首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RELAX-JT2 is an extension of RELAX, a program for the simulation of 1H 2D NOESY spectra and (15)N or (13)C edited 3D NOESY-HSQC spectra of biological macromolecules. In addition to the already existing NOE-simulation it allows the proper simulation of line shapes by the integrated calculation of T(2) times and multiplet structures caused by J-couplings. Additionally the effects of relaxation mediated by chemical shift anisotropy are taken into account. The new routines have been implemented in the program AUREMOL, which aims at the automated NMR structure determination of proteins in solution. For a manual or automatic assignment of experimental spectra that is based on the comparison with the corresponding simulated spectra, the additional line shape information now available is a valuable aid. The new features have been successfully tested with the histidine-containing phosphocarrier protein HPr from Staphylococcus carnosus.  相似文献   

2.
Summary A data processing method is described which reduces the effects of t1 noise artifacts and improves the presentation of 2D NMR spectral data. A t1 noise profile is produced by measuring the average noise in each column. This profile is then used to determine weighting coefficients for a sliding weighted smoothing filter that is applied to each row, such that the amount of smoothing each point receives is proportional to both its estimated t1 noise level and the level of t1 noise of neighbouring points. Thus, points in the worst t1 noise bands receive the greatest smoothing, whereas points in low-noise regions remain relatively unaffected. In addition, weighted smoothing allows points in low-noise regions to influence neighbouring points in noisy regions. This method is also effective in reducing the noise artifacts associated with the solvent resonance in spectra of biopolymers in aqueous solution. Although developed primarily to improve the quality of 2D NMR spectra of biopolymers prior to automated analysis, this approach should enhance processing of spectra of a wide range of compounds and can be used whenever noise occurs in discrete bands in one dimension of a multi-dimensional spectrum.  相似文献   

3.
Relaxation measurements of side-chain 13CH2-groups of uniformly 13C labeled human ubiquitin were performed at 600 MHz and 800 MHz magnetic field strength at 30°C. Dipole-dipole cross-correlated relaxation effects in T1 experiments were suppressed by the combination of radio-frequency pulses and pulsed field gradients during the relaxation delay leading to monoexponential relaxation decays that allow a more accurate extraction of the 13C T1 relaxation times. Heteronuclear 1H-13C NOEs obtained by using different proton saturation schemes indicate that the influence of cross-correlation is small. The experimental T1 and NOE data were interpreted in a model-free way in terms of a generalized order parameter and an internal correlation time.  相似文献   

4.
Summary Infrared and proton resonance spectra have been used to characterize fraction extracted sequentially from humic and fulvic acids by diethylether, acetone, dioxane, tetrahydrofuran, pyridine and dimethylformamide. The results showed that the same solvents extracted structurally similar components from both humic and fulvic acids. On the other hand, the spectra showed solvent-dependent differences, some being characteristic for a preponderance of aliphatic structures, others for aromatic structures.  相似文献   

5.
Relaxation compensated constant-time Carr–Purcell–Meiboom–Gill relaxation dispersion experiments for amide protons are presented that detect s-ms time-scale dynamics of protein backbone amide sites. Because of their ten-fold larger magnetogyric ratio, much shorter 180° pulses can be applied to 1H than to 15N spins; therefore, off-resonance effects are reduced and a wider range of effective rf fields can often be used in the case of 1H experiments. Applications to [1H-15N]-ubiquitin and [1H-15N]-perdeuterated HIV-1 protease are discussed. In the case of ubiquitin, we present a pulse sequence that reduces artifacts that arise from homonuclear 3J(HN-H) coupling. In the case of the protease, we show that relaxation dispersion of both 1H and 15N spins provides a more comprehensive picture of slow backbone dynamics than does the relaxation dispersion of either spin alone. We also compare the relative merits of 1H versus 15N transverse relaxation measurements and note the benefits of using a perdeuterated protein to measure the relaxation dispersion of both spin types.  相似文献   

6.
The 15N steady-state magnetization in the presence of off-resonance rf irradiation is an analytical function of the T1/T2 ratio and of the angle between the 15N effective field axis and the static magnetic field direction. This relation holds whatever the relaxation mechanisms due to motions on the nanosecond time scale, and the size of the spin system. If motions on the micro- to millisecond time scale are present (fast exchange), the same observable depends also on their spectral density at the frequency of the effective field. The cross-peak intensity in each 2D 15N-1H correlation map is directly related to the dynamic parameters, so that the characterization of fast exchange phenomena by this method is in principle less time-consuming than the separate measurement of self-relaxation rates. The theory of this approach is described. Its practical validity is experimentally evaluated on a 15N-labeled 61 amino acid neurotoxin. It turns out that existing equipments lead to non-negligible biases. Their consequences for the accuracy attainable, at present, by this method are investigated in detail.  相似文献   

