首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclodextrins that are indiscriminately carboxymethylated at the 2‐, 3‐, and 6‐positions are used as chiral NMR solvating agents for cationic substrates with phenyl, naphthyl, pyridyl, indoline, and indole rings. Enantiodifferentiation with the α‐, β‐, and γ‐cyclodextrin derivatives is compared. The carboxymethylated derivatives are almost always more effective as chiral NMR solvating agents for cationic substrates than native cyclodextrins. The most effective carboxymethylated cyclodextrin varies for different substrates, and at times even different resonances of the substrate. Addition of paramagnetic praseodymium(III) or ytterbium(III) to mixtures of the carboxymethylated cyclodextrin and substrate often causes enhancements in enantiomeric discrimination and facilitates measurements of enantiomeric purity. The lanthanide ion bonds to the carboxymethyl groups and causes perturbations in the chemical shifts in the NMR spectra of substrate molecules in the cyclodextrin cavity. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Water‐soluble calix[4]resorcinarenes with proline, 3‐hydroxyproline, and 4‐hydroxyproline substituent groups are evaluated as chiral NMR solvating agents on a series of bicyclic aromatic compounds with naphthyl, indole, dihydroindole, and indane rings. The substrates interact with the calixresorcinarene through insertion of the aromatic ring into the cavity. Most of the substrates are analyzed as cationic species, although one anionic species is analyzed. All of the substrates exhibit enantiomeric discrimination in the 1H‐NMR spectrum with one or more of the calixresorcinarenes. In most cases, the hydroxyproline derivatives are more effective at causing enantiodifferentiation than the corresponding proline derivative. Presumably, the hydroxyl group on the proline moieties is involved in interactions with the substituent groups of the substrate that are important in creating chiral recognition. The enantiomeric discrimination in the 1H‐NMR spectrum is large enough for many resonances to permit the analysis of enantiomeric purity. Chirality 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Pham NH  Wenzel TJ 《Chirality》2012,24(3):193-200
A sulfonated calix[4]resorcinarene containing L-pipecolinic acid groups is investigated as a water-soluble chiral NMR solvating agent. Aromatic substrates with phenyl, indole, indane, naphthyl, and pyridyl rings are analyzed. The substrates, which are water soluble because of ammonium, hydroxyl, or carboxylate functional groups, form host-guest complexes by insertion of the aromatic ring into the cavity of the calix[4]resorcinarene. Enantiomeric discrimination with the calix[4]resorcinarene derivative with L-pipecolinic acid is compared with similar reagents with proline, hydroxyproline, and α-methylproline moieties that have previously been reported. The derivative with L-pipecolinic acid often produces the best enantiomeric discrimination for one or more hydrogen atoms of the 24 substrates examined herein.  相似文献   

4.
A metal chelating ligand is bonded to alpha-, beta-, and gamma-cyclodextrin by the reaction of diethylenetraminepentaacetic dianhydride with the corresponding 6-mono- and 2-mono(amine)cyclodextrin. Adding Dy(III) to the cyclodextrin derivatives causes shifts in the (1)H-NMR spectra of substrates such as propranolol, tryptophan, aspartame, carbinoxamine, pheniramine, doxylamine, and 1-anilino-8-naphthalenesulfonate. The Dy(III)-induced shifts enhance the enantiomeric resolution in the NMR spectra of several substrates. Enhancements in enantiomeric resolution using cyclodextrin derivatives with the amine tether are compared to previously described compounds in which the chelating ligand is attached through an ethylenediamine tether. In general, the Dy(III) complex of the 6-beta-derivative with the amine tether is a more effective chiral resolving agent than the complex with the ethylenediamine tether. The opposite trend is observed with the 2-beta-derivatives. The presence of the chelating ligand in the 2-beta-derivative hinders certain substrates from entering the cavity. For cationic substrates, evidence suggests that a cooperative association involving inclusion in the cavity and association with the Dy(III) unit occurs. Enhancements in enantiomeric resolution in the spectrum of tryptophan are greater for the secondary alpha- and gamma-derivatives than the beta-derivative.  相似文献   

