receptors remained blocked for up to 24 h, but treatment with dimercaptopropanesulfonic acid at any time restored [3H]cytisine binding. APA treatment of reduced receptors protected against irreversible alkylation by Bromoacetyl choline, indicating that arsenylation occurs at least in part in the agonist binding site. Thus, these reagents have similar effects on different nicotinic receptor subtypes from both muscle and nerves.  相似文献   

6.
We studied the role of the α-helix present at the N-terminus of nicotinic acetylcholine receptor (nAChR) subunits in the expression of functional channels. Deletion of this motif in α7 subunits abolished expression of nAChRs at the membrane of Xenopus oocytes. The same effect was observed upon substitution by homologous motifs of other ligand-gated receptors. When residues from Gln4 to Tyr15 were individually mutated to proline, receptor expression strongly decreased or was totally abolished. Equivalent substitutions to alanine were less harmful, suggesting that proline-induced break of the α-helix is responsible for the low expression. Steady-state levels of wild-type and mutant subunits were similar but the formation of pentameric receptors was impaired in the latter. In addition, those mutants that reached the membrane showed a slightly increased internalization rate. Expression of α7 nAChRs in neuroblastoma cells confirmed that mutant subunits, although stable, were unable to reach the cell membrane. Analogous mutations in heteromeric nAChRs (α3β4 and α4β2) and 5-HT3A receptors also abolished their expression at the membrane. We conclude that the N-terminal α-helix of nAChRs is an important requirement for receptor assembly and, therefore, for membrane expression.  相似文献   

7.
α-Bungarotoxin Binding in House Fly Heads and Torpedo Electroplax   总被引:2,自引:2,他引:0  
Abstract: House fly heads contain a site that binds α-bungarotoxin with high affinity. It is present at about 23 pmol/g of heads and binds α-bungarotoxin (labeled with [3H]pyridoxamine phosphate) reversibly with a K d of 6 nM. The effects of 48 drugs have been compared on the α-bungarotoxin binding sites of house fly and Torpedo. The pharmacology of the house fly site is similar to that previously reported for neuronal α-bungarotoxin binding sites in both vertebrates and invertebrates and is distinguishable from that of the classic nicotinic neuromuscular acetylcholine receptor, as exemplified by that of Torpedo electroplax. Differences between the house fly site and Torpedo include higher affinities of the Torpedo receptor for decamethonium, hexamethonium, carbamylcholine, and acetyl-β-methylcholine, but lower affinities for nicotine, atropine, and dihydro-β-erythroidine.  相似文献   

8.
Abstract: Neuronal nicotinic acetylcholine receptors are differentially sensitive to blockade by the competitive antagonist dihydro-β-erythroidine. Both α and β subunits participate in determining sensitivity to this antagonist. The α subunit contribution to dihydro-β-erythroidine sensitivity is illustrated by comparing the α4β4 receptor and the α3β4 receptor, which differ in sensitivity to dihydro-β-erythroidine by ∼120-fold. IC50 values for blocking α4β4 and α3β4, responding to EC20 concentrations of acetylcholine, were 0.19 ± 0.06 and 23.1 ± 10.2 µ M , respectively. To map the sequence segments responsible for this difference, we constructed a series of chimeric α subunits containing portions of the α4 and α3 subunits. These chimeras were coexpressed with β4, allowing pharmacological characterization. We found determinants of dihydro-β-erythroidine sensitivity to be distributed throughout the N-terminal extracellular domain of the α subunit. These determinants were localized to sequence segments 1–94, 94–152, and 195–215. Loss of determinants within segment 1–94 had the largest effect, decreasing dihydro-β-erythroidine sensitivity by 4.3-fold.  相似文献   

9.
To determine whether prolonged nicotine exposure persistently inactivates rat alpha4beta2 nicotinic receptors expressed in Xenopus oocytes, we measured the voltage-clamped alpha4beta2 response to acetylcholine (ACh) before and 24 h after, 1-h or 12-h incubations in 10 microm nicotine. A 12-h incubation in 10 microm nicotine depressed the alpha4beta2 ACh response for 24 h without affecting total or surface alpha4beta2 expression. To determine whether oocyte-mediated nicotine release caused this depression, we co-incubated an alpha4beta2-expressing oocyte with an un-injected one (pre-incubated in 10 microm nicotine for 12 h) for 24 h and measured the change in the alpha4beta2 ACh response. The response decreased by the same factor after the co-incubation as it did after a 12-h incubation in 10 microm nicotine and a 24-h incubation in nicotine-free media. Thus, oocyte-mediated nicotine release caused the persistent desensitization we observed after a 12-h incubation in 10 microm nicotine. Consistent with this result, measurements of [3H]nicotine release show that oocytes release enough nicotine into the wash media to desensitize alpha4beta2 receptors and that prolonged incubation in 300 microm ACh (which cannot readily cross the membrane or accumulate in acidic vesicles) did not persistently depress the alpha4beta2 response.  相似文献   

