首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Studies demonstrating the involvement of motor brain structures in language processing typically focus on time windows beyond the latencies of lexical-semantic access. Consequently, such studies remain inconclusive regarding whether motor brain structures are recruited directly in language processing or through post-linguistic conceptual imagery. In the present study, we introduce a grip-force sensor that allows online measurements of language-induced motor activity during sentence listening. We use this tool to investigate whether language-induced motor activity remains constant or is modulated in negative, as opposed to affirmative, linguistic contexts.

Methodology/Principal Findings

Participants listened to spoken action target words in either affirmative or negative sentences while holding a sensor in a precision grip. The participants were asked to count the sentences containing the name of a country to ensure attention. The grip force signal was recorded continuously. The action words elicited an automatic and significant enhancement of the grip force starting at approximately 300 ms after target word onset in affirmative sentences; however, no comparable grip force modulation was observed when these action words occurred in negative contexts.

Conclusions/Significance

Our findings demonstrate that this simple experimental paradigm can be used to study the online crosstalk between language and the motor systems in an ecological and economical manner. Our data further confirm that the motor brain structures that can be called upon during action word processing are not mandatorily involved; the crosstalk is asymmetrically governed by the linguistic context and not vice versa.  相似文献   

2.

Background

Huntington''s disease (HD) causes progressive motor dysfunction through characteristic atrophy. Changes to neural structure begin in premanifest stages yet individuals are able to maintain a high degree of function, suggesting involvement of supportive processing during motor performance. Electroencephalography (EEG) enables the investigation of subtle impairments at the neuronal level, and possible compensatory strategies, by examining differential activation patterns. We aimed to use EEG to investigate neural motor processing (via the Readiness Potential; RP), premotor processing and sensorimotor integration (Contingent Negative Variation; CNV) during simple motor performance in HD.

Methods

We assessed neural activity associated with motor preparation and processing in 20 premanifest (pre-HD), 14 symptomatic HD (symp-HD), and 17 healthy controls. Participants performed sequential tapping within two experimental paradigms (simple tapping; Go/No-Go). RP and CNV potentials were calculated separately for each group.

Results

Motor components and behavioural measures did not distinguish pre-HD from controls. Compared to controls and pre-HD, symp-HD demonstrated significantly reduced relative amplitude and latency of the RP, whereas controls and pre-HD did not differ. However, early CNV was found to significantly differ between control and pre-HD groups, due to enhanced early CNV in pre-HD.

Conclusions

For the first time, we provide evidence of atypical activation during preparatory processing in pre-HD. The increased activation during this early stage of the disease may reflect ancillary processing in the form of recruitment of additional neural resources for adequate motor preparation, despite atrophic disruption to structure and circuitry. We propose an early adaptive compensation mechanism in pre-HD during motor preparation.  相似文献   

3.
4.
Professional ball game players report the feeling of the ball ‘slowing-down’ before hitting it. Because effective motor preparation is critical in achieving such expert motor performance, these anecdotal comments imply that the subjective passage of time may be influenced by preparation for action. Previous reports of temporal illusions associated with action generally emphasize compensation for suppressed sensory signals that accompany motor commands. Here, we show that the time is perceived slowed-down during preparation of a ballistic reaching movement before action, involving enhancement of sensory processing. Preparing for a reaching movement increased perceived duration of a visual stimulus. This effect was tightly linked to action preparation, because the amount of temporal dilation increased with the information about the upcoming movement. Furthermore, we showed a reduction of perceived frequency for flickering stimuli and an enhanced detection of rapidly presented letters during action preparation, suggesting increased temporal resolution of visual perception during action preparation. We propose that the temporal dilation during action preparation reflects the function of the brain to maximize the capacity of sensory information-acquisition prior to execution of a ballistic movement. This strategy might facilitate changing or inhibiting the planned action in response to last-minute changes in the external environment.  相似文献   

