首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the roles of insulin receptor substrate 3 (IRS-3) and IRS-4 in the insulin-like growth factor 1 (IGF-1) signaling cascade, we introduced these proteins into 3T3 embryonic fibroblast cell lines prepared from wild-type (WT) and IRS-1 knockout (KO) mice by using a retroviral system. Following transduction of IRS-3 or IRS-4, the cells showed a significant decrease in IRS-2 mRNA and protein levels without any change in the IRS-1 protein level. In these cell lines, IGF-1 caused the rapid tyrosine phosphorylation of all four IRS proteins. However, IRS-3- or IRS-4-expressing cells also showed a marked decrease in IRS-1 and IRS-2 phosphorylation compared to the host cells. This decrease was accounted for in part by a decrease in the level of IRS-2 protein but occurred with no significant change in the IRS-1 protein level. IRS-3- or IRS-4-overexpressing cells showed an increase in basal phosphatidylinositol 3-kinase activity and basal Akt phosphorylation, while the IGF-1-stimulated levels correlated well with total tyrosine phosphorylation level of all IRS proteins in each cell line. IRS-3 expression in WT cells also caused an increase in IGF-1-induced mitogen-activated protein kinase phosphorylation and egr-1 expression ( approximately 1.8- and approximately 2.4-fold with respect to WT). In the IRS-1 KO cells, the impaired mitogenic response to IGF-1 was reconstituted with IRS-1 to supranormal levels and was returned to almost normal by IRS-2 or IRS-3 but was not improved by overexpression of IRS-4. These data suggest that IRS-3 and IRS-4 may act as negative regulators of the IGF-1 signaling pathway by suppressing the function of other IRS proteins at several steps.  相似文献   

2.
The most widely distributed members of the family of insulin receptor substrate (IRS) proteins are IRS-1 and IRS-2. These proteins participate in insulin and insulin-like growth factor 1 signaling, as well as the actions of some cytokines, growth hormone, and prolactin. To more precisely define the specific role of IRS-1 in adipocyte biology, we established brown adipocyte cell lines from wild-type and IRS-1 knockout (KO) animals. Using differentiation protocols, both with and without insulin, preadipocyte cell lines derived from IRS-1 KO mice exhibited a marked decrease in differentiation and lipid accumulation (10 to 40%) compared to wild-type cells (90 to 100%). Furthermore, IRS-1 KO cells showed decreased expression of adipogenic marker proteins, such as peroxisome proliferator-activated receptor gamma (PPARgamma), CCAAT/enhancer-binding protein alpha (C/EBPalpha), fatty acid synthase, uncoupling protein-1, and glucose transporter 4. The differentiation deficit in the KO cells could be reversed almost completely by retrovirus-mediated reexpression of IRS-1, PPARgamma, or C/EBPalpha but not the thiazolidinedione troglitazone. Phosphatidylinositol 3-kinase (PI 3-kinase) assays performed at various stages of the differentiation process revealed a strong and transient activation in IRS-1, IRS-2, and phosphotyrosine-associated PI 3-kinase in the wild-type cells, whereas the IRS-1 KO cells showed impaired phosphotyrosine-associated PI 3-kinase activation, all of which was associated with IRS-2. Akt phosphorylation was reduced in parallel with the total PI 3-kinase activity. Inhibition of PI 3-kinase with LY294002 blocked differentiation of wild-type cells. Thus, IRS-1 appears to be an important mediator of brown adipocyte maturation. Furthermore, this signaling molecule appears to exert its unique role in the differentiation process via activation of PI 3-kinase and its downstream target, Akt, and is upstream of the effects of PPARgamma and C/EBPalpha.  相似文献   

3.
Pin1 and Par14 are parvulin-type peptidyl-prolyl cis/trans isomerases. Although numerous proteins have been identified as Pin1 substrates, the target proteins of Par14 remain largely unknown. Par14 expression levels are increased in the livers and embryonic fibroblasts of Pin1 KO mice, suggesting a compensatory relationship between the functions of Pin1 and Par14. In this study, the association of Par14 with insulin receptor substrate 1 (IRS-1) was demonstrated in HepG2 cells overexpressing both as well as endogenously in the mouse liver. The analysis using deletion-mutated Par14 and IRS-1 constructs revealed the N-terminal portion containing the basic domain of Par14 and the two relatively C-terminal portions of IRS-1 to be involved in these associations, in contrast to the WW domain of Pin1 and the SAIN domain of IRS-1. Par14 overexpression in HepG2 markedly enhanced insulin-induced IRS-1 phosphorylation and its downstream events, PI3K binding with IRS-1 and Akt phosphorylation. In contrast, treating HepG2 cells with Par14 siRNA suppressed these events. In addition, overexpression of Par14 in the insulin-resistant ob/ob mouse liver by adenoviral transfer significantly improved hyperglycemia with normalization of hepatic PEPCK and G6Pase mRNA levels, and gene suppression of Par14 using shRNA adenovirus significantly exacerbated the glucose intolerance in Pin1 KO mice. Therefore, although Pin1 and Par14 associate with different portions of IRS-1, the prolyl cis/trans isomerization in multiple sites of IRS-1 by these isomerases appears to be critical for efficient insulin receptor-induced IRS-1 phosphorylation. This process is likely to be one of the major mechanisms regulating insulin sensitivity and also constitutes a potential therapeutic target for novel insulin-sensitizing agents.  相似文献   

