首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins fold and function inside cells which are environments very different from that of dilute buffer solutions most often used in traditional experiments. The crowded milieu results in excluded-volume effects, increased bulk viscosity and amplified chances for inter-molecular interactions. These environmental factors have not been accounted for in most mechanistic studies of protein folding executed during the last decades. The question thus arises as to how these effects—present when polypeptides normally fold in vivo—modulate protein biophysics. To address excluded volume effects, we use synthetic macromolecular crowding agents, which take up significant volume but do not interact with proteins, in combination with strategically selected proteins and a range of equilibrium and time-resolved biophysical (spectroscopic and computational) methods. In this review, we describe key observations on macromolecular crowding effects on protein stability, folding and structure drawn from combined in vitro and in silico studies. As expected based on Minton’s early predictions, many proteins (apoflavodoxin, VlsE, cytochrome c, and S16) became more thermodynamically stable (magnitude depends inversely on protein stability in buffer) and, unexpectedly, for apoflavodoxin and VlsE, the folded states changed both secondary structure content and, for VlsE, overall shape in the presence of macromolecular crowding. For apoflavodoxin and cytochrome c, which have complex kinetic folding mechanisms, excluded volume effects made the folding energy landscapes smoother (i.e., less misfolding and/or kinetic heterogeneity) than in buffer.  相似文献   

2.
Thermally induced transition curves of hen egg-white lysozyme were measured in the presence of several concentrations of dextran at pH 2.0 by near-UV and far-UV CD. The transition curves were fitted to a two-state model by a non-linear, least-squares method to obtain the transition temperature (T(m)), enthalpy change (deltaH(u)(T(m))), and free energy change (deltaG(u)(T)) of the unfolding transition. An increase in T(m) and almost constant deltaH(u)(T(m)) values were observed in the presence of added dextran at concentrations exceeding ca 100 g l(-1). In addition, dextran-induced conformational changes of fully unfolded protein were investigated by CD spectroscopy. Addition of high concentrations of dextran to solutions of acid-unfolded cytochrome c at pH 2.0 results in a shift of the CD spectrum from that characteristic of the fully unfolded polypeptide to that characteristic of the more compact, salt-induced molten globule state, a result suggesting that the molten globule-like state is stabilized relative to the fully unfolded form in crowded environments. Both observations are in qualitative accord with predictions of a previously proposed model for the effect of intermolecular excluded volume (macromolecular crowding) on protein stability and conformation.  相似文献   

3.
Unfolded states of ribonuclease A were used to investigate the effects of macromolecular crowding on macromolecular compactness and protein folding. The extent of protein folding and compactness were measured by circular dichroism spectroscopy, fluorescence correlation spectroscopy, and NMR spectroscopy in the presence of polyethylene glycol (PEG) or Ficoll as the crowding agent. The unfolded state of RNase A in a 2.4 M urea solution at pH 3.0 became native in conformation and compactness by the addition of 35% PEG 20000 or Ficoll 70. In addition, the effects of macromolecular crowding on inert macromolecule compactness were investigated by fluorescence correlation spectroscopy using Fluorescence-labeled PEG as a test macromolecule. The size of Fluorescence-labeled PEG decreased remarkably with an increase in the concentration of PEG 20000 or Ficoll 70. These results show that macromolecules are favored compact conformations in the presence of a high concentration of macromolecules and indicate the importance of a crowded environment for the folding and stabilization of globular proteins. Furthermore, the magnitude of the effects on macromolecular crowding by the different sizes of background molecules was investigated. RNase A and Fluorescence-labeled PEG did not become compact, and had folded conformation by the addition of PEG 200. The effect of the chemical potential on the compaction of a test molecule in relation to the relative sizes of the test and background molecules is also discussed.  相似文献   

4.
Cell cytoplasm contains high concentrations of high-molecular-weight components that occupy a substantial part of the volume of the medium (crowding conditions). The effect of crowding on biochemical processes proceeding in the cell (conformational transitions of biomacromolecules, assembling of macromolecular structures, protein folding, protein aggregation, etc.) is discussed in this review. The excluded volume concept, which allows the effects of crowding on biochemical reactions to be quantitatively described, is considered. Experimental data demonstrating the biochemical effects of crowding imitated by both low-molecular-weight and high-molecular-weight crowding agents are summarized.Translated from Biokhimiya, Vol. 69, No. 11, 2004, pp. 1522–1536.Original Russian Text Copyright © 2004 by Chebotareva, Kurganov, Livanova.  相似文献   

