首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The action of 4-hydroxynonenal (HNE), a chemotactic aldehyde produced by lipid peroxidation, was analysed on exocytosis in parallel with its effects on phosphoinositide-specific phospholipase C (PLC) both in undifferentiated HL-60 cells and in cells induced to differentiate toward the granulocytic cell line by 1.25% DMSO. Exocytosis was evaluated by the secretion of beta-glucuronidase from cells incubated at 37 degrees C for 10 min in the presence of various aldehyde concentrations. HNE action was more pronounced in DMSO-differentiated cells, where concentrations between 10(-8) and 10(-6) m were able both to trigger exocytosis and to strongly activate PLC; in both processes maximal stimulation was given by 10(-7) m. HNE-induced exocytosis was completely prevented by pertussis toxin and by the PLC inhibitor U73122. The comparison between HNE and formyl-methionyl-leucyl-phenylalanine (fMLP), used as a positive control, showed that the tripeptide produced an higher stimulation of exocytosis than the aldehyde; by contrast HNE induced a stronger increase of PLC activity. Wortmannin, an inhibitor of phosphatidylinositol-3-kinase (PI3K), strongly inhibited the exocytosis induced by fMLP, while it failed to induce a statistically significant inhibition of HNE action. We conclude that both compounds trigger exocytosis through a Ptx-sensitive G protein; the present data support the hypothesis that the lower ability of the aldehyde to trigger exocytosis as compared to fMLP might depend upon a low ability to activate PI3K, while PLC activation appears to play a key role in HNE-induced exocytosis.  相似文献   

2.
The effect of reduced glutathione (GSH) was studied on exocytosis triggered by 4-hydroxynonenal in HL-60 cells induced to differentiate towards the granulocytic cell line by dimethylsulfoxide; we measured beta-glucuronidase secretion from cells incubated at 37 degrees C in the presence of 5 mM GSH. GSH addition to the cell suspensions failed to induce any significant change of the exocytosis stimulated by HNE concentrations between 10(-8) and 10(-6) M. In contrast however, 5 mM GSH was able to fully prevent the release of lactate dehydrogenase observed in the presence of 50 microM HNE, a concentration much higher than that able to stimulate the exocytotic secretion. As the activation of phosphoinositide-specific phospholipase C (PLC) has been shown to play a major role in HNE-induced exocytosis, we studied the GSH effect on the breakdown of phosphatidylinositol-4,5-bisphosphate added to plasma membranes isolated from rat neutrophils and incubated in the presence of increasing concentrations of the aldehyde. In neutrophil membranes HNE induced a significant increase of PLC activity when used in the same concentrations as those able to stimulate beta-glucuronidase secretion in DMSO-differentiated HL-60 cells; the presence of 5 mM GSH failed to prevent its action. Our results suggest that these low aldehyde concentrations, which have actually been found in exudates, may increase tissue damage in inflammation through the release of lytic enzymes by neutrophils; it seems unlikely that their effects could be influenced by the levels of -SH groups present in the exudate and by its protein concentration.  相似文献   

3.
Our work analysed the effect of 4-hydroxynonenal (HNE), a chemotactic aldehydic end-product of lipid peroxidation, on exocytosis in HL-60 cells. We measured the release of beta-glucuronidase, an enzyme of azurophil granules, from the cells incubated at 37 degrees C for 10 min in the presence of HNE concentrations ranging between 10(-8) and 10(-5) M. The release of lactate dehydrogenase was assayed to test cell viability. HNE (1 microM) was able to induce a significant and strong stimulation of beta-glucuronidase secretion without leading to cytotoxic effects. The finding that HNE could increase the exocytotic secretion from HL-60 cells together with its known chemotactic property supports the hypothesis that this lipid peroxidation product may play an important role as a chemical mediator of inflammation; moreover it is noteworthy that micromolar concentrations of HNE have actually been found in exudates from acute and chronic inflammations.  相似文献   

