首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the intestine, the hydrolysis of triglycerides by pancreatic lipase is performed only in the presence of colipase, whose function is to anchor lipase to the bile-salt-coated lipid interface. Biochemical and crystallographic data on porcine and human lipases have shown that the molecule is made of two well-delimited domains. In order to get more information on the role of the domains in catalysis and colipase binding, we performed limited proteolysis on lipase from various species and obtained different patterns of cleavage. In the case of porcine and human lipases, only the C-terminal domain (12 kDa) could be obtained after chymotryptic attack, whereas in the horse enzyme the cleavage of the Leu410-Thr411 bond gave rise to a large N-terminal (45 kDa) and a small C-terminal (4 kDa) fragment. The isolated porcine and human C-terminal domains were completely inactive towards emulsified tributyrin, though were able to bind colipase. Conversely, the horse 45 kDa fragment retained the lipase activity but failed to correctly bind colipase. This work definitely proves that catalysis and colipase binding are separate events involving topographically distinct regions of the molecule and focuses attention on the role of the C-terminal domain in colipase binding.  相似文献   

2.
Allouche M  Castano S  Colin D  Desbat B  Kerfelec B 《Biochemistry》2007,46(51):15188-15197
Colipase is a key element in lipase-catalyzed dietary lipids hydrolysis. Although devoid of enzymatic activity, colipase promotes pancreatic lipase activity in the physiological intestinal conditions by anchoring the enzyme on the surface of lipid droplets. Polarization modulation infrared reflection absorption spectroscopy combined with Brewster angle microscopy studies was performed on colipase alone and in various lipid environments to obtain a global view of both conformation and orientation and to assess lipid perturbations. We clearly show that colipase fully inserts into a dilaurin monolayer and promotes the formation of lipid/protein domains, whereas in a phospholipid environment its insertion is only partial, limited to the polar head group. In a mixed 70% phosphatidylcholine/30% dilaurin environment, colipase adsorbs to but does not penetrate deeply into the film. It triggers the formation of diglyceride domains under which it would form a rather uniform layer. We also clearly demonstrate that colipase adopts a preferred orientation when dilaurin is present at the interface. In contrast, at a neutral phospholipid interface, the infrared spectra suggest an isotropic orientation of colipase which could explain its incapacity to reverse the inhibitory effects of these lipids on the lipase activity.  相似文献   

3.
The finding reported in the preceding paper that colipase is able to bind one sodium taurodeoxycholate micelle per molecule was confirmed by dialysis and spectrophotometry. Dialysis in the presence of labelled sodium taurodeoxycholate provided a direct qualitative proof of taurodeoxycholate binding to colipase. This binding was found to occur only above the critical micelle concentration. But, dialysis did not give any information about the composition of the associations, because equilibrium was not attained at the end of the assays. Addition of sodium taurodeoxycholate above the critical micelle concentration was also observed to induce a strong perturbation of the ultraviolet spectrum of one or several of the three tyrosines of colipase. The variation of the perturbation as a function of sodium taurodeoxycholate concentration was consistent with the binding of a single micelle to colipase. The dissociation constant calculated in "micelle molarity" was approximately 1 X 10(-4) M. The colipase-bile salt micelle association can fix one molecule of lipase to form a ternary complex which represents an interesting model of a protein-protein interaction mediated by an organized lipid structure. The ternary complex is probably also a model for lipase-substrate interactions in the presence of an amphipath.  相似文献   