7.
The nuclear magnetic resonance (NMR) parameters, spin-lattice (T1), and spin-spin (T2) relaxation time, are usually longer for neoplastic cells than for normal cells of the same cell type. This has generally been true at low NMR frequencies (≤100 MHz) when comparisons have been made between normal and neoplastic cells that have both spent a short time in culture. We have previously demonstrated that although the T1 values of paired normal and neoplastic Syrian hamster (SH) fibroblastic cells in culture are not significantly different when measured at 300 MHz, the 300 MHz T2 values for the neoplastic cells are smaller than those of the normal cells. (Xin et al. (1986),Cell Biophysics 8, 213.) Since treatment of normal diploid cells with polypeptide growth factors or tumor promoters frequently results in reversible expression of neoplasia-associated phenotypes, T1 and T2 were obtained at 300 MHz for treated and untreated SH cells to see if these compounds could also produce smaller 300 MHz T2 values. Secondary culture SH fetal fibroblast cells were treated with epidermal growth factor (EGF), fibroblast growth factor (FGF), phorbol-12,13-didecanoate (PDD) and 4-α-phorbol-12,13-didecanoate (4αPDD). Treatment with either growth factor resulted in smaller T2 values, but a statistically significant decrease was not observed for PDD or 4αPDD. The observed reductions in T2 values were correlated with the morphological and growth-stimulatory effects of these compounds on the cells.  相似文献   

8.
A simple device for taking in situ proton NMR measurements in 1H2O is described. This allows aeration of reactions in a 10 mm diameter NMR tube without modifying the magnet or the probe head. With this device, aerobic biotransformations can be monitored in the NMR-tube placed in the spectrometer. It allows in situ analyses of the transformations, separating the aeration period temporally from the measurement time, not unlike traditional Warburg respiratory experiments. Two reactions determining kinetic and stoichieometric parameters: (i) a biotransformation by a growing Pseudomonas putida culture and (ii) l-phenylalanine oxidation catalysed by l-amino acid oxidase [E.C. 1.4.3.2]; both incubations were contained in the magnet.  相似文献   

9.
The nuclear magnetic resonance spin-lattice (T1) and spin-spin (T2) relaxation times are closely related to the molecular motions of the molecules in a liquid sample. T1 and T2 of human epidermal cells were measured at 300 MHz as functions of harvesting methods (i.e., scraping vs trypsinization) and age in culture. It was found that T1 and T2 values have smaller variances when the cell is harvested by trypsinization rather than scraping. The correlation coefficients for both T1 and T2, obtained from cells harvested by trypsinization, are much higher than those obtained from cells harvested by scraping. More importantly, this is the first report to monitor in vitro aging through relaxation times measurement. There is a significant increase in the values of T1 and T2 from the third to seventh passages. Human keratinocytes slowed down and even ceased to grow the seventh passage. Therefore, the cellular water molecules of human keratinocytes have higher mobility in a more differentiated state. The factors contributing to the change in relaxation times as cells progress toward senescence are discussed.  相似文献   

10.
The present work reports on the first attempt to study water mobility in phototrophic biofilms, applying the 1H-NMR relaxometry technique to closely monitored microbial communities grown in a microcosm under controlled ambient conditions. Longitudinal water proton relaxation times exhibited a bi-exponential behavior in all biofilm samples, indicating two types of water molecules with diverging dynamic properties, confined to different compartments of the biofilm. The fast-relaxing component can be attributed to water molecules tightly bound to the intracellular matrix, while the slow-relaxing component could reflect the behavior of water embedded in the biopolymer matrix, confined into matrix pores and channels. The results are discussed with respect to a possible key role of exopolysaccharides and uronic acids in water binding in phototrophic biofilms.  相似文献   

