首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proper neutrophil migration into inflammatory sites ensures host defense without tissue damage. Phosphoinositide 3-kinase (PI(3)K) and its lipid product phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) regulate cell migration, but the role of PtdIns(3,4,5)P(3)-degrading enzymes in this process is poorly understood. Here, we show that Src homology 2 (SH2) domain-containing inositol-5-phosphatase 1 (SHIP1), a PtdIns(3,4,5)P(3) phosphatase, is a key regulator of neutrophil migration. Genetic inactivation of SHIP1 led to severe defects in neutrophil polarization and motility. In contrast, loss of the PtdIns(3,4,5)P(3) phosphatase PTEN had no impact on neutrophil chemotaxis. To study PtdIns(3,4,5)P(3) metabolism in living primary cells, we generated a novel transgenic mouse (AktPH-GFP Tg) expressing a bioprobe for PtdIns(3,4,5)P(3.) Time-lapse footage showed rapid, localized binding of AktPH-GFP to the leading edge membrane of chemotaxing ship1(+/+)AktPH-GFP Tg neutrophils, but only diffuse localization in ship1(-/-)AktPH-GFP Tg neutrophils. By directing where PtdIns(3,4,5)P(3) accumulates, SHIP1 governs the formation of the leading edge and polarization required for chemotaxis.  相似文献   

2.
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)) are physiologically important second messengers. These molecules bind effector proteins to modulate activity. Several types of ion channels, including the epithelial Na(+) channel (ENaC), are phosphoinositide effectors capable of directly interacting with these signaling molecules. Little, however, is known of the regions within ENaC and other ion channels important to phosphoinositide binding and modulation. Moreover, the molecular mechanism of this regulation, in many instances, remains obscure. Here, we investigate modulation of ENaC by PI(3,4,5)P(3) and PI(4,5)P(2) to begin identifying the molecular determinants of this regulation. We identify intracellular regions near the inner membrane interface just following the second transmembrane domains in beta- and gamma- but not alpha-ENaC as necessary for PI(3,4,5)P(2) but not PI(4,5)P(2) modulation. Charge neutralization of conserved basic amino acids within these regions demonstrated that these polar residues are critical to phosphoinositide regulation. Single channel analysis, moreover, reveals that the regions just following the second transmembrane domains in beta- and gamma-ENaC are critical to PI(3,4,5)P(3) augmentation of ENaC open probability, thus, defining mechanism. Unexpectedly, intracellular domains within the extreme N terminus of beta- and gamma-ENaC were identified as being critical to down-regulation of ENaC activity and P(o) in response to depletion of membrane PI(4,5)P(2). These regions of the channel played no identifiable role in a PI(3,4,5)P(3) response. Again, conserved positive-charged residues within these domains were particularly important, being necessary for exogenous PI(4,5)P(2) to increase open probability. We conclude that beta and gamma subunits bestow phosphoinositide sensitivity to ENaC with distinct regions of the channel being critical to regulation by PI(3,4,5)P(3) and PI(4,5)P(2). This argues that these phosphoinositides occupy distinct ligand-binding sites within ENaC to modulate open probability.  相似文献   

3.
Reactive oxygen species (ROS) are known to be involved in redox signalling pathways that may contribute to normal cell function as well as disease progression. The tumour suppressor PTEN and the inositol 5-phosphatase SHIP2 are critical enzymes in the control of PtdIns(3,4,5)P(3) level. It has been reported that oxidants, including those produced in cells such as macrophages, can activate downstream signalling via the inactivation of PTEN. The present study evaluates the potential impact of SHIP2 on phosphoinositides in cells exposed to sodium peroxide. We used a model of SHIP2 deficient mouse embryonic fibroblasts (MEFs) stimulated by H(2)O(2): at 15 min, PtdIns(3,4,5)P(3) was markedly increased in SHIP2 -/- cells as compared to +/+ cells. In contrast, no significant increase in PtdIns(3,4)P(2) could be detected at 15 or 120 min incubation of the cells with H(2)O(2) (0.6 mM). PKB activity was also upregulated in SHIP2 -/- cells as compared to +/+ cells in response to H(2)O(2). SHIP2 add back experiments in SHIP2 -/- cells confirm its critical role as a lipid phosphatase in the control of PtdIns(3,4,5)P(3) level in response to H(2)O(2). We conclude that SHIP2 lipid phosphatase activity plays an important role in the metabolism PtdIns(3,4,5)P(3) which is demonstrated in oxygen stressed cells.  相似文献   