4.
5.
The insulin receptor substrate 2 (IRS-2) protein is one of the major insulin-signaling substrates. In the present study, we investigated the role of IRS-2 in skin epidermal keratinocytes and dermal fibroblasts. Although skin is not a classical insulin target tissue, we have previously demonstrated that insulin, via the insulin receptor, is essential for normal skin cell physiology. To identify the role of IRS-2 in skin cells, we studied cells isolated from IRS-2 knock-out (KO) mice. Whereas proliferation and differentiation were not affected in the IRS-2 KO cells, a striking effect was observed on glucose transport. In IRS-2 KO keratinocytes, the lack of IRS-2 resulted in a dramatic increase in basal and insulin-stimulated glucose transport. The increase in glucose transport was associated with an increase in total phosphatidylinositol (PI) 3-kinase and Akt activation. In contrast, fibroblasts lacking IRS-2 exhibited a significant decrease in basal and insulin-induced glucose transport. We identified the point of divergence, leading to these differences between keratinocytes and fibroblasts, at the IRS-PI 3-kinase association step. In epidermal keratinocytes, PI 3-kinase is associated with and activated by only the IRS-1 protein. On the other hand, in dermal fibroblasts, PI 3-kinase is exclusively associated with and activated by the IRS-2 protein. These observations suggest that IRS-2 functions as a negative or positive regulator of glucose transport in a cell-specific manner. Our results also show that IRS-2 function depends on its cell-specific association with PI 3-kinase.  相似文献   

6.
7.
32D cells are a murine hemopoietic cell line that undergoes apoptosis upon withdrawal of interleukin-3 (IL-3) from the medium. 32D cells have low levels of the type 1 insulin-like growth factor (IGF-I) receptor and do not express insulin receptor substrate-1 (IRS-1) or IRS-2. Ectopic expression of IRS-1 delays apoptosis but cannot rescue 32D cells from IL-3 dependence. In 32D/IRS-1 cells, IRS-1 is detectable, as expected, in the cytosol/membrane compartment. The SV40 large T antigen is a nuclear protein that, by itself, also fails to protect 32D cells from apoptosis. Co-expression of IRS-1 with the SV40 T antigen in 32D cells results in nuclear translocation of IRS-1 and survival after IL-3 withdrawal. Expression of a human IGF-I receptor in 32D/IRS-1 cells also results in nuclear translocation of IRS-1 and IL-3 independence. The phosphotyrosine-binding domain, but not the pleckstrin domain, is necessary for IRS-1 nuclear translocation. Nuclear translocation of IRS-1 was confirmed in mouse embryo fibroblasts. These results suggest possible new roles for nuclear IRS-1 in IGF-I-mediated growth and anti-apoptotic signaling.  相似文献   

8.
9.
10.
11.
After an initial burst of cell proliferation, the type 1 insulin-like growth factor receptor (IGF-IR) induces granulocytic differentiation of 32D IGF-IR cells, an interleukin-3-dependent murine hemopoietic cell line devoid of insulin receptor substrate-1 (IRS-1). The combined expression of the IGF-IR and IRS-1 (32D IGF-IR/IRS-1 cells) inhibits IGF-I-mediated differentiation, and causes malignant transformation of 32D cells. Because of the role of IRS-1 in changing the fate of 32D IGF-IR cells from differentiation (and subsequent cell death) to malignant transformation, we have looked for differences in IGF-IR signaling between 32D IGF-IR and 32D IGF-IR/IRS-1 cells. In this report, we have focused on p70(S6K), which is activated by the IRS-1 pathway. We find that the ectopic expression of IRS-1 and the inhibition of differentiation correlated with a sustained activation of p70(S6K) and an increase in cell size. Phosphorylation in vivo of threonine 389 and, to a lesser extent, of threonine 421/serine 424 of p70(S6K) seemed to be a requirement for inhibition of differentiation. A role of IRS-1 and p70(S6K) in the alternative between transformation or differentiation of 32D IGF-IR cells was confirmed by findings that inhibition of p70(S6K) activation or IRS-1 signaling, by rapamycin or okadaic acid, induced differentiation of 32D IGF-IR/IRS-1 cells. We have also found that the expression of myeloperoxidase mRNA (a marker of differentiation, which sharply increases in 32D IGF-IR cells), does not increase in 32D IGF-IR/IRS-1 cells, suggesting that the expression of IRS-1 in 32D IGF-IR cells causes the extinction of the differentiation program initiated by the IGF-IR, while leaving intact its proliferation program.  相似文献   