5.
Effects of macromolecular crowding on protein folding and aggregation   总被引:18,自引:0,他引:18       下载免费PDF全文
We have studied the effects of polysaccharide and protein crowding agents on the refolding of oxidized and reduced hen lysozyme in order to test the prediction that association constants of interacting macromolecules in living cells are greatly increased by macromolecular crowding relative to their values in dilute solutions. We demonstrate that whereas refolding of oxidized lysozyme is hardly affected by crowding, correct refolding of the reduced protein is essentially abolished due to aggregation at high concentrations of crowding agents. The results show that the protein folding catalyst protein disulfide isomerase is particularly effective in preventing lysozyme aggregation under crowded conditions, suggesting that crowding enhances its chaperone activity. Our findings suggest that the effects of macromolecular crowding could have major implications for our understanding of how protein folding occurs inside cells.  相似文献   

6.
In cells, proteins execute specific tasks in crowded environments; these environments influence their stability and dynamics. Similarly, for an enzyme molecule encapsulated in an inorganic cavity as in biosensors or biocatalysts, confinement or excluded volume plays an important role in its stability and dynamics. In this article we present results of our experimental and theoretical investigations of the confinement and macromolecular crowding effects on protein. On the experimental side we study the stability of encapsulated cytochrome c against unfolding induced by the presence of denaturants, such as urea. Results show that, as the pore size in which protein is trapped is reduced, protein shows higher stability against denaturant-induced unfolding. On the theoretical side, after reviewing our previous study of the confinement effects on the equilibrium and dynamic properties of protein using a minimalist (two-dimensional lattice, Monte Carlo, Brownian dynamics) model, we have extended the model so that the effects of macromolecular crowding on such properties can be studied. Our simulations show that both folding and unfolding times increase with the number of crowders in solution, however, the equilibrium constant is affected such that the equilibrium is shifted towards the folded state. Furthermore, our results show that, for a fixed number of crowders as the size of crowder (or excluded volume) increases, the average size of protein at equilibrium decreases.  相似文献   

7.
Martin J 《Biochemistry》2002,41(15):5050-5055
Macromolecular crowding is a critical parameter affecting the efficiency of cellular protein folding. Here we show that the proteins dihydrofolate reductase, enolase, and green fluorescent protein, which can fold spontaneously in diluted buffer, lose this ability in a crowded environment. Instead, they accumulate as soluble, protease-sensitive non-native species. Their folding becomes dependent on the complete GroEL/GroES chaperonin system and is not affected by trap-GroEL, indicating that folding has to occur in the chaperonin cavity with release of nativelike proteins into the bulk solution. In addition, we demonstrate that efficient folding in the chaperonin cavity requires ATP hydrolysis, as formation of ternary GroEL/GroES complexes with substrate proteins in the presence of ADP results only in very inefficient reactivation. However, protein refolding reactions using ADP-fluoroaluminate complexes, or single-ring GroEL and GroES under conditions where only a single round of ATP hydrolysis occurs, yield large amounts of refolded enzymes. Thus, the mode of initial ternary complex formation appears to be critical for subsequent productive release of substrate into the cavity under certain crowding conditions, and is only efficient when triggered by ATP hydrolysis. Our data indicate that stringent conditions of crowding can impart a stronger dependence of folding proteins on the assistance by chaperonins.  相似文献   

8.
Bastolla U  Bruscolini P  Velasco JL 《Proteins》2012,80(9):2287-2304
In comparison with intense investigation of the structural determinants of protein folding rates, the sequence features favoring fast folding have received little attention. Here, we investigate this subject using simple models of protein folding and a statistical analysis of the Protein Data Bank (PDB). The mean-field model by Plotkin and coworkers predicts that the folding rate is accelerated by stronger-than-average interactions at short distance along the sequence. We confirmed this prediction using the Finkelstein model of protein folding, which accounts for realistic features of polymer entropy. We then tested this prediction on the PDB. We found that native interactions are strongest at contact range l = 8. However, since short range contacts tend to be exposed and they are frequently formed in misfolded structures, selection for folding stability tends to make them less attractive, that is, stability and kinetics may have contrasting requirements. Using a recently proposed model, we predicted the relationship between contact range and contact energy based on buriedness and contact frequency. Deviations from this prediction induce a positive correlation between contact range and contact energy, that is, short range contacts are stronger than expected, for 2/3 of the proteins. This correlation increases with the absolute contact order (ACO), as expected if proteins that tend to fold slowly due to large ACO are subject to stronger selection for sequence features favoring fast folding. Our results suggest that the selective pressure for fast folding is detectable only for one third of the proteins in the PDB, in particular those with large contact order.  相似文献   