4.
5.
Phagocytosis is a phosphatidylinositol-3-OH-kinase (PI(3)K)-dependent process in macrophages. We identified Myo10 (Myosin-X), an unconventional myosin with pleckstrin homology (PH) domains, as a potential downstream target of PI(3)K. Myo10 was recruited to phagocytic cups in a wortmannin-sensitive manner. Expression of a truncation construct of Myo10 (Myo10 tail) in a macrophage cell line or cytosolic loading of anti-Myo10 antibodies in bovine alveolar macrophages inhibited phagocytosis. In contrast, expression of a Myo10 tail construct containing a point mutation in one of its PH domains failed to inhibit phagocytosis. Expression of Myo10 tail inhibited spreading, but not adhesion, on IgG-coated substrates, consistent with a function for Myo10 in pseudopod extension. We propose that Myo10 provides a molecular link between PI(3)K and pseudopod extension during phagocytosis.  相似文献   

6.
The PI3K-PKB pathway is an important and widely studied pathway in cell signaling. The enzyme activity of PI3K produces D-3 phosphoinositides, including the lipid second messengers PI(3,4,5)P3 and PI(3,4)P2. PI(3,4,5)P3 has been deemed to be the most important second messenger for triggering PKB phosphorylation. PKB has two regulatory phosphorylation sites, Thr308 and Ser473, both of which contribute to its full activity. The direct relationship between PI3K lipid products and PKB phosphorylation is still not entirely clear. Our previous study showed that PI(3,4)P2 has a specific role in contributing to PKB phosphorylation on Ser473 sites in mast cells. In this study, we used two strategies to further elucidate this question in a well-established B cell system. First, by SHIP overexpression, we examined PKB activation under conditions where PI(3,4,5)P3 accumulation is largely suppressed. Second, we used dose response of different forms of B-cell receptor ligands to manipulate the relative levels of PI(3,4,5)P3 and PI(3,4)P2. Our results demonstrate a close relationship between PI(3,4,5)P3 levels and Thr308 phosphorylation levels, and PI(3,4)P2 levels and Ser473 phosphorylation levels, respectively. Furthermore, overall PKB activity, primarily consisting of cytosolic enzyme, was dependent upon levels of PI(3,4)P2, while only membrane-associated PKB activity was dependent upon PI(3,4,5)P3 levels. We conclude that PI(3,4,5)P3 and PI(3,4)P2 have distinct roles in determining PKB phosphorylation and activity. Thus, when investigating PI3K-PKB pathways, the importance of both lipids must be considered.  相似文献   

7.
Traditionally, GRP78 has been regarded as an endoplasmic reticulum (ER) lumenal protein due to its carboxyl KDEL retention motif. Recently, a subfraction of GRP78 is found to localize to the surface of specific cell types, serving as co-receptors and regulating signaling. However, the physiological relevance of cell surface GRP78 (sGRP78) expression in cancer and its functional interactions at the cell surface are just emerging. In this report, we combined biochemical, imaging and mutational approaches to address these issues. For detection of sGRP78, we utilized a mouse monoclonal antibody highly potent and specific for GRP78 or epitope-tagged GRP78, coupled with imaging and biochemical techniques that allowed detection of sGRP78 but not intracellular GRP78. Our studies revealed that breast and prostate cancer cells resistant to hormonal therapy actively promote GRP78 to the cell surface, which can be further elevated by a variety of ER stress-inducing conditions. We showed that sGRP78 forms complex with PI3K, and overexpression of sGRP78 promotes PIP3 formation, indicative of PI3K activation. We further discovered that an insertion mutant of GRP78 at its N-terminus domain, while retaining stable expression and the ability to translocate to the cell surface as the wild-type protein, exhibited reduced complex formation with p85 and production of PIP3. Thus, our studies provide a mechanistic explanation for the regulation of the PI3K/AKT signaling by sGRP78. Our findings suggest that targeting sGRP78 may suppress therapeutic resistance in cancer cells and offer a novel strategy to suppress PI3K activity.  相似文献   