5.
(18‐Crown‐6)‐2,3,11,12‐tetracarboxylic acid is a useful chiral NMR solvating agent for isoxazoline‐fused β‐amino acid derivatives. Isoxazoline substrates are analyzed as their hydrochloride salts in methanol‐d4. The crown ether and substrate associate through the formation of three hydrogen bonds between the protonated amine and crown ether oxygen atoms. Enantiomeric discrimination is observed for two or more resonances of every substrate. At least one of these resonances is free of overlap with other resonances in the spectrum and has large enough enantiomeric discrimination to enable the determination of enantiomeric purity. 2D COSY methods can be used to identify additional resonances that exhibit enantiomeric discrimination in the NMR spectrum. Chirality, 25:48‐53, 2013.© 2012 Wiley Periodicals, Inc.  相似文献   

6.
Spectroscopic evidence was used to demonstrate the formation of molecular associates in an aqueous solution of phthalimido tryptophan. These molecular associates are loosely formed through pi-pi aromatic stacking, properties that are not sufficient to cause NMR spectroscopic enantiomeric discrimination. A cyclomaltooligosaccharide with a larger cavity, such as cyclomaltooctaose (gamma-cyclodextrin), is capable of forming a ternary complex with these molecular associates and enhances pi-pi aromatic stacking interactions, resulting in NMR enantiomeric discrimination. Electrospray-ionization mass spectroscopy (ESIMS) and NOESY two-dimensional NMR spectroscopic methods were used to study these complexes. Association constants and thermodynamic data for these cyclomaltooligosaccharide complexes were also estimated.  相似文献   

7.
Tris (phenanthroline) metal complexes: probes for DNA helicity   总被引:1,自引:0,他引:1  
The intercalative binding of chiral tris(phenanthroline) metal complexes to DNA is stereo-selective. The enantiomeric selectivity is based upon the differential steric interactions between the two non-intercalating phenanthroline ligands of each isomer with the DNA phosphate backbone. Gel electrophoretic assays of helical unwinding, optical enrichment studies by equilibrium dialysis and luminescence titrations with separated enantiomers of (phen)3Ru2+ all indicate that the delta isomer binds preferentially to the right-handed duplex. The chiral discrimination is governed by the DNA helical asymmetry. Complete stereospecifity is seen with isomers of the bulkier RuDIP (tris-4,7-diphenylphenanthrolineruthenium(II]. While both isomers bind to Z-DNA, a poor template for discrimination, binding of lambda-RuDIP to B-DNA is precluded. These chiral complexes therefore serve as a chemical probe to distinguish left and right-handed DNA helices in solution.  相似文献   

8.
A simple and inexpensive method for enantiomeric discrimination of the phytoalexins spirobrassinin (1), 1-methoxyspirobrassinin (2) and synthetic analog 1-methylspirobrassinin (6) using the chiral solvating agent 2,2,2-trifluoro-1-(9-anthryl)ethanol in C(6)D(6) is described. Using this method the enantiomeric composition of each sample can be determined accurately by (1)H NMR and the compounds can be recovered readily by chromatography.  相似文献   

9.
Four proline-derived chiral receptors 5-8 were readily synthesized starting from L-proline. The enantiomeric recognition ability of chiral receptors was examined with a series of carboxylic acids by (1) H NMR spectroscopy. The molar ratio and the association constants of the chiral compounds with each of the enantiomers of guest molecules were determined by using Job plots and a nonlinear least-squares fitting method, respectively. The Job plots indicate that the hosts form 1:1 instantaneous complexes with all guests. The receptors exhibited different chiral recognition abilities toward the enantiomers of racemic guests. Among the chiral receptors used in this study, prolinamide 6 was found to be the best chiral shift reagent and is effective for the determination of the enantiomeric excess of chiral carboxylic acids.  相似文献   

10.
Lin Z  Wu M  Wolfbeis OS 《Chirality》2005,17(8):464-469
Chiral discrimination of malates in aqueous solutions at near-neutral pH is achieved through fluorescence measurement and imaging using the europium-tetracycline complex (EuTc) as a fluorescent probe. The method is based on the significantly different fluorescence properties of the ternary complexes (Eu-Tc-malate) formed between EuTc and the enantiomeric malates. The enantiomeric excess (ee) of chiral malates can be quantified by both steady-state and time-resolved fluorescence, using either a conventional fluorescence microplate reader or fluorescence imaging. It offers a facile and sensitive method for high-throughput chiral discrimination.  相似文献   

