首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between fascicle and tendinous tissues (TT) in short-contact drop jumps (DJ) with three different drop heights [low (Low), optimal (OP), and high (High)] was examined with 11 subjects. The ground reaction force (F(z)) and ankle and knee joint angles were measured together with real-time ultrasonography (fascicle length) and electromyographic activities of the medial gastrocnemius (MG) and vastus lateralis (VL) muscles during the movement. With increasing drop height, the braking force and flight time increased from Low to OP (P < 0.05). In High, the braking force increased but the flight time decreased compared with OP (P < 0.05). During contact of Low and OP conditions, the length of muscle-tendon unit and TT underwent lengthening before shortening in both MG and VL muscles. However, the two muscles differed in the fascicle behaviors. The MG fascicles behaved isometrically or shortened, and the VL fascicles underwent lengthening before shortening during contact. In High, the TT lengthening in both muscles decreased compared with OP (P < 0.05). The rapid stretch occurred in the MG fascicles but not in VL fascicles during the braking phase. The elastic recoil ratio decreased in both muscles with increasing the intensity during DJ. These findings demonstrated that TT underwent lengthening before shortening during DJ. However, the efficacy of elastic recoil decreased with increasing the drop intensity. The effective catapult action in TT can be limited by the drop intensity. In addition, the measured muscles behaved differently during DJ, providing evidence that each muscle may have a specific means of fascicle-TT interaction.  相似文献   

2.
The present study was designed to examine fascicle-tendon interaction in the synergistic medial gastrocnemius (MG) and soleus (Sol) muscles during drop jumps (DJ) performed from different drop heights (DH). Eight subjects performed unilateral DJ with maximal rebounds on a sledge apparatus from different DH. During the exercises, fascicle lengths (using ultrasonography) and electromyographic activities were recorded. The results showed that the fascicles of the MG and Sol muscles behaved differently during the contact phase, but the whole muscle-tendon unit and its tendinous tissue lengthened before shortening in both muscles. The Sol fascicles also lengthened before shortening during the ground contact in all conditions. During the braking phase, the Sol activation increased with increasing DH. However, the amplitude of Sol fascicle lengthening was not dependent on DH during the same phase. In the MG muscle, the fascicles primarily shortened during the braking phase in the lower DH condition. However, in the higher DH conditions, the MG fascicles either behaved isometrically or were lengthened during the braking phase. These results suggest that the fascicles of synergistic muscles (MG and Sol) can behave differently during DJ and that, with increasing DH, there may be specific length change patterns of the fascicles of MG but not of Sol.  相似文献   

3.
The present study investigated the differences between the human medial gastrocnemius (MG) and soleus (SOL) muscles in length changes of muscle fascicles and tendinous tissues during twitch contraction induced by an electrical nerve stimulus. Also, the time-course characteristics of twitch torque were related with changes in the length of muscle fascicles and tendinous tissues. No significant difference was observed between MG and SOL in contraction and half relaxation times of the changes in lengths and velocities of both muscle fascicles and tendinous tissues. The time-course of changes in twitch torque was nearly identical to that of the length of muscle fascicles and tendinous tissues. It was suggested that the behavior of MG and SOL during twitch contraction is practically similar in spite of their known physiological and architectural differences, and that the time-course of twitch torque is greatly influenced by the changes in the length of muscle fascicles and tendinous tissues.  相似文献   

4.
Human movement requires an ongoing, finely tuned interaction between muscular and tendinous tissues, so changes in the properties of either tissue could have important functional consequences. One condition that alters the functional demands placed on lower limb muscle-tendon units is the use of high-heeled shoes (HH), which force the foot into a plantarflexed position. Long-term HH use has been found to shorten medial gastrocnemius muscle fascicles and increase Achilles tendon stiffness, but the consequences of these changes for locomotor muscle-tendon function are unknown. This study examined the effects of habitual HH use on the neuromechanical behavior of triceps surae muscles during walking. The study population consisted of 9 habitual high heel wearers who had worn shoes with a minimum heel height of 5 cm at least 40 h/wk for a minimum of 2 yr, and 10 control participants who habitually wore heels for less than 10 h/wk. Participants walked at a self-selected speed over level ground while ground reaction forces, ankle and knee joint kinematics, lower limb muscle activity, and gastrocnemius fascicle length data were acquired. In long-term HH wearers, walking in HH resulted in substantial increases in muscle fascicle strains and muscle activation during the stance phase compared with barefoot walking. The results suggest that long-term high heel use may compromise muscle efficiency in walking and are consistent with reports that HH wearers often experience discomfort and muscle fatigue. Long-term HH use may also increase the risk of strain injuries.  相似文献   