4.
In response to a variety of stimuli, neutrophils release large amount of reactive oxygen species (ROS) generated by NADPH oxidase. This process known as the respiratory burst is dependent on cytosolic free calcium concentration ([Ca(2+)](i)). Proinflammatory cytokines such as interleukin-8 (IL-8) may modulate ROS generation through a priming phenomenon. The aim of this study was to determine the effect of human IL-8 on ROS production in neutrophil-like dimethylsulfoxide-differentiated HL-60 cells (not equalHL-60 cells) and further to examine the role of Ca(2+) mobilization during the priming. IL-8 at 10 nM induced no ROS production but a [Ca(2+)](i) rise (254 +/- 36 nM). IL-8 induced a strongly enhanced (2 fold) ROS release during stimulation with 1 microM of N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLF). This potentiation of ROS production is dependent of extracellular Ca(2+) (17.0+/-4.5 arbitrary units (A.U.) in the absence of Ca(2+) versus 56.6 +/- 3.9 A.U. in the presence of 1.25 mM of Ca(2+)). Also, IL-8 enhanced fMLF-stimulated increase in [Ca(2+)](i) (375 +/- 35 versus 245 +/- 21 nM, 0.1 microM of fMLF). IL-8 had no effect on not equalHL-60 cells in response to 1 microM of thapsigargin (472 +/- 66 versus 470 +/- 60 nM). In conclusion, Ca(2+) influx is necessary for a full induction of neutrophil priming by IL-8.  相似文献   

5.
4-hydroxynonenal (HNE), a lipid peroxidation end product, is produced abundantly in osteoarthritic (OA) articular tissues and was recently identified as a potent catabolic factor in OA cartilage. In this study, we provide additional evidence that HNE acts as an inflammatory mediator by elucidating the signaling cascades targeted in OA chondrocytes leading to cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) gene expression. HNE induced COX-2 protein and mRNA levels with accompanying increases in prostaglandin E2 (PGE(2)) production. In contrast, HNE had no effect on basal iNOS expression or nitric oxide (NO) release. However, HNE strongly inhibited IL-1beta-induced iNOS or NO production. Transient transfection experiments revealed that the ATF/CRE site (-58/-53) is essential for HNE-induced COX-2 promoter activation and indeed HNE induced ATF-2 and CREB-1 phosphorylation as well as ATF/CRE binding activity. Overexpression of p38 MAPK enhanced the HNE-induced ATF/CRE luciferase reporter plasmid activation, COX-2 synthesis and promoter activity. HNE abrogated IL-1beta-induced iNOS expression and promoter activity mainly through NF-kappaB site (-5,817/-5,808) possibly via suppression of IKKalpha-induced IkappaBalpha phosphorylation and NF-kappaB/p65 nuclear translocation. Upon examination of upstream signaling components, we found that IKKalpha was inactivated through HNE/IKKalpha adduct formation. Taken together, these findings illustrate the central role played by HNE in the regulation of COX-2 and iNOS in OA. The aldehyde induced selectively COX-2 expression via ATF/CRE activation and inhibited iNOS via IKKalpha inactivation.  相似文献   

6.
The beta isoforms of protein Kinase C (PKC) are closely involved in the regulation of cell protein transport and secretion. We have shown in different cellular types that treatment with HNE in a concentration range detectable in many pathophysiological conditions is able to induce selective activation of betaPKCs through direct interaction between the aldehyde and these isoenzymes. In isolated rat hepatocytes this specific isoenzyme activation plays a key role in the transport of procathepsin D from the trans-Golgi network to the endosomal-lysosomal compartment and in the exocytosis of mature cathepsin D. In NT2 neurons, HNE-mediated betaPKC activation induces an increase in intracellular amyloid beta production, without affecting full-length amyloid precursor protein expression. In a mouse macrophage-like cell line, the same beta isoform activation increases the release of the MCP-1 chemokine. Thus, pathophysiological HNE concentrations (0.1-1 microM) derived from a slight imbalance of the redox state are able to alter protein trafficking through beta PKC activation. These results suggest that mild oxidative stress and the PKC signal transduction pathway are closely involved in the pathophysiology of many diseases caused by changes in protein trafficking and release.  相似文献   