4.
Rabbit antiserum was raised against porcine pancreatic colipase and Fab fragments were prepared by papain digestion of purified antibodies followed by purification on protein A-Sepharose. Fab fragments showed inactivation toward porcine colipase activity similar to that of antiserum and purified antibodies. From inactivation studies carried out by incubating porcine colipase and lipase with Fab fragments in the absence of lipid or in the presence of triolein and sodium deoxycholate, it could be concluded that polyclonal antiporcine colipase antibodies contain fractions that bind specifically to epitopes at or near the functional regions of the porcine cofactor. Studies with an enzyme-linked immunosorbent assay showed that cross-reactivity of horse or chicken colipase with antiporcine colipase antiserum was lower than that of the human or porcine protein. Results of immunoactivation kinetic studies performed with the same proteins, fully confirmed these observations. Partial cross-reactivity between porcine and chicken colipases allowed us to fractionate antibodies by immunoaffinity chromatography on immobilized chicken colipase. Fraction I contains antibodies absorbed on porcine colipase not accessible when the cofactor is bound to lipid. Antibodies of fraction II, nonadsorbed on chicken colipase, inactivate porcine colipase preincubated with triolein/deoxycholate. Lipase had a protective effect against inactivation. Antibodies of fraction II bind likely to epitopes close to the specific region of colipase interacting with lipase. Our conclusions are in good agreement with analysis of the sequence of porcine, equine and human colipases by calculating local hydrophilicity indices.  相似文献   

5.
Antibodies against porcine procolipase B were produced in rabbits. The antiserum was used to immunoinactivate various forms of native and trypsin-treated porcine colipase. Our results indicate that all forms of the porcine cofactor bind to anti-porcine procolipase B antibodies. Human colipase showed lower affinity for the antibodies than porcine colipase. No cross-reactivity was observed between pig and horse, cow, dog or chicken colipases. Immunological studies on porcine colipase, carried out in the presence of lipid, provided evidence that antibodies bind to colipase at or near the lipase binding site. The binding of antibodies to colipase is not affected by the adsorption of the cofactor at a lipid interface. Using a predictive method for identification of the antigenic determinants, it was found that, in pig colipase, regions at positions 42-48 and 70-74 might represent antigenic sites. In the horse protein, the peptide segment 42-48 was also recognized as a possible antigenic site. An immunoadsorbent gel column was prepared for a one-step isolation of porcine colipase. In contrast to purification methods described so far, immunoaffinity chromatography yielded only one form of the porcine cofactor when starting from a pancreatic extract. This protein preparation has structural, biochemical and immunochemical properties similar to that of porcine procolipase A previously isolated from pancreas in the presence of detergent.  相似文献   

6.
Pancreatic triglyceride lipase (PTL) requires colipase for activity. Various constituents in meals and in bile, particularly bile acids, inhibit PTL. Colipase restores activity to lipase in the presence of inhibitory substances like bile acids. Presumably, colipase functions by anchoring and orienting PTL at the oil-water interface. The x-ray structure of the colipase.PTL complex supports this model. In the x-ray structure, colipase has a hydrophobic surface positioned to bind substrate and a hydrophilic surface, lying opposite the hydrophobic surface, with two putative lipase-binding domains, Glu(45)/Asp(89) and Glu(64)/Arg(65). To determine whether the hydrophilic surface interacts with PTL in solution, we introduced mutations into the putative PTL binding domains of human colipase. Each mutant was expressed, purified, and assessed for activity against various substrates. Most of the mutants showed impaired ability to reactivate PTL, with mutations in the Glu(64)/Arg(65) binding site causing the greatest effect. Analysis indicated that the mutations decreased the affinity of the colipase mutants for PTL and prevented the formation of PTL.colipase complexes. The impaired function of the mutants was most apparent when assayed in micellar bile salt solutions. Most mutants stimulated PTL activity normally in monomeric bile salt solutions. We also tested the mutants for their ability to bind substrate and anchor lipase to tributyrin. Even though the ability of the mutants to anchor PTL to an interface decreased in proportion to their activity, each mutant colipase bound to tributyrin to the same extent as wild type colipase. These results demonstrate that the hydrophilic surface of colipase interacts with PTL in solution to form active colipase.PTL complexes, that bile salt micelles influence that binding, and that the proper interaction of colipase with PTL requires the Glu(64)/Arg(65) binding site.  相似文献   