5.
The plantarflexors of the lower limb are often assumed to act as independent actuators, but the validity of this assumption is the subject of considerable debate. This study aims to determine the degree to which passive changes in gastrocnemius muscle length, induced by knee motion, affect the tension in the adjacent soleus muscle. A second aim is to quantify the magnitude of myofascial passive force transmission between gastrocnemius and adjacent soleus. Fifteen healthy volunteers participated. Simultaneous ultrasound images of the gastrocnemius and soleus muscles were obtained during passive knee flexion (0-90°), while keeping the ankle angle fixed at either 70° or 115°. Image correlation analysis was used to quantify muscle fascicle lengths in both muscles. The data show that the soleus muscle fascicles elongate significantly during gastrocnemius shortening. The approximate change in passive soleus force as a result of the observed change in fascicle length was estimated and appears to be <5 N, but this estimate is sensitive to the assumed slack length of soleus.  相似文献   

6.
Ultrasonography was used to directly measure in vivo fascicle behavior of the medial gastrocnemius (MG) and soleus (SOL) muscles while the subjects (n=6 men) performed maximal voluntary concentric and eccentric plantar flexions at 60, 120, 180 and 240 deg/s. Fascicle shortening and lengthening velocities of MG, obtained from fascicle length changes over time, were significantly higher than those of SOL at +/-120, +/-180 and +240 deg/s, possibly reflecting physiological and mechanical differences between these muscles. On the other hand, the effective fascicle shortening and lengthening velocities, defined as the velocities in the longitudinal direction of muscle belly, were not significantly different between MG and SOL. This could be due to difference in fascicle architecture and/or the existence of mechanical linkages between these muscles. Moreover, when the contribution of tendinous tissues to muscle-tendon complex length change was determined from fascicle length, pennation angle, moment arm and joint angle, it accounted for approximately 50% in both concentric and eccentric trials, but showed considerable intra-subject variations. This result quantifiably demonstrates the importance of tendinous tissues in isokinetically controlled joint movements.  相似文献   

7.
Behavior of fascicles and tendinous structures of human gastrocnemius medialis (MG) was determined by use of ultrasonography in vivo during jumping. Eight male subjects jumped vertically without countermovement (squat jump, SQJ). Simultaneously, kinematics, kinetics, and electromyography from lower leg muscles were recorded during SQJ. During phase I (-350 to -100 ms before toe-off), muscle-tendon complex (MTC) length was almost constant. Fascicles, however, shortened by 26%, and tendinous structures were stretched by 6%, storing elastic energy of 4.9 J during phase I. During phase II (-100 ms to toe-off), although fascicles generated force quasi-isometrically, MTC shortened rapidly by 5.3%, releasing prestored elastic energy with a higher peak positive power than that of fascicles. Also, the compliance of tendinous structures in vivo was somewhat higher than that of external tendon used in the simulation studies. The results demonstrate that the compliance of tendinous structures, together with no yielding of muscle fibers, allows MTC to effectively generate relatively large power at a high joint angular velocity region during the last part of push-off.  相似文献   

8.
Ultrasound imaging has recently been used to distinguish the length changes of muscle fascicles from those of the whole muscle tendon complex during real life movements. The complicated three-dimensional architecture of pennate muscles can however cause heterogeneity in the length changes along the length of a muscle. Here we use ultrasonography to examine muscle fascicle length and pennation angle changes at proximal, distal and midbelly sites of the human gastrocnemius medialis (GM) muscle during walking (4.5 km/h) and running (7.5 km/h) on a treadmill. The results of this study have shown that muscle fascicles perform the same actions along the length of the human GM muscle during locomotion. However the distal fascicles tend to shorten more and act at greater pennation angles than the more proximal fascicles. Muscle fascicles acted relatively isometrically during the stance phase during walking, however during running the fascicles shortened throughout the stance phase, which corresponded to an increase in the strain of the series elastic elements (SEEs) (consisting of the Achilles tendon and aponeurosis). Measurement of the fascicle length changes at the midbelly level provided a good approximation of the average fascicle length changes across the length of the muscle. The compliance of the SEE allows the muscle fascicles to shorten at a much slower speed, more concomitant with their optimal speed for maximal power output and efficiency, with high velocity shortening during take off in both walking and running achieved by recoil of the SEE.  相似文献   