7.
The toxic reactive aldehyde lipid peroxidation byproduct 4-hydroxy-2-nonenal (HNE) is thought to be a major contributor to oxidant stress-mediated cell injury. HNE induced apoptosis in RAW 264.7 murine macrophage cells in a dose-dependent manner within 6-8 h after exposure. Expression of the antiapoptotic protein Bcl-2 in stably transfected RAW 264.7 cells prevented HNE-induced internucleosomal DNA fragmentation and apoptosis, and these cells resume growth after a temporary (24-48 h) growth delay. While parental RAW 264.7 cells released mitochondrial cytochrome c within 3 h after HNE exposure, expression of Bcl-2 prevented cytochrome c release. In control cells, p53 protein levels peaked at 6-9 h after HNE exposure and then declined, while in Bcl-2 expressing cells, p53 levels were maximal at 6-9 h and remained elevated up to 96 h. Expression of SV40 large T-antigen, which forms a stable complex with p53 protein, via stable transfection-blocked transactivation of the p53-regulated gene p21(WAF1/CIP1), but did not affect induction of apoptosis by HNE, suggesting that p53 function is not important in HNE-induced apoptosis. These results suggest that cytochrome c release, but not p53 accumulation, plays an essential role in HNE-induced apoptosis in RAW 264.7 cells.  相似文献   

8.
Cyclosporin (Cs)A but not CsH inhibits activation of human lymphocytes. We studied the effects of CsA, CsD, and CsH on human neutrophil activation induced by chemoattractants and by various substances that circumvent receptor stimulation. CsH inhibited superoxide (O2-) formation induced by the chemotactic peptide, FMLP (30 nM), with a half-maximal effect at 40 nM. O2- formation was abolished by CsH at 1 microM. CsH increased the concentration of FMLP causing half-maximal activation of O2- formation from 30 nM to 0.8 microM and substantially reduced the stimulatory effect of FMLP at supra-maximally effective concentrations. The inhibitory effect of CsH on O2- formation was evident immediately after addition to neutrophils. CsH also markedly inhibited the increase in cytosolic Ca2+ ([Ca2+]i), beta-glucuronidase, and lysozyme release and aggregation stimulated by FMLP. CsA and CsD were considerably less effective than CsH to inhibit FMLP-induced O2- formation. CsA and CsD were without effect on exocytosis, rises in [Ca2+]i, and aggregation induced by the chemotactic peptide. Cyclosporines inhibited FMLP-induced O2- formation in an additive manner, indicating that they acted through a mechanism they had in common. Cyclosporines only slightly inhibited O2- formation and lysozyme release induced by C5a. Aggregation and rises in [Ca2+]i stimulated by C5a were not affected by cyclosporines, and they did not inhibit O2- formation and exocytosis induced by platelet-activating factor and leukotriene B4. Cyclosporines partially inhibited O2- formations induced by NaF and gamma-hexachlorocyclohexane. CsA marginally inhibited PMA-induced O2- formation and lysozyme release. CsA, CsD, and CsH did not inhibit arachidonic acid-induced O2- formation and its potentiation by NaF or stable guanine nucleotides in a cell-free system from DMSO-differentiated HL-60 cells. CsH partially inhibited binding of FML [3H]P to formyl peptide receptors in membranes from DMSO- or dibutyryl cAMP-differentiated HL-60 cells. Our data show that: 1) cyclosporines differentially inhibit activation of human neutrophils; and 2) CsH is, indeed, not immunologically inactive but is a potent and effective inhibitor of FMLP-induced O2- formation. 3) CsH interferes with agonist binding to formyl peptide receptors and in addition, cyclosporines may also act at sites distal to chemoattractant receptors.  相似文献   