5.
This study analyzed specificities in the activity of the neurophysiological mechanisms underlying the organization of active word-derivation processes. The regularities in the reorganization of the spatial structure for the systemic interaction of bioelectrical activity between different cortical areas of the cerebral hemispheres were studied in adult subjects during the test for mental derivation of common root words (i.е., using the modern methods of the so-called “functional connectome” investigations). Сross-correlation and coherent analysis of EEG has shown that the ipsilateral statistical EEG interactions in the left hemisphere, including Broca’s and Wernicke’s areas, were significantly increased in adults during mental derivation of common root words and, simultaneously, the interhemispheric connectivity and the EEG interactions in the right hemisphere were reduced. Comparison of our results with the previous data of verbal activity associated with speech perception and production has revealed significant differences in the degree of involvement of the left and right hemisphere cortical activity in verbal processing. For example, unlike the data of current study, an equal involvement of both hemispheres cortical activity was recorded during the phoneme recognition in auditory perceived words, grammatical and semantic errors in sentences, as well as during mental formation of words from a set of phonemes and sentences from a set of words, which was particularly manifested in the increased of hemispheric interactions, predominantly, in the inferior frontal and temporal areas and the overlapped areas of the temporal, parietal, and occipital cortical zones (TPO) of both hemispheres. Thus, the data obtained in this study indicate the presence of expressed specificities in the lateralization of activity in the neurophysiological mechanisms underlying the processes of active word derivation and inflexion.  相似文献   

6.
Numerous previous neuroimaging studies suggest an involvement of cortical motor areas not only in action execution but also in action recognition and understanding. Motor areas of the human brain have also been found to activate during the processing of written and spoken action-related words and sentences. Even more strikingly, stimuli referring to different bodily effectors produced specific somatotopic activation patterns in the motor areas. However, metabolic neuroimaging results can be ambiguous with respect to the processing stage they reflect. This is a serious limitation when hypotheses concerning linguistic processes are tested, since in this case it is usually crucial to distinguish early lexico-semantic processing from strategic effects or mental imagery that may follow lexico-semantic information access. Timing information is therefore pivotal to determine the functional significance of motor areas in action recognition and action-word comprehension. Here, we review attempts to reveal the time course of these processes using neurophysiological methods (EEG, MEG and TMS), in visual and auditory domains. We will highlight the importance of the choice of appropriate paradigms in combination with the corresponding method for the extraction of timing information. The findings will be discussed in the general context of putative brain mechanisms of word and object recognition.  相似文献   

7.
Somatotopic representation of action words in human motor and premotor cortex   总被引:27,自引:0,他引:27  
Since the early days of research into language and the brain, word meaning was assumed to be processed in specific brain regions, which most modern neuroscientists localize to the left temporal lobe. Here we use event-related fMRI to show that action words referring to face, arm, or leg actions (e.g., to lick, pick, or kick), when presented in a passive reading task, differentially activated areas along the motor strip that either were directly adjacent to or overlapped with areas activated by actual movement of the tongue, fingers, or feet. These results demonstrate that the referential meaning of action words has a correlate in the somatotopic activation of motor and premotor cortex. This rules out a unified "meaning center" in the human brain and supports a dynamic view according to which words are processed by distributed neuronal assemblies with cortical topographies that reflect word semantics.  相似文献   

8.

Background

Theories of embodied language suggest that the motor system is differentially called into action when processing motor-related versus abstract content words or sentences. It has been recently shown that processing negative polarity action-related sentences modulates neural activity of premotor and motor cortices.

Methods and Findings

We sought to determine whether reading negative polarity sentences brought about differential modulation of cortico-spinal motor excitability depending on processing hand-action related or abstract sentences. Facilitatory paired-pulses Transcranial Magnetic Stimulation (pp-TMS) was applied to the primary motor representation of the right-hand and the recorded amplitude of induced motor-evoked potentials (MEP) was used to index M1 activity during passive reading of either hand-action related or abstract content sentences presented in both negative and affirmative polarity. Results showed that the cortico-spinal excitability was affected by sentence polarity only in the hand-action related condition. Indeed, in keeping with previous TMS studies, reading positive polarity, hand action-related sentences suppressed cortico-spinal reactivity. This effect was absent when reading hand action-related negative polarity sentences. Moreover, no modulation of cortico-spinal reactivity was associated with either negative or positive polarity abstract sentences.

Conclusions

Our results indicate that grammatical cues prompting motor negation reduce the cortico-spinal suppression associated with affirmative action sentences reading and thus suggest that motor simulative processes underlying the embodiment may involve even syntactic features of language.  相似文献   