11.
The application of (S)‐1,1′‐binaphthyl‐2,2′‐diol as NMR chiral solvating agent (CSA) for omeprazole, and three of its analogs (lanso‐, panto‐, and rabe‐prazole) was investigated. The formation of diastereomeric host–guest complexes in solution between the CSA and the racemic substrates produced sufficient NMR signal splitting for the determination of enantiomeric excesses by 1H‐ or 19F‐NMR spectroscopy. Using of hydrophobic deuterated solvents was mandatory for obtaining good enantiodiscrimination, thus suggesting the importance of intermolecular hydrogen bonds in the stabilization of the complexes. The method was applied to the fast quantification of the enantiomeric purity of in‐process samples of S‐omeprazole. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Recyclable polymeric 1 and dimeric 2 chiral Mn(III) salen complexes catalyzed enantioselective cyanosilylation of various ketones in the presence of triphenylphosphine oxide as an additive proceeded smoothly at room temperature, providing excellent yields (up to 98%) and enantiomeric excess (up to 86%) of respective cyanohydrin trimethylsilyl ether. For most of the substrates, the Catalyst 1 showed slightly better reactivity and enantioselecitivity than the Catalyst 2 nevertheless both the catalysts were easily recovered and reused four times with the retention of their efficiency.  相似文献   

13.
In an effort to elucidate the mechanism of chiral discrimination of cholic acid-based stationary phases, the enantiomeric recognition ability of six chiral stationary phases (CSPs), prepared from differently substituted cholic acid derivatives, was evaluated in normal phase high-performance liquid chromatography (HPLC) with a series of 1,1'-binaphthyl compounds. The influence of structural variations of analytes on retention and enantioselectivity was investigated. Particularly high values of enantioselectivity were observed for the binaphthol enantiomers on a CSP prepared from the allyl 7 alpha,12 alpha-dihydroxy-3 alpha-phenylcarbamoyloxy-5 beta-cholan-24-oate. The complexes of this chiral selector with both enantiomers of binaphthol were studied as models for the interactions responsible for the enantioseparation with the cholic acid-based stationary phases. The 1:1 stoichiometry of the complex in solution was determined by UV titration. The chiral selector dissolved in chloroform exhibited a chiral discrimination for the binaphthol in (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopies. Some aromatic proton and carbon resonances of binaphthol were clearly separated into a pair of peaks due to enantiomers in the presence of the chiral selector. Moreover, on the basis of molecular mechanics calculation, a chiral discrimination model was proposed which nicely explains the relevant chromatographic behavior of the 1,1'-binaphthyl derivatives.  相似文献   

14.
In this work, we have studied both experimentally and theoretically the praziquantel (PZQ) chiral discrimination. According to the main results, the enantioseparation of PZQ was efficiently optimized by HPLC on the reverse phase from the Chiralpak IB column, which has cellulose tris (3,5-dimethylphenylcarbamate) (CDMPC) as a chiral selector. The thermodynamic and structural parameters obtained via density functional theory (DFT) calculations pointed out the chiral discrimination as well as the enantiomeric elution order of PZQ, thus elucidating the experimental data and validating our proposed method. Finally, the hydrogen bonds and π-π stacking interactions played a key role in the discrimination between the PZQ diastereomeric complexes formed.  相似文献   

15.
Abstract

The intercalative binding of chiral tris(phenanthroline) metal complexes to DNA is stereo-selective. The enantiomeric selectivity is based upon the differential steric interactions between the two non-intercalating phenanthroline ligands of each isomer with the DNA phosphate backbone. Gel electrophoretic assays of helical unwinding, optical enrichment studies by equilibrium dialysis and luminescence titrations with separated enantiomers of (phen)3Ru2+ all indicate that the delta isomer binds preferentially to the right-handed duplex. The chiral discrimination is governed by the DNA helical asymmetry. Complete stereospecifity is seen with isomers of the bulkier RuDIP (tris-4,7-diphenylphenanthrolineruthenium(II)). While both isomers bind to Z-DNA, a poor template for discrimination, binding of Λ-RuDIP to B-DNA is precluded. These chiral complexes therefore serve as a chemical probe to distinguish left and right-handed DNA helices in solution.  相似文献   