9.
4-Hydroxynonenal (HNE) is a highly reactive aldehyde, produced by cellular lipid peroxidation, able to inhibit proliferation and to induce differentiation in MEL cells at concentrations similar to those detected in several normal tissues. Inducer-mediated differentiation of murine erythroleukemia (MEL) cells is a multiple step process characterized by modulation of several genes as well as by a transient increase in the amount of membrane-associated protein kinase C (PKC) activity. Here we demonstrate that a rapid translocation of PKC activity from cytosol to the membranes occurs during the differentiation induced by HNE. When PKC is completely translocated by phorbol-12-myristate-13-acetate (TPA), the degree of HNE-induced MEL cells differentiation is highly decreased. However, if TPA is washed out from the culture medium before the exposition to the aldehyde, HNE gradually resumes its differentiative ability. The incubation of cells with a selective inhibitor of PKC activity, bisindolylmaleimide GF 109203X, partially prevents the HNE-induced differentiation in MEL cells. In conclusion, our results demonstrate that HNE-induced MEL cell differentiation is preceded by a rapid translocation of PKC activity, and that the inhibition of this phenomenon prevents the onset of terminal differentiation.  相似文献   

10.
4-Hydroxynonenal (HNE) is the major diffusible toxic product generated by lipid peroxidation of cellular membranes. The level of lipid peroxidation and, consequently, the concentration of its products are inversely related to the rate of cell proliferation and directly related to the level of cell differentiation. In the present paper the effects of HNE on the proliferation and differentiation of the HL-60 human promyelocytic cell line have been investigated. Repeated treatment at 45-min intervals with HNE (1 microM) was performed to maintain the cells in the presence of the aldehyde for 7 1/2 or 9 h. The effect of HNE on cell proliferation and differentiation was compared with dimethyl sulfoxide (DMSO)-treated cells. HNE causes a strong inhibition of cell growth without affecting cell viability. Moreover, HL-60 cells acquire the capability to produce chemiluminescence after soluble (phorbol myristate acetate) or corpuscolate (zymosan) stimulation. The phagocytic ability has also been calculated by counting the number of cells that phagocytize opsonized zymosan. Values were 43 and 55% after 10 or 12 HNE treatments, respectively, and 88% in DMSO-treated cells. Myeloperoxidase activity, 5 days after treatment, decreased by 85% in either HNE- or DMSO-treated cells while acid phosphatase activity increased with respect to untreated cells. Results obtained indicate that HNE at concentrations close to those found in the normal tissues can induce inhibition of proliferation and induction of differentiation in the HL-60 cell line.  相似文献   

11.
We investigate the roles of methoxyl (OCH(3)) and hydroxyl (OH) substitutions at C8 of flavonoids on their apoptosis-inducing activities. Wogonin (Wog) and nor-wogonin (N-Wog) are structurally related flavonoids, and respectively contain an OH and OCH(3) at C8. In leukemia HL-60 cells, N-Wog exhibited more-potent cytotoxicity than Wog according to the MTT and LDH release assays, and the IC(50) values of Wog and N-Wog in HL-60 cells were 67.5 +/- 2.1 and 21.7 +/- 1.5 microM, respectively. Apoptotic characteristics including DNA ladders, apoptotic bodies, and hypodiploid cells accompanied by the induction of caspase 3 protein processing appeared in Wog- and N-Wog-treated HL-60 cells. Interestingly, an increase in intracellular peroxide production was detected in N-Wog- but not Wog-treated HL-60 cells by the DCHF-DA assay, and the reduction of intracellular peroxide by catalase (CAT) induced by N-Wog significantly reduced the N-Wog- but not the Wog-induced cytotoxic effect according to the MTT assay in accordance with the blocking of DNA ladder formation and caspase 3 and PARP protein processing elicited by N-Wog. We further analyzed the effect of six structurally related compounds, including 5-OH, 7-OH, 5,7-diOH, 5,7-diOCH(3), 7,8-diOCH(3), and 7-OCH(3)-8-OH flavones, on apoptosis induction in HL-60 cells. Results suggested that OH at C5 and C7 is essential for both the apoptosis-inducing activity of flavonoids, and OH at C8 may contribute to apoptosis induction ability. Evidence to support a distinct structure-activity relationship in apoptosis induction of flavonoids is provided for the first time in this study.  相似文献   