9.
The embodied cognition hypothesis suggests that motor and premotor areas are automatically and necessarily involved in understanding action language, as word conceptual representations are embodied. This transcranial magnetic stimulation (TMS) study explores the role of the left primary motor cortex in action-verb processing. TMS-induced motor-evoked potentials from right-hand muscles were recorded as a measure of M1 activity, while participants were asked either to judge explicitly whether a verb was action-related (semantic task) or to decide on the number of syllables in a verb (syllabic task). TMS was applied in three different experiments at 170, 350 and 500 ms post-stimulus during both tasks to identify when the enhancement of M1 activity occurred during word processing. The delays between stimulus onset and magnetic stimulation were consistent with electrophysiological studies, suggesting that word recognition can be differentiated into early (within 200 ms) and late (within 400 ms) lexical-semantic stages, and post-conceptual stages. Reaction times and accuracy were recorded to measure the extent to which the participants'' linguistic performance was affected by the interference of TMS with M1 activity. No enhancement of M1 activity specific for action verbs was found at 170 and 350 ms post-stimulus, when lexical-semantic processes are presumed to occur (Experiments 1–2). When TMS was applied at 500 ms post-stimulus (Experiment 3), processing action verbs, compared with non-action verbs, increased the M1-activity in the semantic task and decreased it in the syllabic task. This effect was specific for hand-action verbs and was not observed for action-verbs related to other body parts. Neither accuracy nor RTs were affected by TMS. These findings suggest that the lexical-semantic processing of action verbs does not automatically activate the M1. This area seems to be rather involved in post-conceptual processing that follows the retrieval of motor representations, its activity being modulated (facilitated or inhibited), in a top-down manner, by the specific demand of the task.  相似文献   

10.
Current theoretical positions assume that action-related word meanings are established by functional connections between perisylvian language areas and the motor cortex (MC) according to Hebb's associative learning principle. To test this assumption, we probed the functional relevance of the left MC for learning of a novel action word vocabulary by disturbing neural plasticity in the MC with transcranial direct current stimulation (tDCS). In combination with tDCS, subjects learned a novel vocabulary of 76 concrete, body-related actions by means of an associative learning paradigm. Compared with a control condition with "sham" stimulation, cathodal tDCS reduced success rates in vocabulary acquisition, as shown by tests of novel action word translation into the native language. The analysis of learning behavior revealed a specific effect of cathodal tDCS on the ability to associatively couple actions with novel words. In contrast, we did not find these effects in control experiments, when tDCS was applied to the prefrontal cortex or when subjects learned object-related words. The present study lends direct evidence to the proposition that the left MC is causally involved in the acquisition of novel action-related words.  相似文献   

11.
Bilingualism provides a unique opportunity for understanding the relative roles of proficiency and order of acquisition in determining how the brain represents language. In a previous study, we combined magnetoencephalography (MEG) and magnetic resonance imaging (MRI) to examine the spatiotemporal dynamics of word processing in a group of Spanish-English bilinguals who were more proficient in their native language. We found that from the earliest stages of lexical processing, words in the second language evoke greater activity in bilateral posterior visual regions, while activity to the native language is largely confined to classical left hemisphere fronto-temporal areas. In the present study, we sought to examine whether these effects relate to language proficiency or order of language acquisition by testing Spanish-English bilingual subjects who had become dominant in their second language. Additionally, we wanted to determine whether activity in bilateral visual regions was related to the presentation of written words in our previous study, so we presented subjects with both written and auditory words. We found greater activity for the less proficient native language in bilateral posterior visual regions for both the visual and auditory modalities, which started during the earliest word encoding stages and continued through lexico-semantic processing. In classical left fronto-temporal regions, the two languages evoked similar activity. Therefore, it is the lack of proficiency rather than secondary acquisition order that determines the recruitment of non-classical areas for word processing.  相似文献   

12.
Despite the clear importance of language in our life, our vital ability to quickly and effectively learn new words and meanings is neurobiologically poorly understood. Conventional knowledge maintains that language learning—especially in adulthood—is slow and laborious. Furthermore, its structural basis remains unclear. Even though behavioural manifestations of learning are evident near instantly, previous neuroimaging work across a range of semantic categories has largely studied neural changes associated with months or years of practice. Here, we address rapid neuroanatomical plasticity accompanying new lexicon acquisition, specifically focussing on the learning of action-related language, which has been linked to the brain’s motor systems. Our results show that it is possible to measure and to externally modulate (using transcranial magnetic stimulation (TMS) of motor cortex) cortical microanatomic reorganisation after mere minutes of new word learning. Learning-induced microstructural changes, as measured by diffusion kurtosis imaging (DKI) and machine learning-based analysis, were evident in prefrontal, temporal, and parietal neocortical sites, likely reflecting integrative lexico-semantic processing and formation of new memory circuits immediately during the learning tasks. These results suggest a structural basis for the rapid neocortical word encoding mechanism and reveal the causally interactive relationship of modal and associative brain regions in supporting learning and word acquisition.