8.
Recent studies have demonstrated that PH domains specific for PI(3,4,5)P3 accumulate at the leading edge of a number of migrating cells and that PI3Ks and PTEN associate with the membrane at the front and back, respectively, of chemotaxing Dictyostelium discoideum cells. However, the dependence of chemoattractant induced changes in PI(3,4,5)P3 on PI3K and PTEN activities have not been defined. We find that bulk PI(3,4,5)P3 levels increase transiently upon chemoattractant stimulation, and the changes are greater and more prolonged in pten- cells. PI3K activation increases within 5 s of chemoattractant addition and then declines to a low level of activity identically in wild-type and pten- cells. Reconstitution of the PI3K activation profile can be achieved by mixing membranes from stimulated pi3k1-/pi3k2- cells with cytosolic PI3Ks from unstimulated cells. These studies show that significant control of chemotaxis occurs upstream of the PI3Ks and that regulation of the PI3Ks and PTEN cooperate to shape the temporal and spatial localization of PI(3,4,5)P3.  相似文献   

9.
10.
Reversible phosphoinositide phosphorylation provides a dynamic membrane code that balances opposing cell functions. However, in vivo regulatory relationships between specific kinases, phosphatases, and phosphoinositide subpools are not clear. We identified myotubularin (mtm), a Drosophila melanogaster MTM1/MTMR2 phosphoinositide phosphatase, as necessary and sufficient for immune cell protrusion formation and recruitment to wounds. Mtm-mediated turnover of endosomal phosphatidylinositol 3-phosphate (PI(3)P) pools generated by both class II and III phosphatidylinositol 3-kinases (Pi3K68D and Vps34, respectively) is needed to down-regulate membrane influx, promote efflux, and maintain endolysosomal homeostasis. Endocytosis, but not endolysosomal size, contributes to cortical remodeling by mtm function. We propose that Mtm-dependent regulation of an endosomal PI(3)P pool has separable consequences for endolysosomal homeostasis and cortical remodeling. Pi3K68D depletion (but not Vps34) rescues protrusion and distribution defects in mtm-deficient immune cells and restores functions in other tissues essential for viability. The broad interactions between mtm and class II Pi3K68D suggest a novel strategy for rebalancing PI(3)P-mediated cell functions in MTM-related human disease.  相似文献   

11.
The role of PI(3,4,5)P(3) in Dictyostelium signal transduction and chemotaxis was investigated using the PI3-kinase inhibitor LY294002 and pi3k-null cells. The increase of PI(3,4,5)P(3) levels after stimulation with the chemoattractant cAMP was blocked >95% by 60 microM LY294002 with half-maximal effect at 5 microM. This correlated well with the inhibition of the membrane translocation of the PH-domain protein, PHcracGFP. LY294002 did not reduce cAMP-mediated cGMP production, but significantly reduced the cAMP response up to 75% in wild type and completely in pi3k-null cells. LY294002-treated cells were round, not elongated as control cells. Interestingly, cAMP induced a time and dose-dependent recovery of cell elongation. These elongated LY294002-treated wild-type and pi3k-null cells exhibited chemotactic orientation toward cAMP that is statistically identical to chemotactic orientation of control cells. In control cells, PHcrac-GFP and F-actin colocalize upon cAMP stimulation. However, inhibition of PI3-kinases does not affect the first phase of the actin polymerization at a wide range of chemoattractant concentrations. Our data show that severe inhibition of cAMP-mediated PI(3,4,5)P(3) accumulation leads to inhibition of cAMP relay, cell elongation and cell aggregation, but has no detectable effect on chemotactic orientation, provided that cAMP had sufficient time to induce cell elongation.  相似文献   

12.
  相似文献   

13.
14.
15.