7.
A monolayer reaction system employing tripropionin and siliconized glass beads was used to study the effects of taurodeoxycholate and colipase on the catalytic activity, interfacial stability, and interfacial affinity of porcine pancreatic lipase B (EC 3.1.1.3) The stability and catalytic activity of lipase at the bead-water interface are governed by the same two ionizable groups with pKa values (in the absence of cofactors) of 5.6 and 9.3. Colipase alone or with bile salt caused only a slight perturbation of these values. At low concentrations, 0 to 0.3mM, taurodeoxycholate increases the stability of lipase by 5-fold. At higher concentrations, 0.3 to 0.8 mM, but still below its critical micelle concentration, taurodeoxycholate prevents the adsorption of lipase to the bead-water interface. This appears to be the major mechanism by which this bile salt inhibits lipolysis. Colipase exerts small positive effects on lipase stability and catalytic activity. More importantly, colipase enables the adsorption of lipase in the presence of bile salt, thereby reversing the inhibition.  相似文献   

8.
Brockman HL 《Biochimie》2000,82(11):987-995
Pancreatic lipase is a surface-active protein that binds avidly to interfaces comprised of the substrates and products of lipolysis. However, both lipase binding to substrate-containing particles and subsequent interfacial catalysis are inhibited by a number of amphipathic molecules. The most thoroughly studied of these, phosphatidylcholine, is a common constituent of membranes and intestinal lipid contents. Colipase, a surface-active cofactor of lipase, relieves inhibition by phosphatidylcholine in several ways. Through protein-protein interactions, colipase helps anchor lipase to surfaces and stabilizes it in the open conformation. Within the interface, colipase packs more efficiently with substrates and products of lipolysis than with phosphatidylcholine, thereby concentrating these reactants in the vicinity of colipase. This enrichment of lipase substrates and products in the vicinity of colipase enhances lipase-lipid interactions. The result is that colipase facilitates the adsorption of lipase to the interface and, possibly, increases the availability of substrate to the enzyme. Thus, the functional unit in intestinal lipolysis appears to be a lipase-colipase-reactant complex.  相似文献   

9.
Lipases are extracellular peripheral proteins that act at the surface of lipid emulsions stabilized, typically, by phospholipids. At a critical composition lipase activity toward substrates in phospholipid monolayers is discontinuously switched on by a small increase in substrate mole fraction. This occurs in part because lipase binding is inhibited by phospholipids. Binding of the lipase cofactor, colipase, is also inhibited by phospholipids. The initial rate of colipase binding increases abruptly at a substrate mole fraction that is approximately half the critical composition for lipase activity and just above that in substrate-phospholipid complexes. Moreover, complex collapse areas show an approximately 1:1 correlation with phospholipid excluded areas determined from an analysis of colipase adsorption rates. Thus, complexes inhibit colipase binding rate. Additionally, the switching of lipase activity likely occurs when uncomplexed substrate becomes the majority species in the interface. Lipase substrates, e.g. diacylglycerols, are typically the same lipids generated in the cytoplasmic surface of the plasma membrane of stimulated cells. As colipase binding is nonspecific and complexes involving lipase substrates form on the basis of lipid-lipid interactions alone, complexes should form in the plasma membrane of stimulated cells and may regulate protein translocation to the membrane.  相似文献   

10.
Although structurally similar to pancreatic lipase (PL), the key enzyme of intestinal fat digestion, pancreatic lipase-related protein type 2 (PLRP2) differs from PL in certain functional properties. Notably, PLRP2 has a broader substrate specificity than PL, and unlike that of PL, its activity is not restored by colipase in the presence of bile salts. In the studies presented here, the activation mechanism of horse PLRP2 was studied through active site-directed inhibition experiments, and the results demonstrate fundamental differences with that of PL. The opening of the horse PLRP2 flap occurs as soon as bile salt monomers are present, is accelerated in the presence of micelles, and does not require the presence of colipase. Moreover, in contrast to PL, horse PLRP2 is able to directly interact with a bile salt micelle to form an active binary complex, without the micelle being presented by colipase, as evidenced by molecular sieving experiments. These findings, together with the sensitivity of the horse PLRP2 flap to partial proteolysis, are indicative of a higher flexibility of the flap of horse PLRP2 relative to PL. From these results, it can be concluded that PLRP2 can adopt an active conformation in the intestine, which could be important for the further understanding of the physiological role of PLRP2. Finally, this work emphasizes the essential role of colipase in lipase catalysis at the lipid-water interface in the presence of bile.  相似文献   