11.
TheT 1 andT 2 relaxation times of water protons in two cell types in culture derived from Syrian hamster fetuses (normal primary or secondary fetal cells vs BP6T tumor cells derived from the normal cells transformed by carcinogens) were measured at 7.05 Tesla magnetic field (proton frequency =300 MHz). TheT 1/T 2 ratios and the correlation time, τ c , calculated from theT 1/T 2 ratio of cellular water protons, are significantly different in these two fibroblastic cell types of the same biological origin and with similar morphologies and growth rates in culture.  相似文献   

12.
The saturation transfer difference (STD) experiment is a rich source of information on topological aspects of ligand binding to a receptor. The epitope mapping is based on a magnetization transfer after signal saturation from the receptor to the ligand, where interproton distances permit this process. Signal overlap in the STD spectrum can cause difficulties to correctly assign and/or quantitate the measured enhancements. To address this issue we report here a modified version of the routine experiment and a processing scheme that provides a 1D-STD homodecoupled spectrum (i.e. an experiment in which all STD signals appear as singlets) with line widths similar to those in original STD spectrum. These refinements contribute to alleviate problems of signal overlap. The experiment is based on 2D-J-resolved spectroscopy, one of the fastest 2D experiments under conventional data sampling in the indirect dimension, and provides excellent sensitivity, a key factor for the difference experiments. Electronic Supplementary Material Supplementary material is available to authorized users in the online version of this article at .  相似文献   

13.
Frequency-dependent values of the spin-lattice relaxation time (T1) and the spin-spin relaxation time (T2) have been obtained for intracellular water in normal and transformed Syrian hamster fetal fibroblasts. Values of T1 and T2 were obtained for normal and transformed cells at 24.3 (0.57 T), 100 (2.4 T), 300 (7.0 T), and 400 MHz (9.4 T). At each frequency, values of T1 were the same for both normal and transformed cells, whereas values of T2 were lower for one passage of transformed cells. As expected, T1 increased with frequency. However, T2 decreased with frequency for both normal and transformed cells. The frequency dependence of T2, was similar for all cells; thus, the ability of T2 to make a distinction between normal and transformed cells did not change with field.  相似文献   

14.
Differently bound water molecules of dipalmitoylphosphatidylcholine (DPPC)-H2O system were investigated with differential scanning calorimetry (DSC). According to a method previously reported by us, the ice-melting DSC curves of the DPPC-H2O samples of varying water contents were deconvoluted into multiple components, and the ice-melting enthalpies for the individual deconvoluted components were used to estimate average molar ice-melting enthalpies for freezable interlamellar and bulk waters, respectively. With these average molar ice-melting enthalpies, the numbers of differently bound water molecules of the DPPC-H2O system were calculated at varying water contents and were used to construct a water distribution diagram of this system. Furthermore, to evaluate the reliability of the present DSC deconvolution method, 2H-NMR T1 measurements of DPPC-2H2O system were carried out at 5 °C of the gel phase temperature, and components and fractions for differently bound water (2H2O) molecules were estimated from the analysis of nonexponential magnetization recovery curves.  相似文献   

15.
A constant-time, Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation, R(2), dispersion experiment for carbonyl carbons was designed and executed to detect micros-ms time-scale dynamics of protein backbone carbonyl sites. Because of the large (ca. 55 Hz) C(alpha)-C' J-coupling, the carbonyl signal intensity is strongly modulated as the spacing between CPMG pulses is varied, in uniformly (13)C enriched proteins, unless care is taken to minimize the perturbation of the C(alpha) magnetization by the CPMG pulses. CPMG pulse trains consisting of either a band-selective pulse, such as RE-BURP, or rectangular (with an excitation null in the C(alpha) region of the spectrum) pulses were employed in order to minimize C' signal modulation by C(alpha)-C' J-coupling. The performance of these types of CPMG refocusing pulses was assessed by computer simulation, and by comparing dispersion profiles measured for (1) uniformly [(13)C,(15)N, (2)H] ((2)H at non-labile hydrogen sites) labeled, and (2) uniformly (15)N/selectively-(13)C' labeled samples of HIV-1 protease bound to a potent inhibitor, DMP323. In addition, because the uniformly (13)C/(15)N/(2)H labeled sample was well suited to measure (15)N and (1)H R(2) dispersion as well as (13)C' dispersion, conformational exchange in the inter subunit beta-sheet hydrogen-bond network of the inhibitor-bound protease was elucidated using relaxation dispersion data of all three types of nuclei.  相似文献   