9.
Muscle fascicle lengths of vastus lateralis (VL) muscle were measured in five healthy men during slow pedaling to investigate the interaction between muscle fibers and tendon. Subjects cycled at a pedaling rate of 40 rpm (98 W). During exercise, fascicle lengths changed from 91 +/- 7 (SE) to 127 +/- 5 mm. It was suggested that fascicles were on the descending limb of their force-length relationship. The average shortening velocity of fascicle was greater than that of muscle-tendon complex in the first half of the knee extension phase and was less in the second half. The maximum shortening velocity of fascicle in the knee extension phase was less than that of muscle-tendon complex by 22 +/- 9%. These discrepancies in velocities were mainly caused by the elongation of the tendinous tissue. It was suggested that the elasticity of VL tendinous tissue enabled VL fascicles to develop force at closer length to their optimal length and kept the maximum shortening velocity of VL fascicles low during slow pedaling.  相似文献   

10.
Behavior of fascicles and tendinous structures of the m. gastrocnemius medialis (MG) was quantitatively examined during human jumping in vivo. Eight male subjects performed maximal-effort counter movement jumping (CMJ) motions. Kinematic and kinetic data were obtained using a high-speed camera and a force platform. Behavior of fascicles and tendinous structures was determined using ultrasonography and electromyography. Although the muscle-tendon complex (MTC) shortened by only 1.6% during the downward phase of the counter movement, fascicles shortened as much as 10.4%. This shortening of fascicles caused elongation of tendinous structures by 2.2%. Although the MTC remained at almost constant length during the upward-I phase (-250 to -100 ms before toe-off), fascicles shortened by 19.2% of the initial length with an elongation of tendinous structures by 4.4%. The MTC shortened rapidly by 5.3% of the initial length during the upward-II phase (-100 to 0 ms), whereas fascicles shortened slightly during the first half of this phase and contracted in a quasi-isometric manner during the latter half of this phase. These findings implied that elastic energy was stored in tendinous structures throughout the latter half of the downward phase (1.0 J) and upward-I phase (5.6 J), which was thereafter rapidly released during the upward-II phase (3.8 J). It was found that muscle fibers of the MG were not stretched during counter movement; therefore, stretch reflex and potentiation of the contractile component of the MG might not contribute to the work enhancement in CMJ. It was suggested that the interaction between fascicles and tendinous structures was essential in a generation of higher joint power during the late push-off phase. This behavior of the MTC of the MG in CMJ was quite similar to what was observed in squat jumping performed without counter movement.  相似文献   

11.
In this study we investigated the time course of length and velocity of muscle fascicles and tendinous tissues (TT) during isometric twitch contraction, and examined how their interaction relates to the time course of external torque and muscle fascicle force generation. From seven males, supra-maximal twitch contractions (singlet) of the tibialis anterior muscle were induced at 30 degrees , 10 degrees and -10 degrees plantar flexed positions. The length and velocity of fascicles and TT were determined from a series of their transverse ultrasound images. The maximal external torque appeared when the shortening velocity of fascicles was zero. The fascicle and TT length, and external torque showed a 10-30 ms delay of each onset, with a significant difference in half relaxation times at -10 degrees . The time course of TT elongation, and fascicle and tendinous velocities did not differ between joint angles. Curvilinear length-force properties, whose slope of quasi-linear part was ranged from -15.0 to -5.9 N/mm for fascicles and 5.4 to 14.3N/mm for TT, and a loop-like pattern of velocity-force properties, in which the mean power was ranged from 0.14 to 0.80 W for fascicles, and 0.14 to 0.81 W for TT were also observed. These results were attributed to the muscle-tendon interaction, depending on the slack and non-linearity of length-force relationship of compliant TT. We conclude that the mechanical interaction between fascicles and TT, are significant determinants of twitch force and time characteristics.  相似文献   