11.
The concept of lipase interfacial activation stems from the finding that the catalytic activity of most lipases depends on the aggregation state of their substrates. It is thought that activation involves the unmasking and structuring of the enzyme's active site through conformational changes requiring the presence of oil-in-water droplets. Here, we present the neutron structure of the activated lipase-colipase-micelle complex as determined using the D2O/H2O contrast variation low resolution diffraction method. In the ternary complex, the disk-shaped micelle interacts extensively with the concave face of colipase and the distal tip of the C-terminal domain of lipase. Since the micelle- and substrate-binding sites concern different regions of the protein complex, we conclude that lipase activation is not interfacial but occurs in the aqueous phase and is mediated by colipase and a micelle.  相似文献   

12.
Red seabream digestive lipase (RsDL) was purified from fresh pyloric caeca. Pure RsDL has an apparent molecular mass of 50 kDa. The RsDL is more active on short‐chain triacylglycerols (TC4), and enzymatic activity decreases when medium (TC8) or long‐chain (olive oil) triacylglycerols were used as substrates. The specific activities of RsDL are very weak as compared to those obtained with classical pancreatic lipases. No colipase was detected in the red seabream pyloric caeca. Furthermore, the RsDL was not activated by a mammal colipase. Similar results were reported for annular seabream lipase. In order to explain structurally the discrepancies between sparidae and mammal lipases, genes encoding mature RsDL and five other lipases from sparidae fish species were cloned and sequenced. Phylogenetic studies indicated the closest homology of sparidae lipases to bird pancreatic ones. Structural models were built for annular seabream and RsDL under their closed and open forms using mammal pancreatic lipases as templates. Several differences were noticed when analyzing the amino acids corresponding to those involved in HPL binding to colipase. This is likely to prevent interaction between the fish lipase and the mammalian colipase and may explain the fact that mammalian colipase is not effective in activating sparidae lipases. In addition, several hydrophobic residues, playing a key role in anchoring pancreatic lipase onto the lipid interface, are replaced by polar residues in fish lipases. This might explain the reason why the latter enzymes display weak activity levels when compared to mammalian pancreatic lipases.  相似文献   

13.
In view to study the possible participation of the sequence portions of colipase including or close to the free carboxyl groups at positions 15 and/or 72 to the binding with pancreatic lipase, we have used three synthetic peptides matching portions 8-16, 59-67 and 67-72 of the amino acid sequence. Polyclonal rabbit anticolipase immune serum, which cross-reacts with peptides in ELISA, was fractionated on columns of peptide coupled to Sepharose. Of the three fractions of antibodies, only that interacting with peptide 8-16 had the capacity to inhibit colipase-dependent lipase activity by specifically preventing the association of lipase with its protein cofactor previously bound to lipid. We conclude that the region spanning residues 8-16 of colipase is of importance for colipase-lipase interaction in the active complex formed at interface.  相似文献   

14.
The nitration of the long form (N-terminal valine) of porcine pancreatic colipase with tetranitromethane was investigated under a variety of conditions. Fractionation of the nitrated monomers on DE-cellulose led to well-defined derivatives containing one, two and three nitrotyrosines per mol. Automated Edman degradation of the nitrated peptides, especially that of the staphylococcal proteinase peptide (49-64) showed that Tyr-54 was nitrated very fast under all conditions. This residue was the only one to be nitrated in water. Partial nitration of Tyr-59 was induced by bile salt micelles, while both Tyr-59 and Tyr-58 reacted extensively in the presence of lysophosphatidylcholine micelles (in which tetranitromethane is concentrated 150-fold compared to water) or of a liquid tetranitromethane-water interface. The strong negative Cotton effect at 410 nm which has already been observed using unfractionated preparations of nitrated colipase (Behnke W.D. (1982) Biochim. Biophys. Acta 708, 118-123) is linked with the nitration of Tyr-59 and it is markedly reduced by taurodeoxycholate micelles, suggesting a conformational change induced by the micelles in the tyrosine region. Moreover, the pKa of the nitrotyrosine residues in nitrated colipase is the same as that of free nitrotyrosine (pKa = 6.8) and it is shifted to 7.6 in the presence of taurodeoxycholate micelles. Micelles protected colipase against polymerization during nitration. These data suggest that Tyr-58 and Tyr-59 are part of the interface recognition site of colipase. The participation of Tyr-55 in binding is not excluded. The upwards nitrotyrosine pKa shift in the colipase micelle complex may explain why nitrated colipase can reactivate lipase in a triacylglycerol-taurodeoxycholate system at pH 7.5.  相似文献   