9.
Search and study of the general principles that govern kinetics and thermodynamics of protein folding generate a new insight into the factors controlling this process. Here, based on the known experimental data and using theoretical modeling of protein folding, we demonstrate that there exists an optimal relationship between the average conformational entropy and the average energy of contacts per residue-that is, an entropy capacity-for fast protein folding. Statistical analysis of conformational entropy and number of contacts per residue for 5829 protein structures from four general structural classes (all-alpha, all-beta, alpha/beta, alpha+beta) demonstrates that each class of proteins has its own class-specific average number of contacts (class alpha/beta has the largest number of contacts) and average conformational entropy per residue (class all-alpha has the largest number of rotatable angles phi, psi, and chi per residue). These class-specific features determine the folding rates: alpha proteins are the fastest folding proteins, then follow beta and alpha+beta proteins, and finally alpha/beta proteins are the slowest ones. Our result is in agreement with the experimental folding rates for 60 proteins. This suggests that structural and sequence properties are important determinants of protein folding rates.  相似文献   

10.
del Alamo M  Rivas G  Mateu MG 《Journal of virology》2005,79(22):14271-14281
Previous studies on the self-assembly of capsid protein CA of human immunodeficiency virus type 1 (HIV-1) in vitro have provided important insights on the structure and assembly of the mature HIV-1 capsid. However, CA polymerization in vitro was previously observed to occur only at very high ionic strength. Here, we have analyzed the effects on CA assembly in vitro of adding unrelated, inert macromolecules (crowding agents), aimed at mimicking the crowded (very high macromolecular effective concentration) environment within the HIV-1 virion. Crowding agents induced fast and efficient polymerization of CA even at low (close to physiological) ionic strength. The hollow cylinders thus assembled were indistinguishable in shape and dimensions from those formed in dilute protein solutions at high ionic strength. However, two important differences were noted: (i) disassembly by dilution of the capsid-like particles was undetectable at very high ionic strength, but occurred rapidly at low ionic strength in the presence of a crowding agent, and (ii) a variant CA from a presumed infectious HIV-1 with mutations at the CA dimerization interface was unable to assemble at any ionic strength in the absence of a crowding agent; in contrast, this mutation allowed efficient assembly, even at low ionic strength, when a crowding agent was used. The use of a low ionic strength and inert macromolecules to mimic the crowded environment inside the HIV-1 virion may lead to a better in vitro evaluation of the effects of conditions, mutations or/and other molecules, including potential antiviral compounds, on HIV-1 capsid assembly, stability and disassembly.  相似文献   

11.
Torshin IY  Harrison RW 《Proteins》2001,43(4):353-364
Electrostatic interactions are important for protein folding. At low resolution, the electrostatic field of the whole molecule can be described in terms of charge center(s). To study electrostatic effects, the centers of positive and negative charge were calculated for 20 small proteins of known structure, for which hydrogen exchange cores had been determined experimentally. Two observations seem to be important. First, in all 20 proteins studied 30-100% of the residues forming hydrogen exchange core(s) were clustered around the charge centers. Moreover, in each protein more than half of the core sequences are located near the centers of charge. Second, the general architecture of all-alpha proteins from the set seems to be stabilized by interactions of residues surrounding the charge centers. In most of the alpha-beta proteins, either or both of the centers are located near a pair of consecutive strands, and this is even more characteristic for alpha/Beta and all-beta structures. Consecutive strands are very probable sites of early folding events. These two points lead to the conclusion that charge centers, defined solely from the structure of the folded protein may indicate the location of a protein's hydrogen exchange/folding core. In addition, almost all the proteins contain well-conserved continuous hydrophobic sequences of three or more residues located in the vicinity of the charge centers. These hydrophobic sequences may be primary nucleation sites for protein folding. The results suggest the following scheme for the order of events in folding: local hydrophobic nucleation, electrostatic collapse of the core, global hydrophobic collapse, and slow annealing to the native state. This analysis emphasizes the importance of treating electrostatics during protein-folding simulations.  相似文献   