12.
13.
Progesterone action contributes to the signaling of many growth factor pathways relevant to breast cancer tumor biology, including the insulin-like growth factor (IGF) system. Previous work has shown that insulin receptor substrate-2 (IRS-2) but not IRS-1 levels were regulated by progestin in progesterone receptor-B (PR-B) isoform expressing MCF-7 cells (C4-12 PR-B). Furthermore, type 1 IGF receptor (IGF1R) signaling via IRS-2 correlated with the increased cell migration observed in a number of breast cancer cell lines. Consequently, in this study, we examined whether the elevation of IRS-2 protein induced by progestin was sufficient to promote IGF-I-stimulated cell motility. Treatment of C4-12 PR-B cells with progestin shifted the balance of phosphorylation from IRS-1 to IRS-2 in response to IGF-I. This shift in IRS-2 activation was associated with enhanced migration in C4-12 PR-B cells pretreated with progestin, but had no effect on cell proliferation or survival. Treatment of C4-12 PR-B cells with RU486, an antiprogestin, inhibited IGF-induced cell migration. Attenuation of IRS-2 expression using small interfering RNA resulted in decreased IGF-stimulated motility. In addition, IRS-2 knockdown resulted in an abrogation of PKB/Akt phosphorylation but not mitogen-activated protein kinase. Consequently, LY294002, a phosphoinositide-3-kinase inhibitor, abolished IGF-induced cell motility in progestin-treated C4-12 PR-B cells. These data show a role for the PR in functionally promoting growth factor signaling, showing that levels of IRS proteins can determine IGF-mediated biology, PR-B signaling regulates IRS-2 expression, and that IRS-2 can mediate IGF-induced cell migration via phosphoinositide-3-kinase in breast cancer cells.  相似文献   

14.
To investigate the role of insulin receptor substrate 1 (IRS-1) and IRS-2, the two ubiquitously expressed IRS proteins, in adipocyte differentiation, we established embryonic fibroblast cells with four different genotypes, i.e., wild-type, IRS-1 deficient (IRS-1(-/-)), IRS-2 deficient (IRS-2(-/-)), and IRS-1 IRS-2 double deficient (IRS-1(-/-) IRS-2(-/-)), from mouse embryos of the corresponding genotypes. The abilities of IRS-1(-/-) cells and IRS-2(-/-) cells to differentiate into adipocytes are approximately 60 and 15%, respectively, lower than that of wild-type cells, at day 8 after induction and, surprisingly, IRS-1(-/-) IRS-2(-/-) cells have no ability to differentiate into adipocytes. The expression of CCAAT/enhancer binding protein alpha (C/EBPalpha) and peroxisome proliferator-activated receptor gamma (PPARgamma) is severely decreased in IRS-1(-/-) IRS-2(-/-) cells at both the mRNA and the protein level, and the mRNAs of lipoprotein lipase and adipocyte fatty acid binding protein are severely decreased in IRS-1(-/-) IRS-2(-/-) cells. Phosphatidylinositol 3-kinase (PI 3-kinase) activity that increases during adipocyte differentiation is almost completely abolished in IRS-1(-/-) IRS-2(-/-) cells. Treatment of wild-type cells with a PI 3-kinase inhibitor, LY294002, markedly decreases the expression of C/EBPalpha and PPARgamma, a result which is associated with a complete block of adipocyte differentiation. Moreover, histologic analysis of IRS-1(-/-) IRS-2(-/-) double-knockout mice 8 h after birth reveals severe reduction in white adipose tissue mass. Our results suggest that IRS-1 and IRS-2 play a crucial role in the upregulation of the C/EBPalpha and PPARgamma expression and adipocyte differentiation.  相似文献   