15.
The transfer of radiolabelled orlistat ([14C]orlistat), a potent gastrointestinal lipase inhibitor, through an oil-water interface from a single oil droplet to an aqueous phase was investigated, using an oil drop tensiometer. The absolute transfer fluxes were found to be very low, even in the presence of micellar concentrations of bile salts, which increased their values from 0.2 to 2.5 and 6.5 pmol cm(-2) min(-1) in the presence of 0, 4 and 15 mM NaTDC, respectively. Adding either a lipid emulsion or pure human pancreatic lipase (HPL) or human serum albumin or beta-lactoglobulin had no effect on the flux of transfer of orlistat. The presence of colipase or a mixture of colipase and HPL was found, however, to reduce the flux of orlistat transfer, probably because it partly covered the single oil drop surface, even in the presence of bile salts. Using a finely emulsified system, we investigated the partitioning of orlistat between the aqueous and oil phases, in the absence or presence of bile salts above their CMC (4 mM NaTDC, final concentration). Under these emulsified conditions, orlistat was found to be mostly associated with the oil phase, since more than 98.8% of the total radioactivity was recovered after decantation with the oil phase. The low transfer rates of orlistat, as well as its partitioning coefficient between the oil and the aqueous phases, should help us to better understand the inhibitory effects of orlistat on lipid digestion in humans.  相似文献   

16.
IL‐4 induces a lipase, pancreatic lipase related protein 2 (PLRP2), in cytotoxic T lymphocytes (CTLs). Because PLRP2 in semen can mediate lipid‐dependent toxicity to sperm, we questioned whether CTL‐derived PLRP2 could support similar cytotoxicity toward tumor cells. Recombinant PLRP2 was toxic to P815 tumor cells in 48 h when lipid and another protein, colipase, were present. However, PLRP2‐positive CTLs (induced with many lots of IL‐4) were unable to mediate lipid‐dependent cytotoxicity. Notably, CTLs induced with only one lot of IL‐4 had lipid‐dependent cytotoxicity. The exceptional lot of IL‐4 was effective in multiple experiments at inducing lipid‐dependent cytotoxicity. The lipid‐dependent cytotoxicity it induced was determined to be perforin‐independent. CTLs induced with IL‐4 that was unable to induce lipid‐dependent cytotoxicity had mRNA for PLRP2 but not mRNA for colipase. Therefore, we added exogenous colipase to the CTL assays but still cytotoxicity was unchanged. We conclude (1) that lipid‐dependent cytotoxicity, promoted by the lipase PLRP2 and colipase, will kill tumor cells and (2) that more than PLRP2 alone is required for lipid‐dependent cytotoxicity mediated by CTLs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Neutral lipid triglycerides, a main reserve for fat and energy, are stored in organelles called lipid droplets. The storage and release of triglycerides are actively regulated by several proteins specific to the droplet surface, one of which in insects is PLIN1. PLIN1 plays a key role in the activation of triglyceride hydrolysis upon phosphorylation. However, the structure of PLIN1 and its relation to functions remain elusive due to its insolubility and crystallization difficulty. Here we report the first solid-state NMR study on the Drosophila melanogaster PLIN1 in combination with molecular dynamics simulation to show the structural basis for its lipid droplet attachment. NMR spin diffusion experiments were consistent with the predicted membrane attachment motif of PLIN1. The data indicated that PLIN1 has close contact with the terminal methyl groups of the phospholipid acyl chains. Structure models for the membrane attachment motif were generated based on hydrophobicity analysis and NMR membrane insertion depth information. Simulated NMR spectra from a trans-model agreed with experimental spectra. In this model, lipids from the bottom leaflet were very close to the surface in the region enclosed by membrane attachment motif. This may imply that in real lipid droplet, triglyceride molecules might be brought close to the surface by the same mechanism, ready to leave the droplet in the event of lipolysis. Juxtaposition of triglyceride lipase structure to the trans-model suggested a possible interaction of a conserved segment with the lipase by electrostatic interactions, opening the lipase lid to expose the catalytic center.  相似文献   