12.
4-Hydroxynonenal (HNE) is one of the most abundant aldehyde components of ox-LDL and it exerts various effects on intracellular and extracellular signaling cascades. In this mini-review, a brief synopsis of HNE-modulated signaling pathways will be presented mainly focused on cell death, including recent studies from our laboratory. The results of a number of studies demonstrate the ability of HNE to induce apoptosis and ROS formation in a dose-dependent manner. Several signaling pathways have been shown to be modulated by HNE, including MAP kinases, PKC isoforms, cell-cycle regulators, receptor tyrosine kinases and caspases. In order to get insight into the mechanisms of apoptotic response by HNE, MAP kinase and caspase activation pathways have been studied in 3T3 fibroblasts; HNE induced early activation of JNK and p38 proteins but down-regulated the basal activity of ERK-1/2. We have shown that HNE-induced release of cytochrome c from mitochondria, caspase-9 and caspase-3 activation. Activation of AP-1 along with increased c-Jun and phospho-c-Jun levels could be inhibited by pretreatment of cells with certain molecules such as resveratrol. Additionally, overexpression of dominant negative c-Jun and JNK1 in 3T3 fibroblasts prevented HNE-induced apoptosis, which indicated a role for JNK-c-Jun/AP-1 pathway. JNK-dependent induction of c-Jun/AP-1 activation data in the literature indicates a critical potential role for JNK in the cellular response against toxic products of lipid peroxidation.  相似文献   

13.
Several studies have indicated that lipid peroxidation often occurs in response to oxidative stress, and that many aldehydic products including 4-hydroxy-2-nonenal (HNE) are formed when lipid hydroperoxides break down. In order to clarify the mechanism of oxidative stress-induced neuronal death in the nervous system, we investigated H(2)O(2)- and HNE-induced cell death pathways in HT22 cells, a mouse hippocampal cell line, under the same experimental conditions. Treatment with H(2)O(2) and HNE decreased the viability of these cells in a time- and concentration-dependent manner. In the cells treated with H(2)O(2), significant increases in the immunoreactivities of DJ-1 and nuclear factor-kappaB (NF-kappaB) subunits (p65 and p50) were observed in the nuclear fraction. H(2)O(2) also induced an increase in the intracellular concentration of Ca(2+), and cobalt chloride (CoCl(2)), a Ca(2+) channel inhibitor, suppressed the H(2)O(2)-induced cell death. In HNE-treated cells, none of these phenomena were observed; however, HNE adduct proteins were formed after exposure to HNE, but not to H(2)O(2). N-Acetyl-L-cysteine (NAC) suppressed both HNE-induced cell death and HNE-induced expression of HNE adduct proteins, whereas H(2)O(2)-induced cell death was not affected. These findings suggest that the mechanisms of cell death induced by H(2)O(2) different from those induced by HNE in HT22 cells, and that HNE adduct proteins play an important role in HNE-induced cell death. It is also suggested that the pathway for H(2)O(2)-induced cell death in HT22 cells does not involve HNE production.  相似文献   

14.
Among the oxidative breakdown products of ω-6 unsaturated fatty acids, the aldehyde 4-hydroxy-2,3-nonenal (HNE) is receiving increasing attention for its potential pathophysiological implication, which at least partly lies on the demonstrated ability to modulate gene expression of a number of genes. Here we show that a marked down-modulation of HNE nuclear localisation in cells of a macrophage line (J774-A1) can be afforded by treatment with sulfydryl and carbonyl reagents without significantly interfering with cell viability. As regards the addition of thiol-group reagents to the cell suspension, N-ethylmaleimide (NEM) led to a sustained decrease of HNE nuclear localisation, while 4-(chloromercuri)-benzene-sulfonic acid (PCMBS) gave a similar but more transient effect. Hydroxylamine (HYD), a carbonyl-group reagent, was also able to inhibit HNE nuclear localisation. The actual efficacy of the inhibitors used was then tested on the HNE-induced stimulation of transforming growth factor β1 (TGFβ1) production by J774-A1 cells. Indeed, the thiol reagents NEM and PCMBS, both markedly down-modulating HNE nuclear localisation, were able to inhibit HNE-induced increase of TGFβ1 protein synthesis. The carbonyl reagent HYD was less effective on this respect, producing strong but incomplete protection against HNE-induced TGFβ1 increase. Taken together, the results indicate that sulfydryl groups are involved in the process of HNE cellular internalisation, while both sulfydryl and carbonyl groups are involved in the process of HNE nuclear translocation, and consequently in the modulation of gene expression by the aldehyde. Further, an actual demonstration is provided that HNE-induced effect on gene regulation can be efficiently counteracted by suitable interference with HNE biochemistry.  相似文献   