16.
Summary The solvent-exposed regions of [U-13C]ascomycin when bound to its putative target protein; FKBP, have been identified based on the different proton longitudinal relaxation rates (R1 = 1/T1) measured in the absence and presence of the paramagnetic relaxation reagent, 4-hydroxy-2,2,6,6-tetramethyl-piperidinyl-I-oxy (HyTEMPO). The proton T1s of bound ascomycin were determined using a pulse sequence (T1-HMQC) which consists of a 180° proton pulse and a variable delay () followed by a heteronuclear multiple quantum correlation (HMQC) experiment. The solvent-exposed regions of ascomycin determined by these experiments are compared to NOE data in which ascomycin/FKBP contacts were identified and to the X-ray structure of the FK-506/FKBP complex.  相似文献   

17.
Summary A search algorithm, called MEDUSA, is presented which allows the determination of multiple conformations of biomolecules in solution with exchange rate constants typically between 103 and 107 s–1 on the basis of experimental high-resolution NMR data. Multiples of structures are generated which are consistent as ensembles with NMR cross-relaxation rates (NOESY, ROESY), scalar J-coupling constants, and T1p measurements. The algorithm is applied to the cyclic decapeptide antamanide dissolved in chloroform. The characteristic radio-frequency field dependence of the T1p relaxation rates found for the NH protons of Val1 and Phe6 can be explained by a dynamical exchange between two structures.  相似文献   

18.
Tan SN  Burgar I  Chen M 《Bioresource technology》2011,102(19):9143-9147
NMR relaxation measurements can provide a simple means for understanding biological activity of cells in solution with known composition. It has the advantage that it is an in situ, non-intrusive technique, and the acquisition is fast. The iron oxidation ability of Acidithiobacillus ferrooxidans was investigated using NMR relaxation measurements. The transversal relaxation is characterized by a time constant, T?, which is sensitive to the chemical environment. Fe3? ion has more significant T? shortening than Fe2? ion. In the presence of A. ferrooxidans in solutions containing Fe2? ion, T? shortening was found with increasing time as the bacteria oxidize Fe2? to Fe3? ions. In the optimal growth medium, the bacteria concentration increased 80 times and high iron oxidation rate was found. In 10 mM K?SO? medium, however, bacteria concentration remained almost unchanged and the iron oxidation rate was significantly lower.  相似文献   

19.
The determination of ginkgolic acids in Ginkgo products is one of the principal components of quality control. However, a number of ginkgolic acids with different side chains may be present and this makes their analysis by conventional chromatographic methods more complex. In this study, 1H-NMR spectrometry was applied to the analysis of the total content of ginkgolic acids in leaves of Ginkgo biloba and in six types of commercial Ginkgo products in the absence of chromatographic purification. For this analysis, protons H-3, H-4, and H-5, which are well separated in the range 8 (ppm) 6.5-7.5 in the 1H-NMR spectrum, were utilised. For further confirmation, the correlations of H-3, H-4 and H-5 were examined by 1H-1H COSY spectra in all extracts. The quantity of the compounds was calculated from the relative ratio of the integral of each peak to the integral of the peaks of a known amount (100 microg) of anthracene used as an internal standard. The quantitative results obtained by 1H-NMR analysis were compared with those obtained by GC, which showed that the 1H-NMR method allows a simple quantification of total ginkgolic acids in Ginkgo extracts without any pre-purification steps.  相似文献   

20.
Here we report a fast, simple purification for thermophilic F1F0 ATP synthase (TF1F0) that utilizes a cocktail of stabilizing reagents and the detergent n-dodecyl beta-D-maltoside to yield enzyme with an ATPase activity of 41 micromol/min/mg, 2.5-fold higher than that previously reported. ATPase activity was 80% inhibited by the F0-reactive reagent dicyclohexylcarbodiimide, indicating that F1-F0 interactions were largely intact. To measure ATP-driven proton pumping activity, purified TF1F0 was incorporated into liposomes, and the ATP-induced change in internal pH was measured using the fluorescent probe pyranine. In the presence of valinomycin, a maximum ATP-driven deltapH of 0.8 units was obtained. To measure ATP synthesis activity, TF1F0 was incorporated into liposomes with the light-dependent proton pump bacteriorhodopsin. Proteoliposomes were illuminated to generate an electrochemical gradient, after which ADP and inorganic phosphate were added to initiate ATP synthesis. A steady state ATP synthesis activity of 490 nmol/min/mg was achieved after an initial approximately 30-min lag phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号