10.
Abstract: The neurotoxic properties of the dietary excitotoxins β- N -methylamino- l -alanine and β- N -oxalylamino- l -alanine have been studied in rat cerebellar granule cells and compared with those of glutamate. Glutamate caused dose-dependent death of cerebellar granule cells after a 30-min exposure when viability was assessed 24 h later. β- N -Methylamino- l -alanine and β- N -oxalylamino- l -alanine, however, were toxic only after 24 or 48 h of exposure. The neurotoxic effects of β- N -methylamino- l -alanine were blocked by d (−)-2-amino-5-phosphonopentanoic acid, and those of β- N -oxalylamino- l -alanine were blocked by kynurenic acid, which demonstrated that these excitotoxins caused cerebellar granule cell death through the activation of glutamate receptors. The features of this death were examined morphologically (fluorescent dyes, electron microscopy) and biochemically (conventional agarose gel electrophoresis, effect of aurintricarboxylic acid). Characteristics of apoptosis were identified by transferring cerebellar granule cells from a high K+ (30 m M )- to a low K+ (10 m M )-containing medium. In cerebellar granule cells exposed to β- N -methylamino- l -alanine or β- N -oxalylamino- l -alanine (3 m M ), hallmarks of necrotic- and apoptotic-like death were observed at various time points over a 72-h period. Therefore, in cerebellar granule cells, β- N -methylamino- l -alanine and β- N -oxalylamino- l -alanine induce death over 12–72 h of exposure via a mechanism that involves both necrotic- and apoptotic-like cell death.  相似文献   

11.
Abstract: The amyloid protein (βA4) is found in the CNS of patients with Alzheimer's disease; however, the pathogenic role of this protein is not known. In the present study, a peptide fragment of βA4βA4 25–35; Gly-Ser-Asn-Lys-Gly-Ala-Ile-Ile-Gly-Leu-Met-NH2), which contains the conserved C-terminal sequence of substance P (X-Gly-Leu-Met-NH2), and the neuropeptide substance P (SP) were examined for their ability to modulate nicotine-evoked secretion from cultured bovine adrenal chromaffin cells. Secretion of the released endogenous catecholamines was monitored by electrochemical detection after separation by HPLC. Secretion induced by 10−5 M nicotine was inhibited by SP and βA4 25–35. The IC50 of SP and βA4 25–35 was 3 × 10−6 and 3 × 10−5 M , respectively. SP and βA4 25–35 both protected against nicotinic receptor desensitization. However, βA4 25–35 was ∼ 10-fold less effective than SP in its protective effect. The present work shows that βA4 25–35 can mimic the modulatory actions of SP on the nicotinic response of cultured bovine chromaffin cells, i.e., inhibition of the nicotinic response and protection against nicotinic desensitization. These modulatory actions may be associated with changes in nicotinic receptor levels reported to occur in Alzheimer's disease.  相似文献   

12.
We used immunoprecipitation with subunit-specific antibodies to examine the distribution of heteromeric neuronal nicotinic acetylcholine receptors (nAChRs) that contain the α5 subunit in the adult rat brain. Among the regions of brain we surveyed, the α5 subunit is associated in ∼37% of the nAChRs in the hippocampus, ∼24% of the nAChRs in striatum, and 11–16% of the receptors in the cerebral cortex, thalamus, and superior colliculus. Sequential immunoprecipitation assays demonstrate that the α5 subunit is associated with α4β2* nAChRs exclusively. Importantly, in contrast to α4β2 nAChRs, which are increased by 37–85% after chronic administration of nicotine, the α4β2α5 receptors are not increased by nicotine treatment. These data thus indicate that the α4β2α5 nAChRs in rat brain are resistant to up-regulation by nicotine in vivo , which suggests an important regulatory role for the α5 subunit. To the extent that nicotine-induced up-regulation of α4β2 nAChRs is involved in nicotine addiction, the resistance of the α4β2α5 subtype to up-regulation may have important implications for nicotine addiction.  相似文献   

13.
Abstract: β-Amyloid peptides (Aβ) are deposited in an aggregated fibrillar form in both diffuse and senile plaques in the brains of patients with Alzheimer's disease. The neurotoxicity of Aβ in cultured neurons is dependent on its aggregation state, but the factors contributing to aggregation and fibril formation are poorly understood. In the present study, we investigated whether α2-macroglobulin (α2M), a protein present in neuritic plaques and elevated in Alzheimer's disease brain, is a potential regulatory factor for Aβ fibril formation. Previous studies in our laboratory have shown that α2M is an Aβ binding protein. We now report that, in contrast to another plaque-associated protein, α1-antichymotrypsin, α2M coincubated with Aβ significantly reduces aggregation and fibril formation in vitro. Additionally, cultured fetal rat cortical neurons are less vulnerable to the toxic actions of aged Aβ following pretreatment with α2M. We postulate that α2M is able to maintain Aβ in a soluble state, preventing fibril formation and associated neurotoxicity.  相似文献   