15.
The promyelocytic cell line HL-60 has been used as an in vitro model to study the mechanism of action of two chemotactic aldehydes, 2-nonenal and 4-hydroxynonenal. Increasing aldehyde concentrations have been added to undifferentiated and DMSO-differentiated cells incubated at 37 degrees C and their effect on phosphoinositide-specific phospholipase C has been analysed by using a specific inositol-1,4,5-tris-phosphate assay system. Concentrations of 2-nonenal between 10(-9) and 10(-7) M significantly increased the enzymatic-activity in DMSO-differentiated HL-60 cells, while 10(-9) and 10(-8) M concentrations were active in the undifferentiated cells. 4-Hydroxynonenal was able to activate phospholipase C both in undifferentiated and DMSO-differentiated cells at concentrations ranging from 10(-8) to 10(-6) M. The concentrations of both compounds active on phospholipase C displayed a good correspondence with those which had been reported to be chemotactic towards rat neutrophils. In the case of 4-hydroxynonenal, the present results confirm its ability to activate phospholipase C, which we had previously shown in isolated neutrophil plasma membranes. The comparison of the effects of 2-nonenal and 4-hydroxynonenal on chemotaxis and phospholipase C activation suggests a common mechanism of action for both aldehydes, for which the presence of the double bond seems to be required.  相似文献   

16.
We used the HL-60 human promyelocytic leukemia cell line to analyze the surface expression of a family of adherence-related leukocyte surface antigens during myeloid differentiation. These antigens are composed of discrete alpha subunits, designated alpha L, alpha M, and alpha X, that are each noncovalently associated with a common beta subunit. Monoclonal antibodies directed against the individual subunits served as markers in both indirect immunofluorescence studies and immunoprecipitations from HL-60 cells differentiated preferentially towards mature granulocytes (DMSO, retinoic acid) or monocyte/macrophages (PMA, vitamin D3). In undifferentiated HL-60 cells, the alpha L and alpha X subunits were constitutively expressed, whereas the alpha M subunit was not. Differentiation of HL-60 cells along the granulocytic pathway with DMSO resulted in a marked increase in alpha M and minimal increases in alpha L and alpha X. The phenotypic expression of these antigens on DMSO-treated HL-60 cells closely resembled that on normal circulating PMN. Differentiation along the monocyte/macrophage pathway when using PMA or vitamin D3 resulted in major increases in alpha L and alpha X expression, as well as alpha M. These changes resulted in a surface phenotype characteristic of that present on human monocyte-derived macrophages. Triggering of undifferentiated HL-60 cells with PMA caused no increase in subunit expression, whereas stimulation of DMSO-differentiated HL-60 cells with PMA produced more than a 1.5-fold enhancement of both the alpha M and alpha X subunits, and stimulation of human PMN with PMA increased the surface expression of alpha M more than fourfold and alpha X subunit twofold. Stimulation with PMA produced no change in expression of the alpha L subunit in any of the three cell populations. These results indicate that the alpha subunits of this glycoprotein family can be selectively regulated during in vitro differentiation of a human promyelocytic leukemia cell line. Second, DMSO-differentiated HL-60 cells and human PMN possessed an intracellular pool of alpha M and alpha X, but not alpha L, that could be translocated to the surface. Thus, despite structural and functional relationships among the alpha subunits in this glycoprotein family, they undergo disparate surface expression and intracellular regulation during differentiation.  相似文献   