Background  

Sterile alpha motif (Sam) domains are small protein modules that can be involved in homotypic or heterotypic associations and exhibit different functions. Previous studies have demonstrated that the Sam domain of the lipid phosphatase Ship2 can hetero-dimerize with the Sam domain of the PI3K effector protein Arap3.  相似文献   

16.
《Current biology : CB》2014,24(10):1071-1079
  1. Download : Download high-res image (273KB)
  2. Download : Download full-size image
  相似文献   

17.
The retractile type IV pilus participates in a number of fundamental bacterial processes, including motility, DNA transformation, fruiting body formation and attachment to host cells. Retraction of the N. gonorrhoeae type IV pilus requires a functional pilT. Retraction generates substantial force on its substrate (> 100 pN per retraction event), and it has been speculated that epithelial cells sense and respond to these forces during infection. We provide evidence that piliated, Opa non-expressing Neisseria gonorrhoeae activates the stress-responsive PI-3 kinase/Akt (PKB) pathway in human epithelial cells, and activation is enhanced by a functional pilT. PI-3 kinase inhibitors wortmannin and LY294002 reduce cell entry by 81% and 50%, respectively, illustrating the importance of this cascade in bacterial invasion. PI-3 kinase and its direct downstream effectors [PI(3,4,5)P3] and Akt are concentrated in the cell cortex beneath adherent bacteria, particularly at the periphery of the bacterial microcolonies. Furthermore, [PI(3,4,5)P3] is translocated to the outer leaflet of the plasma membrane. Finally, we show that [PI(3,4,5)P3] stimulates microcolony formation and upregulates pilT expression in vitro. We conclude that N. gonorrhoeae activation of PI-3 kinase triggers the host cell to produce a lipid second messenger that influences bacterial behaviour.  相似文献   

18.
19.
A direct interaction of the Arabidopsis thaliana immunophilin ROF1 with phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-bisphosphate was identified using a phosphatidylinositol-phosphate affinity chromatography of cell suspension extracts, combined with a mass spectrometry (nano LC ESI-MS/MS) analysis. The first FK506 binding domain was shown sufficient to bind to both phosphatidylinositol-phosphate stereoisomers. GFP-tagged ROF1 under the control of a 35S promoter was localised in the cytoplasm and the cell periphery of Nicotiana tabacum leaf explants. Immunofluorescence microscopy of Arabidopsis thaliana root tips verified its cytoplasmic localization and membrane association and showed ROF1 localization in the elongation zone which was expanded to the meristematic zone in plants grown on high salt media. Endogenous ROF1 was shown to accumulate in response to high salt treatment in Arabidopsis thaliana young leaves as well as in seedlings germinated on high salt media (0.15 and 0.2 M NaCl) at both an mRNA and protein level. Plants over-expressing ROF1, (WSROF1OE), exhibited enhanced germination under salinity stress which was significantly reduced in the rof1 knock out mutants and abolished in the double mutants of ROF1 and of its interacting homologue ROF2 (WSrof1/2). Our results show that ROF1 plays an important role in the osmotic/salt stress responses of germinating Arabidopsis thaliana seedlings and suggest its involvement in salinity stress responses through a phosphatidylinositol-phosphate related protein quality control pathway.  相似文献   

20.
Lu Q  Yu J  Yan J  Wei Z  Zhang M 《Molecular biology of the cell》2011,22(22):4268-4278
Myosin X (MyoX) is an unconventional myosin that is known to induce the formation and elongation of filopodia in many cell types. MyoX-induced filopodial induction requires the three PH domains in its tail region, although with unknown underlying molecular mechanisms. MyoX's first PH domain is split into halves by its second PH domain. We show here that the PH1(N)-PH2-PH1(C) tandem allows MyoX to bind to phosphatidylinositol (3,4,5)-triphosphate [PI(3,4,5)P(3)] with high specificity and cooperativity. We further show that PH2 is responsible for the specificity of the PI(3,4,5)P(3) interaction, whereas PH1 functions to enhance the lipid membrane-binding avidity of the tandem. The structure of the MyoX PH1(N)-PH2-PH1(C) tandem reveals that the split PH1, PH2, and the highly conserved interdomain linker sequences together form a rigid supramodule with two lipid-binding pockets positioned side by side for binding to phosphoinositide membrane bilayers with cooperativity. Finally, we demonstrate that disruption of PH2-mediated binding to PI(3,4,5)P(3) abolishes MyoX's function in inducing filopodial formation and elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号