14.
Abstract: Deposit of β-amyloid protein (Aβ) in Alzheimer's disease brain may contribute to the associated neurodegeneration. We have studied the neurotoxicity of Aβ in primary cultures of murine cortical neurons, with the aim of identifying pharmacologic ways of attenuating the injury. Exposure of cultures to Aβ (25–35 fragment; 3–25 4mU M ) generally triggers slow, concentration-dependent neurodegeneration (over 24–72 h). With submaximal Aβ- (25–35) exposure (10 μ M ), substantial (>40% within 48 h) degeneration often occurs and is markedly attenuated by the presence of the Ca2+ channel blockers nimodipine (1–20 μ M ) and Co2+ (100 μ M ) during the Aβ exposure. However, Aβ neurotoxicity is not affected by the presence of glutamate receptor antagonists. We suggest that Ca2+ influx through voltage-gated Ca2+ channels may contribute to Aβ-induced neuronal injury and that nimodipine and Co2+, by attenuating such influx, are able to attenuate Aβ neurotoxicity.  相似文献   

15.
Abstract: For a study of the underlying mechanisms of a possible interaction between ethanol and nicotinic receptors during ethanol dependence, the aim of this work was to investigate the effect of chronic ethanol exposure on nicotinic receptor subtypes in a transfected fibroblast cell line (M10 cells) stably expressing α4β2 nicotinic receptor subtype and an SH-SY5Y neuroblastoma cell line expressing α3, α5, α7, β2, and β4 nicotinic acetylcholine receptor (nAChR) subunits. A significant dose-related decrease (−30–80%) in number of [3H]nicotine binding sites was observed in ethanol-treated (25–240 m M ) compared with untreated M10 cells. Similarly, 4-day treatment with ethanol in concentrations relevant to chronic alcoholism (100 m M ) decreased the number of nicotinic receptor binding sites in the SH-SY5Y cells when measured using [3H]epibatidine. When M10 cells were chronically treated with nicotine, ethanol partly inhibited the up-regulation of nicotinic receptors when present in the cells together with nicotine. Chronic treatment for 4 days with 100 m M ethanol significantly decreased the mRNA level for the α3 nAChR subunit (−39%), while the mRNA levels for the α7 (+30%) and α4 (+22%) subunits were significantly increased. Chronic ethanol treatment did not affect the mRNA levels for the β2 nAChR subunit. Changes in the levels of nAChR protein and mRNA may have adaptive significance and be involved in the development of dependence, tolerance, and addiction to chronic ethanol and nicotine exposure. They also may be targets for therapeutic strategies in the treatment of ethanol and nicotine dependence.  相似文献   

16.
Abstract: Quantitative autoradiography was used to compare the binding properties of α7-type nicotinic acetylcholine receptors in fetal and adult rat hippocampus. Whereas there were high levels of 125I-α-bungarotoxin (125I-α-BTX) binding throughout fetal hippocampal field CA1, there was a significant decrease in binding site density in the adult. The affinity of 125I-α-BTX binding, as well as α-cobratoxin and nicotine potency to displace 125I-α-BTX, did not change with age. Addition of Ca2+ to the assay buffer did not alter 125I-α-BTX binding, or α-cobratoxin inhibition of 125I-α-BTX binding, although it significantly increased nicotine affinity at both ages. The effect of Ca2+ on agonist affinity was dose-dependent, with an EC50 value of 0.25–0.5 m M . Ca2+ also significantly increased the cooperativity of nicotine displacement curves in stratum oriens of the adult, but not in the fetus. These findings indicate that the properties of hippocampal 125I-α-BTX binding sites are largely similar across age. Ca2+ selectively enhances the affinity of agonist binding, with no change in antagonist binding. This ionic effect may result from potentiation of agonist binding to a desensitized state of the α7 nicotinic acetylcholine receptor and may represent an important neuroprotective mechanism.  相似文献   