15.
Caveolin-1 (cav1) has been implicated in the regulation of cell growth, and its expression can be regulated by cellular cholesterol content. In this study, we examined the effect of manipulating cellular cholesterol content on cav1 expression and the proliferation of adult rat cardiac fibroblasts (CFs) in the presence of arginine vasopressin (AVP). We found that AVP concentration-dependently down-regulated the expression of cav1 protein. Cav1 antisense treatment enhanced the proliferatory effect of AVP. Simvastatin, a HMG-CoA reductase inhibitor, further down-regulated cav1 protein, whereas repleting cells with cholesterol increased cav1 protein and enhanced the anti-growth effect of simvastatin. Our results provide a novel finding that cholesterol restoration may confer an additional inhibitory effect over simvastatin on AVP-induced CFs proliferation through cholesterol–cav1 interaction.  相似文献   

16.
Insulin-like growth factor (IGF)-1 increases proliferation, inhibits apoptosis and promotes differentiation of oligodendrocytes and their precursor cells, indicating an important function for IGF-1 receptor (IGF-1R) signaling in myelin development. The insulin receptor substrates (IRS), IRS-1 and -2 serve as intracellular IGF-1R adaptor proteins and are expressed in neurons, oligodendrocytes and their precursors. To address the role of IRS-2 in myelination, we analyzed myelination in IRS-2 deficient (IRS-2(-/-)) mice and age-matched controls during postnatal development. Interestingly, expression of the most abundant myelin proteins, myelin basic protein and proteolipid protein was reduced in IRS-2(-/-) brains at postnatal day 10 (P10) as compared to controls. myelin basic protein immunostaining in P10-IRS-2(-/-) mice revealed a reduced immunostaining, but an unchanged regional distribution pattern. In cerebral myelin isolates at P10 unaltered relative expression of different myelin proteins was found, indicating quantitatively reduced but not qualitatively altered myelination. Interestingly, up-regulation of IRS-1 expression and increased IGF-1R signaling were observed in IRS-2(-/-) mice at P10-14, indicating a compensatory mechanism to overcome IRS-2 deficiency. Adult IRS-2(-/-) mice showed unaltered myelination and motor function. Furthermore, in neuronal/brain-specific insulin receptor knockout mice myelination was unchanged. Thus, our experiments reveal that IGF-1R/IRS-2 mediated signals are critical for appropriate timing of myelination in vivo.  相似文献   

17.
Pescadillo (PES1) and the upstream binding factor (UBF1) play a role in ribosome biogenesis, which regulates cell size, an important component of cell proliferation. We have investigated the effects of PES1 and UBF1 on the growth and differentiation of cell lines derived from 32D cells, an interleukin-3 (IL-3)-dependent murine myeloid cell line. Parental 32D cells and 32D IGF-IR cells (expressing increased levels of the type 1 insulin-like growth factor I [IGF-I] receptor [IGF-IR]) do not express insulin receptor substrate 1 (IRS-1) or IRS-2. 32D IGF-IR cells differentiate when the cells are shifted from IL-3 to IGF-I. Ectopic expression of IRS-1 inhibits differentiation and transforms 32D IGF-IR cells into a tumor-forming cell line. We found that PES1 and UBF1 increased cell size and/or altered the cell cycle distribution of 32D-derived cells but failed to make them IL-3 independent. PES1 and UBF1 also failed to inhibit the differentiation program initiated by the activation of the IGF-IR, which is blocked by IRS-1. 32D IGF-IR cells expressing PES1 or UBF1 differentiate into granulocytes like their parental cells. In contrast, PES1 and UBF1 can transform mouse embryo fibroblasts that have high levels of endogenous IRS-1 and are not prone to differentiation. Our results provide a model for one of the theories of myeloid leukemia, in which both a stimulus of proliferation and a block of differentiation are required for leukemia development.  相似文献   

18.
The insulin receptor substrate-1 (IRS-1), a docking protein for both the type 1 insulin-like growth factor receptor (IGF-IR) and the insulin receptor, is known to send a mitogenic, anti-apoptotic, and anti-differentiation signal. Several micro RNAs (miRs) are suggested by the data base as possible candidates for targeting IRS-1. We show here that one of the miRs predicted by the data base, miR145, whether transfected as a synthetic oligonucleotide or expressed from a plasmid, causes down-regulation of IRS-1 in human colon cancer cells. IRS-1 mRNA is not decreased by miR145, while it is down-regulated by an siRNA targeting IRS-1. Targeting of the IRS-1 3'-untranslated region (UTR) by miR145 was confirmed using a reporter gene (luciferase) expressing the miR145 binding sites of the IRS-1 3'-UTR. In agreement with the role of IRS-1 in cell proliferation, we show that treatment of human colon cancer cells with miR145 causes growth arrest comparable to the use of an siRNA against IRS-1. Taken together, these results identify miR145 as a micro RNA that down-regulates the IRS-1 protein, and inhibits the growth of human cancer cells.  相似文献   