16.
Readily available L‐tartaric acid, which is a bidentate ligand with two chiral centers forming a seven‐membered chelate ring, was applied to the chiral ligand for the chiral nuclear magnetic resonance (NMR) shift reagent of samarium(III) formed in situ. This simple method does not cause serious signal broadening in the high magnetic field. Enantiomeric 13C and 1H NMR signals and enantiotopic 1H NMR signals of α‐amino acids were successfully resolved at pH 8.0 and the 1:3 molar ratio of Sm(NO3)3:L‐tartaric acid. It is elucidated that the enantiomeric signal resolution is attributed to the anisotropic magnetic environment for the enantiomers induced by the chiral L‐tartarato samarium(III) complex rather than differences in stability of the diastereomeric substrate adducts. The present 13C NMR signal resolution was also effective for the practical simultaneous analysis of plural kinds of DL‐amino acids. Chirality 27:353–357, 2015.© 2015 Wiley Periodicals, Inc.  相似文献   

17.
《Chirality》2017,29(6):273-281
Enantiomeric 1H and 13C NMR signal separation behaviors of various α‐amino acids and DL‐tartarate were investigated by using the samarium(III) and neodymium(III) complexes with (S ,S )‐ethylenediamine‐N ,N' ‐disuccinate as chiral shift reagents. A relatively smaller concentration ratio of the lanthanide(III) complex to substrates was suitable for the neodymium(III) complex compared with the samarium(III) one, striking a balance between relatively greater signal separation and broadening. To clarify the difference in the signal separation behavior, the chemical shifts of β‐protons for fully bound D‐ and L‐alanine (δb(D) and δb(L)) and their adduct formation constants (K s) were obtained for both metal complexes. Preference for D‐alanine was similarly observed for both complexes, while it was revealed that the difference between the δb(D) and δb(L) values is the significant factor to determine the enantiomeric signal separation. The neodymium(III) and samarium(III) complexes can be used complementarily for higher and smaller concentration ranges of substrates, respectively, because the neodymium(III) complex gives the larger difference between the δb(D) and δb(L) values with greater signal broadening compared to the samarium(III) complex.  相似文献   

18.
The use of P(III) and P(V) organophosphorus derivatizing agents prepared from C(2) symmetrical (1R,2R)- and (1S,2S)-trans-N,N'-bis-[(S)-alpha-phenylethyl]-cyclohexane-1,2-diamines 1 and 2, as well as (1R,2R)- and (1S,2S)-trans-N,N'-bis-[(S)-alpha-phenylethyl]-4-cyclohexene-1,2-diamines 3 and 4 for the determination of enantiomeric composition of chiral carboxylic acids by (31)P NMR, is described.  相似文献   

19.
Chiral recognition by cyclodextrins is of considerable importance, especially for pharmaceutical industry, in view of the possible side effects of the second enantiometer of chiral drugs. In general, it manifests itself in all NMR parameters (chemical shifts, coupling constants, NOE and ROE effects, and relaxation rates) on one hand. On the other hand, it allows one to determine the thermodynamic parameters characterizing diastereomeric complexes formed by cyclodextrins with enantiomeric guests. After an introduction and a general discussion of NMR manifestations of chiral recognition by cyclodextrin, the existing literature data on this problem will be discussed herein. Chirality 16:90-105, 2004.  相似文献   

20.
The positively charged quaternary ammonium cyclodextrin, QA-beta-CD, was previously used as a chiral selector to achieve baseline resolution of two of the dianionic enantiomers of disodium 3-(p-isothiocyanatophenoxy)-3-(p-isothiocyanatophenyl)propane-1,2-disulfate by capillary electrophoresis. The basis of the chiral discrimination between QA-beta-CD and the enantiomers was investigated by (1)H NMR spectroscopy. COSY and NOESY spectra were used to infer the role that molecular interactions and the stereocenters have upon association of QA-beta-CD with the enantiomers. A parallel two-step complexation model is used to rationalize the NMR and the chiral discrimination observed during separation of the enantiomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号