12.
Sarcomere length changes are central to force production and excursion of skeletal muscle. Previous modeling indicates non-uniformity of that if mechanical interaction of muscle with its surrounding muscular and connective tissues is taken into account. Hence, quantifying length changes along the fascicles of activated human muscle in vivo is crucial, but this is lacking due to technical complexities. Combining magnetic resonance imaging deformation analyses and diffusion tensor imaging tractography, the aim was to test the hypothesis that submaximal plantar flexion activity at 15% MVC causes heterogeneous length changes along the fascicles of human medial gastrocnemius (GM) muscle. A general fascicle strain distribution pattern shown for all subjects indicates that proximal track segments are shortened, whereas distal ones are lengthened (e.g., by 13% and 29%, respectively). Mean fiber direction strains of different tracts also shows heterogeneity (for up to 57.5% of the fascicles). Inter-subject variability of amplitude and distribution of fascicle strains is notable. These findings confirm the hypothesis and are solid indicators for the functionally dependent mechanics of human muscle, in vivo. Heterogeneity of fascicle strains can be explained by epimuscular myofascial force transmission. To the best of our knowledge, this is the first study, which quantified local deformations along human skeletal muscle fascicles caused by sustained submaximal activation. The present approach and indicated fascicle strain heterogeneity has numerous implications for muscle function in health and disease to estimate the muscle’s contribution to the joint moment and excursion and to evaluate mechanisms of muscle injury and several treatment techniques.  相似文献   

13.
The aim of the present study was to establish the behavior of human medial gastrocnemius (GM) muscle fascicles during stair negotiation. Ten healthy male subjects performed normal stair ascent and descent at their own comfortable speed on a standard-dimension four-step staircase with embedded force platforms in each step. Kinematic, kinetic, and electromyographic data of the lower limbs were collected. Real-time ultrasound scanning was used to determine GM muscle fascicle length changes. Musculotendon complex (MTC) length changes were estimated from ankle and knee joint kinematics. The GM muscle was mainly active during the push-off phase in stair ascent, and the muscle fascicles contracted nearly isometrically. The GM muscle was mainly active during the touch-down phase of stair descent where the MTC was lengthened; however, the GM muscle fascicles shortened by approximately 7 mm. These findings show that the behavior and function of GM muscle fascicles in stair negotiation is different from that expected on the basis of length changes of the MTC as derived from joint kinematics.  相似文献   

14.
This study examined whether the elasticity of the tendinous tissues plays an important role in human locomotion by improving the power output and efficiency of skeletal muscle. Ten subjects performed one-leg drop jumps (DJ) from different dropping heights with a constant rebound height. The fascicle length of the vastus lateralis muscle was measured by using real-time ultrasonography during DJ. In the braking phase of the DJ, fascicle lengthening decreased and the tendinous tissue lengthening increased with increased dropping intensity. In the subsequent push-off phase, the shortening of tendinous tissues increased with higher dropping intensity. The averaged electromyographic activities of the preactivation and braking phases increased and those of the push-off phase decreased as the drop height was increased. With higher dropping height but constant submaximal rebound jump, the stretched tendinous tissue length increased with less stretched fascicle during the braking phase. In the subsequent push-off phase, the recoil of tendinous tissues became greater. These results suggest that the increased prestretch intensity has considerable influence on the process of storage and subsequent recoil of the elastic energy during the stretch-shortening cycle action.  相似文献   

15.
An important function of skeletal muscle is deceleration via active muscle fascicle lengthening, which dissipates movement energy. The mechanical interplay between muscle contraction and tendon elasticity is critical when muscles produce energy. However, the role of tendon elasticity during muscular energy dissipation remains unknown. We tested the hypothesis that tendon elasticity functions as a mechanical buffer, preventing high (and probably damaging) velocities and powers during active muscle fascicle lengthening. We directly measured lateral gastrocnemius muscle force and length in wild turkeys during controlled landings requiring rapid energy dissipation. Muscle-tendon unit (MTU) strain was measured via video kinematics, independent of muscle fascicle strain (measured via sonomicrometry). We found that rapid MTU lengthening immediately following impact involved little or no muscle fascicle lengthening. Therefore, joint flexion had to be accommodated by tendon stretch. After the early contact period, muscle fascicles lengthened and absorbed energy. This late lengthening occurred after most of the joint flexion, and was thus mainly driven by tendon recoil. Temporary tendon energy storage led to a significant reduction in muscle fascicle lengthening velocity and the rate of energy absorption. We conclude that tendons function as power attenuators that probably protect muscles against damage from rapid and forceful lengthening during energy dissipation.  相似文献   