17.
18.
Oxidative stress plays an important role in neuronal cell death associated with many different neurodegenerative conditions, and it is reported that 4-hydroxynonenal (HNE), an aldehydic product of membrane lipid peroxidation, is a key mediator of neuronal cell death induced by oxidative stress. Previously, we have demonstrated that interleukin-6 (IL-6) protects PC12 cells from serum deprivation and 6-hydroxydopamine-induced toxicity. Therefore, in the present study, we examined the effects of interleukins on HNE toxicity in PC12 cells. Exposure of PC12 cells to HNE resulted in a decrease in levels of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction, which was due to necrotic and apoptotic cell death. Addition of IL-6 24 h before HNE treatment provided a concentration-dependent protection against HNE toxicity, whereas neither IL-1β nor IL-2 had any effect. Addition of glutathione (GSH)-ethyl ester, but not superoxide dismutase or catalase, before HNE treatment to the culture medium protected PC12 cells from HNE toxicity. We found that IL-6 increases intracellular GSH levels and the activity of γ-glutamylcysteine synthetase (γ-GCS) in PC12 cells. Buthionine sulfoximine (BSO), an inhibitor of γ-GCS, reversed the protective effect of IL-6 against HNE toxicity. These results suggest that IL-6 protects PC12 cells from HNE-induced cytotoxicity by increasing intracellular levels of GSH.  相似文献   

19.
Nitric oxide (NO) and the lipid peroxidation (LPO) product 4-hydroxynonenal (HNE) are considered to be key mediators of cartilage destruction in osteoarthritis (OA). NO is also known to be an important intermediary in LPO initiation through peroxynitrite formation. The aim of the present study was to assess the ability of the inducible NO synthase (iNOS) inhibitor N-iminoethyl-L-lysine (L-NIL) to prevent HNE generation via NO suppression in human OA chondrocytes and cartilage explants. Human OA chondrocytes and cartilage explants were treated with L-NIL and thereafter with or without interleukin-1beta (IL-1β) or HNE at cytotoxic or non-cytotoxic concentrations. Parameters related to oxidative stress, apoptosis, inflammation, and catabolism were investigated. L-NIL stifled IL-1β-induced NO release, iNOS activity, nitrated proteins, and HNE generation in a dose-dependent manner. It also blocked IL-1β-induced inactivation of the HNE-metabolizing glutathione-s-transferase (GST). L-NIL restored both HNE and GSTA4-4 levels in OA cartilage explants. Interestingly, it also abolished IL-1β-evoked reactive oxygen species (ROS) generation and p47 NADPH oxidase activation. Furthermore, L-NIL significantly attenuated cell death and markers of apoptosis elicited by exposure to a cytotoxic dose of HNE as well as the release of prostaglandin E(2) and metalloproteinase-13 induced by a non-cytotoxic dose of HNE. Altogether, our findings support a beneficial effect of L-NIL in OA by (i) preventing the LPO process and ROS production via NO-dependent and/or independent mechanisms and (ii) attenuating HNE-induced cell death and different mediators of cartilage damage.  相似文献   

20.
In this study we examined whether microtubules and heat shock protein 90 (Hsp90) are involved in phorbol myristate acetate (PMA) and N-formyl-Met-Leu-Phe (fMLP)-induced oxidative burst in DMSO-differentiated HL-60 cells. Our results showed that microtubule interfering agents, paclitaxel (1-5 microM), colchicine (1-100 microM), nocodazole (1-20 microM), and vincristine (1-50 microM), did not affect either PMA or fMLP-induced oxidative burst. In contrast, radicicol, an inhibitor of Hsp90, inhibited fMLP-induced oxidative burst in time and concentration-dependent manner where IC50 value for 30 min pre-incubation was 16.5 +/- 3.5 microM radicicol. We conclude that both PMA and fMLP-induced oxidative burst in DMSO-differentiated HL-60 cells is microtubule-independent while the latter requires Hsp90 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号