19.
Cellular adhesion to the underlying substratum is regulated through numerous signaling pathways. It has been suggested that insulin receptor substrate 1 (IRS-1) is involved in some of these pathways, via association with and activation of transmembrane integrins. Calreticulin, as an important endoplasmic reticulum-resident, calcium-binding protein with a chaperone function, plays an obvious role in proteomic expression. Our previous work showed that calreticulin mediates cell adhesion not only by affecting protein expression but also by affecting the state of regulatory protein phosphorylation, such as that of c-src. Here, we demonstrate that calreticulin affects the abundance of IRS-1 such that the absence of calreticulin is paralleled by a decrease in IRS-1 levels and the unregulated overexpression of calreticulin is accompanied by an increase in IRS-1 levels. These changes in the abundance of calreticulin and IRS-1 are accompanied by changes in cell-substratum adhesiveness and phosphorylation, such that increases in the expression of calreticulin and IRS-1 are paralleled by an increase in focal contact-based cellsubstratum adhesiveness, and a decrease in the expression of these proteins brings about a decrease in cell-substratum adhesiveness. Wild type and calreticulin-null mouse embryonic fibroblasts (MEFs) were cultured and the IRS-1 isoform profile was assessed. Differences in morphology and motility were also quantified. While no substantial differences in the speed of locomotion were found, the directionality of cell movement was greatly promoted by the presence of calreticulin. Calreticulin expression was also found to have a dramatic effect on the phosphorylation state of serine 636 of IRS-1, such that phosphorylation of IRS-1 on serine 636 increased radically in the absence of calreticulin. Most importantly, treatment of cells with the RhoA/ROCK inhibitor, Y-27632, which among its many effects also inhibited serine 636 phosphorylation of IRS-1, had profound effects on cell-substratum adhesion, in that it suppressed focal contacts, induced extensive close contacts, and increased the strength of adhesion. The latter effect, while counterintuitive, can be explained by the close contacts comprising labile bonds but in large numbers. In addition, the lability of bonds in close contacts would permit fast locomotion. An interesting and novel finding is that Y-27632 treatment of MEFs releases them from contact inhibition of locomotion, as evidenced by the invasion of a cell’s underside by the thin lamellae and filopodia of a cell in close apposition.  相似文献   

20.
Oh YS  Shin S  Lee YJ  Kim EH  Jun HS 《PloS one》2011,6(8):e23894

Background

Betacellulin (BTC), a member of the epidermal growth factor family, is known to play an important role in regulating growth and differentiation of pancreatic beta cells. Growth-promoting actions of BTC are mediated by epidermal growth factor receptors (ErbBs), namely ErbB-1, ErbB-2, ErbB-3 and ErbB-4; however, the exact mechanism for beta cell proliferation has not been elucidated. Therefore, we investigated which ErbBs are involved and some molecular mechanisms by which BTC regulates beta cell proliferation.

Methodology/Principal Findings

The expression of ErbB-1, ErbB-2, ErbB-3, and ErbB-4 mRNA was detected by RT-PCR in both a beta cell line (MIN-6 cells) and C57BL/6 mouse islets. Immunoprecipitation and western blotting analysis showed that BTC treatment of MIN-6 cells induced phosphorylation of only ErbB-1 and ErbB-2 among the four EGF receptors. BTC treatment resulted in DNA synthetic activity, cell cycle progression, and bromodeoxyuridine (BrdU)-positive staining. The proliferative effect was blocked by treatment with AG1478 or AG825, specific tyrosine kinase inhibitors of ErbB-1 and ErbB-2, respectively. BTC treatment increased mRNA and protein levels of insulin receptor substrate-2 (IRS-2), and this was blocked by the ErbB-1 and ErbB-2 inhibitors. Inhibition of IRS-2 by siRNA blocked cell cycle progression induced by BTC treatment. Streptozotocin-induced diabetic mice injected with a recombinant adenovirus expressing BTC and treated with AG1478 or AG825 showed reduced islet size, reduced numbers of BrdU-positive cells in the islets, and did not attain BTC-mediated remission of diabetes.

Conclusions/Significance

These results suggest that BTC exerts proliferative activity on beta cells through the activation of ErbB-1 and ErbB-2 receptors, which may increase IRS-2 expression, contributing to the regeneration of beta cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号