This combined neuroimaging and brain stimulation study reveals rapid and distributed microstructural plasticity after a single immersive language learning session, demonstrating the causal relevance of the motor cortex in encoding the meaning of novel action words.  相似文献   

13.
The grounded cognition framework proposes that sensorimotor brain areas, which are typically involved in perception and action, also play a role in linguistic processing. We assessed oscillatory modulation during visual presentation of single verbs and localized cortical motor regions by means of isometric contraction of hand and foot muscles. Analogously to oscillatory activation patterns accompanying voluntary movements, we expected a somatotopically distributed suppression of beta and alpha frequencies in the motor cortex during processing of body-related action verbs. Magnetoencephalographic data were collected during presentation of verbs that express actions performed using the hands (H) or feet (F). Verbs denoting no bodily movement (N) were used as a control. Between 150 and 500 msec after visual word onset, beta rhythms were suppressed in H and F in comparison with N in the left hemisphere. Similarly, alpha oscillations showed left-lateralized power suppression in the H-N contrast, although at a later stage. The cortical oscillatory activity that typically occurs during voluntary movements is therefore found to somatotopically accompany the processing of body-related verbs. The combination of a localizer task with the oscillatory investigation applied to verb reading as in the present study provides further methodological possibilities of tracking language processing in the brain.  相似文献   

14.
Embodied/modality-specific theories of semantic memory propose that sensorimotor representations play an important role in perception and action. A large body of evidence supports the notion that concepts involving human motor action (i.e., semantic-motor representations) are processed in both language and motor regions of the brain. However, most studies have focused on perceptual tasks, leaving unanswered questions about language-motor interaction during production tasks. Thus, we investigated the effects of shared semantic-motor representations on concurrent language and motor production tasks in healthy young adults, manipulating the semantic task (motor-related vs. nonmotor-related words) and the motor task (i.e., standing still and finger-tapping). In Experiment 1 (n = 20), we demonstrated that motor-related word generation was sufficient to affect postural control. In Experiment 2 (n = 40), we demonstrated that motor-related word generation was sufficient to facilitate word generation and finger tapping. We conclude that engaging semantic-motor representations can have a reciprocal influence on motor and language production. Our study provides additional support for functional language-motor interaction, as well as embodied/modality-specific theories.  相似文献   

15.
McGuigan's neuromuscular model of information processing (1978a, 1978b, and 1989) was investigated by electrically recording eye movements (electro-oculograms), covert lip and preferred arm responses (electromyograms), and electroencephalograms. This model predicts that codes are generated as the lips are uniquely activated when processing words beginning with bilabial sounds like "p" or "b," as is the right arm to words like "pencil" that refer to its use. Twelve adult female participants selected for their high imagery ratings were asked to form images to three orally presented linguistic stimuli: the letter "p," the words "pencil" and "pasture," and to a control stimulus, the words "go blank." The following findings were significant beyond the 0.05 level: an increased covert lip response only to the letter "p," increased vertical eye activity to "p" and to the word "pencil," right arm response only to the word "pencil," and a decreased percentage of alpha waves from the right 02 lead only to the word "pasture." Since these covert responses uniquely occurred during specific imagery processes, it is inferred that they are components of neuromuscular circuits that function in accord with the model of information processing tested.  相似文献   

16.
We conducted a preliminary study to examine whether Chinese readers’ spontaneous word segmentation processing is consistent with the national standard rules of word segmentation based on the Contemporary Chinese language word segmentation specification for information processing (CCLWSSIP). Participants were asked to segment Chinese sentences into individual words according to their prior knowledge of words. The results showed that Chinese readers did not follow the segmentation rules of the CCLWSSIP, and their word segmentation processing was influenced by the syntactic categories of consecutive words. In many cases, the participants did not consider the auxiliary words, adverbs, adjectives, nouns, verbs, numerals and quantifiers as single word units. Generally, Chinese readers tended to combine function words with content words to form single word units, indicating they were inclined to chunk single words into large information units during word segmentation. Additionally, the “overextension of monosyllable words” hypothesis was tested and it might need to be corrected to some degree, implying that word length have an implicit influence on Chinese readers’ segmentation processing. Implications of these results for models of word recognition and eye movement control are discussed.  相似文献   