18.
The effect of ingesting isocaloric and isonitrogenous diets with increasing amounts of lipid (0-30%) and consequently decreasing amounts of carbohydrates (68.7-1.25%) on the exocrine pancreas was studied in adult male Wistar rats. Pancreatic contents of chymotrypsin, lipase and colipase activity, as well as synthesis of amylase, lipase, procarboxypeptidases and individual serine proteases were examined. Lipid-free diets and diets containing 1% lipid were found to have little effect on pancreatic proteins as compared with lipid-rich diets where two distinct patterns of response were observed. Ingestion of diets containing 3-20% lipid resulted in a progressive increase in the activity of lipase, colipase and chymotrypsin up to 2-fold in the first case and 1.6-fold in the two other cases when animals were fed the 20% fat diet. Under the latter conditions, the relative synthesis of secretory proteins, as expressed as percentage of the radioactivity incorporated into individual proteins compared to that incorporated into the total mixture of exocrine proteins, was unchanged for procarboxypeptidases, whereas it was stimulated for lipase (2-fold) and serine proteases (1.6-fold). Amylase relative synthesis progressively decreased as the lipid content of diets increased. Consumption of hyperlipidic diets containing 25% and 30% fat resulted in a further enhancement in the activity of lipase and colipase in the gland in contrast with chymotrypsin activity which was unchanged as compared to the control diet (3% lipid). As far as biosynthesis was concerned, a plateau in the relative synthesis of lipase and serine protease was reached. Amylase relative synthesis further decreased down to 2.2-fold when rats were fed the 30% fat-rich diet whereas that of procarboxypeptidases was markedly increased (about 1.7-fold). Absolute rates of synthesis of total pancreatic secretory proteins, as expressed with regard to the DNA content of the tissue, indicated that biosynthesis of all secretory pancreatic proteins was stimulated by hyperlipidic diets (at least 2-fold with the 30% lipid diet). Consequently, when such an increase was taken into consideration, the absolute synthesis of amylase was found to be unchanged throughout the dietary manipulations, whereas that of lipase, procarboxypeptidases and serine proteases were stimulated by 4.0-fold, 3.4-fold and 3.2-fold, respectively.  相似文献   

19.
The binding of conjugated bile salts to pancreatic colipase and lipase has been studied by equilibrium dialysis and gel filtration. The results indicate that at physiological ionic strength and pH, conjugated bile salts bind as micelles to colipase: 12-15 moles/mole of colipase for the dihydroxy conjugates and 2-4 for the trihydroxy conjugates. No binding of bile salt takes place from monomeric solutions. Under the same experimental conditions, only 1-2 moles of conjugated dihydroxy bile salts bind to pancreatic lipase.  相似文献   

20.
In vertebrates, dietary fat digestion mainly results from the combined effect of pancreatic lipase, colipase, and bile. It has been proposed that in vivo lipase adsorption on oil-water emulsion is mediated by a preformed lipase-colipase-mixed micelle complex. The main lipase-colipase binding site is located on the C-terminal domain of the enzyme. We report here that in vitro the isolated C-terminal domain behaves as a potent noncovalent inhibitor of lipase and that the inhibitory effect is triggered by the presence of micelles. Lipase inhibition results from the formation of a nonproductive C-terminal domain-colipase-micelle ternary complex, which competes for colipase with the active lipase-colipase-micelle ternary complex, thus diverting colipase from its lipase-anchoring function. The formation of such a complex has been evidenced by molecular sieving experiments. This nonproductive complex lowers the amount of active lipase thus reducing lipolysis. Preliminary experiments performed in rats show that the C-terminal domain also behaves as an inhibitor in vivo and thus could be considered a potential new tool for specifically reducing intestinal lipolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号