17.
Abstract: Primary embryonic cortical cultures were used as an in vitro model to evaluate the influence of glia on developmental expression of α7-type nicotinic acetylcholine receptors in rat brain. In cells cultured in serum-containing medium without mitotic inhibitors, specific 125I-α-bungarotoxin binding to α7-type nicotinic receptors was maximal 4–8 days after plating. Treatment with 5'-fluorodeoxyuridine (80 µ M ) from 1 to 3 days in vitro significantly reduced glial proliferation and concomitantly increased 125I-α-bungarotoxin binding, whereas plating onto a glial bed layer decreased binding. There was no significant binding to pure glial cultures. Treatment-induced changes in neuronal binding resulted from alterations in receptor density, with no change in affinity. 5'-Fluorodeoxyuridine treatment also increased cellular expression of α7 receptor mRNA but had no effect on N -[3H]methylscopolamine binding to muscarinic receptors. Glial conditioned medium decreased 125I-α-bungarotoxin binding in both control and 5'-fluorodeoxyuridine-treated cultures, suggesting the release of a soluble factor that inhibits α7-type nicotinic receptor expression. An additional mechanism of glial regulation may involve removal of glutamate from the surrounding medium, as added glutamate (200 µ M ) increased 125I-α-bungarotoxin binding in astrocyte-poor cultures but not in those that were astrocyte enriched. These results suggest that glia may serve a physiological role in regulating α7-type nicotinic receptors in developing brain.  相似文献   

18.
Abstract: Recent reports indicate that missense mutations on presenilin (PS) 1 are likely responsible for the main early-onset familial forms of Alzheimer's disease (FAD). Consensual data obtained through distinct histopathological, cell biology, and molecular biology approaches have led to the conclusion that these PS1 mutations clearly trigger an increased production of the 42-amino-acid-long species of β-amyloid peptide (Aβ). Here we show that overexpression of wild-type PS1 in HK293 cells increases Aβ40 secretion. By contrast, FAD-linked mutants of PS1 trigger increased secretion of both Aβ40 and Aβ42 but clearly favor the production of the latter species. We also demonstrate that overexpression of the wild-type PS1 augments the α-secretase-derived C-terminally truncated fragment of β-amyloid precursor protein (APPα) recovery, whereas transfectants expressing mutated PS1 secrete drastically lower amounts of APPα when compared with cells expressing wild-type PS1. This decrease was also observed when comparing double transfectants overexpressing wild-type β-amyloid precursor protein and either PS1 or its mutated congener M146V-PS1. Altogether, our data indicate that PS mutations linked to FAD not only trigger an increased ratio of Aβ42 over total Aβ secretion but concomitantly down-regulate the production of APPα.  相似文献   

19.
α-synuclein (αS) and β-synuclein (βS) are homologous proteins implicated in Parkinson's disease and related synucleinopathies. While αS is neurotoxic and its aggregation and deposition in Lewy bodies is related to neurodegeneration, βS is considered as a potent inhibitor of αS aggregation and toxicity. No mechanism for the neuroprotective role of βS has been described before. Here, we report that similar to αS, βS normally occurs in lipid-associated, soluble oligomers in wild-type (WT) mouse brains. We partially purified βS and αS proteins from whole mouse brain by size exclusion followed by ion exchange chromatography and found highly similar elution profiles. Using this technique, we were able to partially separate βS from αS and further separate βS monomer from its own oligomers. Importantly, we show that although αS and βS share high degree of similarities, βS oligomerization is not affected by increasing cellular levels of polyunsaturated fatty acids (PUFAs), while αS oligomerization is dramatically enhanced by PUFA. We show the in vivo occurrence of hetero-oligomers of αS and βS and suggest that βS expression inhibits PUFA-enhanced αS oligomerization by forming hetero-oligomers up to a quatramer that do not further propagate.  相似文献   

20.
Abstract: The regional distributions of the G protein β subunits (Gβ1–β5) and of the Gγ3 subunit were examined by immunohistochemical methods in the adult rat brain. In general, the Gβ and Gγ3 subunits were widely distributed throughout the brain, with most regions containing several Gβ subunits within their neuronal networks. The olfactory bulb, neocortex, hippocampus, striatum, thalamus, cerebellum, and brainstem exhibited light to intense Gβ immunostaining. Negative immunostaining was observed in cortical layer I for Gβ1 and layer IV for Gβ4. The hippocampal dentate granular and CA1–CA3 pyramidal cells displayed little or no positive immunostaining for Gβ2 or Gβ4. No anti-Gβ4 immunostaining was observed in the pars compacta of the substantia nigra or in the cerebellar granule cell layer and Purkinje cells. Immunoreactivity for Gβ1 was absent from the cerebellar molecular layer, and Gβ2 was not detected in the Purkinje cells. No positive Gγ3 immunoreactivity was observed in the lateral habenula, lateral septal nucleus, or Purkinje cells. Double-fluorescence immunostaining with anti-Gγ3 antibody and individual anti-Gβ1–β5 antibodies displayed regional selectivity with Gβ1 (cortical layers V–VI) and Gβ2 (cortical layer I). In conclusion, despite the widespread overlapping distributions of Gβ1–β5 with Gγ3, specific dimeric associations in situ were observed within discrete brain regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号