12.
The problem of protein self‐organization is in the focus of current molecular biology studies. Although the general principles are understood, many details remain unclear. Specifically, protein folding rates are of interest because they dictate the rate of protein aggregation which underlies many human diseases. Here we offer predictions of protein folding rates and their correlation with folding nucleus sizes. We calculated free energies of the transition state and sizes of folding nuclei for 84 proteins and peptides whose other parameters were measured at the point of thermodynamic equilibrium between their unfolded and native states. We used the dynamic programming method where each residue was considered to be either as folded as in its native state or completely disordered. The calculated and measured folding rates showed a good correlation at the temperature mid‐transition point (the correlation coefficient was 0.75). Also, we pioneered in demonstrating a moderate (‐0.57) correlation coefficient between the calculated sizes of folding nuclei and the folding rates. Predictions made by different methods were compared. The established good correlation between the estimated free energy barrier and the experimentally found folding rate of each studied protein/peptide indicates that our model gives reliable results for the considered data set. Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

13.
As molecules approach one another in aqueous solution, desolvation free energy barriers to association are encountered. Experiments suggest these (de)solvation effects contribute to the free energy barriers separating the folded and unfolded states of protein molecules. To explore their influence on the energy landscapes of protein folding reactions, we have incorporated desolvation barriers into a semi-realistic, off-lattice protein model that uses a simplified physico-chemical force-field determined solely by the sequence of amino acids. Monte Carlo sampling techniques were used to study the effects on the thermodynamics and kinetics of folding of a number of systems, diverse in structure and sequence. In each case, desolvation barriers increase the stability of the native conformation and the cooperativity of the major folding/unfolding transition. The folding times of these systems are reduced significantly upon inclusion of desolvation barriers, demonstrating that the particulate nature of the solvent engenders a more defined route to the native fold.  相似文献   

14.
Macromolecular crowding, a common phenomenon in the cellular environments, can significantly affect the thermodynamic and kinetic properties of proteins. A single-molecule method based on atomic force microscopy (AFM) was used to investigate the effects of macromolecular crowding on the forces required to unfold individual protein molecules. It was found that the mechanical stability of ubiquitin molecules was enhanced by macromolecular crowding from added dextran molecules. The average unfolding force increased from 210 pN in the absence of dextran to 234 pN in the presence of 300 g/L dextran at a pulling speed of 0.25 microm/sec. A theoretical model, accounting for the effects of macromolecular crowding on the native and transition states of the protein molecule by applying the scaled-particle theory, was used to quantitatively explain the crowding-induced increase in the unfolding force. The experimental results and interpretation presented could have wide implications for the many proteins that experience mechanical stresses and perform mechanical functions in the crowded environment of the cell.  相似文献   

15.
Disulfide bonds are required to stabilize the folded conformations of many proteins. The rates and equilibria of processes involved in disulfide bond formation and breakage can be manipulated experimentally and can be used to obtain important information about protein folding and stability. A number of experimental procedures for studying these processes, and approaches to interpreting the resulting data, are described here.  相似文献   

16.
Nine single substitution cysteine mutants of staphylococcal nuclease (nuclease) were preferentially crosslinked at the introduced cysteine residues using three different bifunctional crosslinking reagents; 1,6-bismaleimidohexane (BMH), 1,3-dibromo-2-propanol (DBP), and the chemical warfare agent, mustard gas (bis(2-chloroethyl)sulfide; mustard). BMH and mustard gas are highly specific reagents for cysteine residues, whereas DBP is not as specific. Guanidine hydrochloride (GuHCl) denaturations of the resulting dimeric proteins exhibited biphasic unfolding behavior that did not fit the two-state model of unfolding. The monofunctional reagent, epsilon-maleimidocaproic acid (MCA), was used as a control for the effects of alkylation. Proteins modified with MCA unfolded normally, showing that this unusual unfolding behavior is due to crosslinking. The data obtained from these crosslinked dimers was fitted to a three-state thermodynamic model of two successive transitions in which the individual subunits cooperatively unfold. These two unfolding transitions were very different from the unfolding of the monomeric protein. These differences in unfolding behavior can be attributed in large part to changes in the denatured state. In addition to GuHCl titrations, the crosslinked dimers were also thermally unfolded. In contrast to the GuHCl denaturations, analysis of this data fit a two-state model well, but with greatly elevated van't Hoff enthalpies in many cases. However, clear correlations between the thermal and GuHCl denaturations exist, and the differences in thermal unfolding can be rationalized by postulating interactions of the denatured crosslinked proteins.  相似文献   