17.
The hedonic meaning of words affects word recognition, as shown by behavioral, functional imaging, and event-related potential (ERP) studies. However, the spatiotemporal dynamics and cognitive functions behind are elusive, partly due to methodological limitations of previous studies. Here, we account for these difficulties by computing combined electro-magnetoencephalographic (EEG/MEG) source localization techniques. Participants covertly read emotionally high-arousing positive and negative nouns, while EEG and MEG were recorded simultaneously. Combined EEG/MEG current-density reconstructions for the P1 (80–120 ms), P2 (150–190 ms) and EPN component (200–300 ms) were computed using realistic individual head models, with a cortical constraint. Relative to negative words, the P1 to positive words predominantly involved language-related structures (left middle temporal and inferior frontal regions), and posterior structures related to directed attention (occipital and parietal regions). Effects shifted to the right hemisphere in the P2 component. By contrast, negative words received more activation in the P1 time-range only, recruiting prefrontal regions, including the anterior cingulate cortex (ACC). Effects in the EPN were not statistically significant. These findings show that different neuronal networks are active when positive versus negative words are processed. We account for these effects in terms of an “emotional tagging” of word forms during language acquisition. These tags then give rise to different processing strategies, including enhanced lexical processing of positive words and a very fast language-independent alert response to negative words. The valence-specific recruitment of different networks might underlie fast adaptive responses to both approach- and withdrawal-related stimuli, be they acquired or biological.  相似文献   

18.
The present study was carried out to investigate whether sign language structure plays a role in the processing of complex words (i.e., derivational and compound words), in particular, the delay of complex word reading in deaf adolescents. Chinese deaf adolescents were found to respond faster to derivational words than to compound words for one-sign-structure words, but showed comparable performance for two-sign-structure words. For both derivational and compound words, response latencies to one-sign-structure words were shorter than to two-sign-structure words. These results provide strong evidence that the structure of sign language affects written word processing in Chinese. Additionally, differences between derivational and compound words in the one-sign-structure condition indicate that Chinese deaf adolescents acquire print morphological awareness. The results also showed that delayed word reading was found in derivational words with two signs (DW-2), compound words with one sign (CW-1), and compound words with two signs (CW-2), but not in derivational words with one sign (DW-1), with the delay being maximum in DW-2, medium in CW-2, and minimum in CW-1, suggesting that the structure of sign language has an impact on the delayed processing of Chinese written words in deaf adolescents. These results provide insight into the mechanisms about how sign language structure affects written word processing and its delayed processing relative to their hearing peers of the same age.  相似文献   

19.
Using functional magnetic resonance imaging during a primed visual lexical decision task, we investigated the neural and functional mechanisms underlying modulations of semantic word processing through hypnotic suggestions aimed at altering lexical processing of primes. The priming task was to discriminate between target words and pseudowords presented 200 ms after the prime word which was semantically related or unrelated to the target. In a counterbalanced study design, each participant performed the task once at normal wakefulness and once after the administration of hypnotic suggestions to perceive the prime as a meaningless symbol of a foreign language. Neural correlates of priming were defined as significantly lower activations upon semantically related compared to unrelated trials. We found significant suggestive treatment-induced reductions in neural priming, albeit irrespective of the degree of suggestibility. Neural priming was attenuated upon suggestive treatment compared with normal wakefulness in brain regions supporting automatic (fusiform gyrus) and controlled semantic processing (superior and middle temporal gyri, pre- and postcentral gyri, and supplementary motor area). Hence, suggestions reduced semantic word processing by conjointly dampening both automatic and strategic semantic processes.  相似文献   

20.

Background

Behavioral studies have provided evidence for an action–sentence compatibility effect (ACE) that suggests a coupling of motor mechanisms and action-sentence comprehension. When both processes are concurrent, the action sentence primes the actual movement, and simultaneously, the action affects comprehension. The aim of the present study was to investigate brain markers of bidirectional impact of language comprehension and motor processes.

Methodology/Principal Findings

Participants listened to sentences describing an action that involved an open hand, a closed hand, or no manual action. Each participant was asked to press a button to indicate his/her understanding of the sentence. Each participant was assigned a hand-shape, either closed or open, which had to be used to activate the button. There were two groups (depending on the assigned hand-shape) and three categories (compatible, incompatible and neutral) defined according to the compatibility between the response and the sentence. ACEs were found in both groups. Brain markers of semantic processing exhibited an N400-like component around the Cz electrode position. This component distinguishes between compatible and incompatible, with a greater negative deflection for incompatible. Motor response elicited a motor potential (MP) and a re-afferent potential (RAP), which are both enhanced in the compatible condition.

Conclusions/Significance

The present findings provide the first ACE cortical measurements of semantic processing and the motor response. N400-like effects suggest that incompatibility with motor processes interferes in sentence comprehension in a semantic fashion. Modulation of motor potentials (MP and RAP) revealed a multimodal semantic facilitation of the motor response. Both results provide neural evidence of an action-sentence bidirectional relationship. Our results suggest that ACE is not an epiphenomenal post-sentence comprehension process. In contrast, motor-language integration occurring during the verb onset supports a genuine and ongoing brain motor-language interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号