17.
Zhang X  Xu J  Zhang L 《Biopolymers》2005,78(4):187-196
Seven lentinan fractions of various weight-average molecular weights (M(w)), ranging from 1.45 x 10(5) to 1.13 x 10(6) g mol(-1) were investigated by static light scattering and viscometry in 0.1M NaOH solution at 25 degrees C. The intrinsic viscosity [eta] - M(w) and radius of gyration s(2)(z) (1/2) - M(w) relationships for lentinan in 0.1M NaOH solution were found to be represented by [eta] = 5.1 x 10(-3)M(w) (0.81) cm(3) g(-1) and s(2)(z) (1/2) = 2.3 x 10(-1)M(w) (0.58) nm, respectively. Focusing on the effects of the M(w) polydispersity with the Schulz-Zimm distribution function, the data of M(w), s(2)(z) (1/2), and [eta] was analyzed on the basis of the Yoshizaki-Nitta-Yamakawa theory for the unperturbed helical wormlike chain combined with the quasi-two-parameter (QTP) theory for excluded-volume effects. The persistence length, molecular weight per unit contour length, and the excluded-volume strength were determined roughly to be 6.2 nm, 980 nm(-1), and 0.1, respectively. Compared with the theoretical value calculated by the Monte Carlo model, the persistence length is longer than that of the single (1 --> 3)-beta-(D)-glucan chain. The results revealed that lentinan exists as single-stranded flexible chains in 0.1M NaOH solution with a certain degree of expansion due to the electrostatic repulsion from the interaction between the OH(-) anions and lentinan molecules.  相似文献   

18.
Proteins fold in a time range of microseconds to minutes despite the large amount of possible conformers. Molecular dynamics simulations of a three-stranded antiparallel beta-sheet peptide (for a total of 12.6 microsec and 72 folding events) show that at the melting temperature the unfolded state ensemble contains many more conformers than those sampled during a folding event.  相似文献   

19.
细胞内的大分子拥挤环境   总被引:3,自引:0,他引:3  
所有的细胞中都存在着大量的蛋白质、核酸、多糖等各种生物大分子,它们大约占用细胞容积的20%~30%,总浓度高达80~200 g/L,因此任何一种大分子都处于一个充满其他大分子的拥挤环境中. 对源于排斥容积效应的拥挤理论分析表明它对所有大分子之间的反应在热力学和动力学上都有很大的影响. 可是以往人们在体外研究生物大分子的性质和相互作用时几乎都忽略了这样一个细胞大分子拥挤的实际环境. 最近几年建议把大分子拥挤与pH、离子强度和溶液组成等一样作为常规因素来研究生物大分子的呼声很高,在体系中添加大分子拥挤试剂以在体外模拟细胞内环境研究蛋白质折叠已有一些实验报道.  相似文献   

20.
Protein folding speeds are known to vary over more than eight orders of magnitude. Plaxco, Simons, and Baker (see References) first showed a correlation of folding speed with the topology of the native protein. That and subsequent studies showed, if the native structure of a protein is known, its folding speed can be predicted reasonably well through a correlation with the "localness" of the contacts in the protein. In the present work, we develop a related measure, the geometric contact number, N (alpha), which is the number of nonlocal contacts that are well-packed, by a Voronoi criterion. We find, first, that in 80 proteins, the largest such database of proteins yet studied, N (alpha) is a consistently excellent predictor of folding speeds of both two-state fast folders and more complex multistate folders. Second, we show that folding rates can also be predicted from amino acid sequences directly, without the need to know the native topology or other structural properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号