16.
The present study aimed to clarify the effects of knee joint angle on the behavior of the medial gastrocnemius muscle (MG) fascicles during eccentric plantar flexions. Eight male subjects performed maximal eccentric plantar flexions at two knee positions [fully extended (K0) and 90° flexed (K90)]. The eccentric actions were preceded by static plantar flexion at a 30° plantar flexed position and then the ankle joint was forcibly dorsiflexed to 15° of dorsiflexion with an isokinetic dynamometer at 30°/s and 150°/s. Tendon force was calculated by dividing the plantar flexion torque by the estimated moment arm of the Achilles tendon. The MG fascicle length was determined with ultrasonography. The tendon forces during eccentric plantar flexions were influenced by the knee joint angle, but not by the angular velocity. The MG fascicle lengths were elongated as the ankle was dorsiflexed in K0, but in K90 they were almost constant despite the identical range of ankle joint motion. These results suggested that MG fascicle behavior during eccentric actions was markedly affected by the knee joint angle. The difference in the fascicle behavior between K0 and K90 could be attributed to the non-linear force–length relations and/or to the slackness of tendinous tissues.  相似文献   

17.
For detailed analyses of muscle adaptation mechanisms during growth, ageing or disease, reliable measurements of muscle architecture are required. Diffusion tensor imaging (DTI) and DTI tractography have been used to reconstruct the architecture of human muscles in vivo. However, muscle architecture measurements reconstructed with conventional DTI techniques are often anatomically implausible because the reconstructed fascicles do not terminate on aponeuroses, as real muscle fascicles are known to do. In this study, we tested the reliability of an anatomically constrained DTI-based method for measuring three-dimensional muscle architecture. Anatomical magnetic resonance images and diffusion tensor images were obtained from the left legs of eight healthy participants on two occasions one week apart. Muscle volumes, fascicle lengths, pennation angles and fascicle curvatures were measured in the medial and lateral gastrocnemius, soleus and the tibialis anterior muscles. Averaged across muscles, the intraclass correlation coefficient was 0.99 for muscle volume, 0.81 for fascicle length, 0.73 for pennation angle and 0.76 for fascicle curvature. Measurements of muscle architecture obtained using conventional DTI tractography were highly sensitive to variations in the stopping criteria for DTI tractography. The application of anatomical constraints reduced this sensitivity significantly. This study demonstrates that anatomically constrained DTI tractography can provide reliable and robust three-dimensional measurements of whole-muscle architecture. The algorithms used to constrain tractography have been made publicly available.  相似文献   

18.
This paper reviews the research findings regarding the force and length changes of the muscle-tendon complex during dynamic human movements, especially those using ultrasonography and computer simulation. The use of ultrasonography demonstrated that the tendinous structures of the muscle-tendon complex are compliant enough to influence the biomechanical behavior (length change, shortening velocity, and so on) of fascicles substantially. It was discussed that the fascicles are a force generator rather than a work generator; the tendinous structures function not only as an energy re-distributor but also as a power amplifier, and the interaction between fascicles and tendinous structures is essential for generating higher joint power outputs during the late pushoff phase in human vertical jumping. This phenomenon could be explained based on the force-length/velocity relationships of each element (contractile and series elastic elements) in the muscle-tendon complex during movements. Through computer simulation using a Hill-type muscle-tendon complex model, the benefit of making a countermovement was examined in relation to the compliance of the muscle-tendon complex and the length ratio between the contractile and series elastic elements. Also, the integral roles of the series elastic element were simulated in a cyclic human heel-raise exercise. It was suggested that the storage and reutilization of elastic energy by the tendinous structures play an important role in enhancing work output and movement efficiency in many sorts of human movements.  相似文献   

19.
Electromyograms were recorded from the soleus and medial gastrocnemius muscles and tendon force from the medial gastrocnemius muscle of 2 juvenile Rhesus monkeys before, during and after Cosmos flight 2229 and of ground control animals. Recording sessions were made while the Rhesus were performing a foot pedal motor task. Preflight testing indicated normal patterns of recruitment between the soleus and medial gastrocnemius, i.e. a higher level of recruitment of the soleus compared to the medial gastrocnemius during the task. Recording began two days into the spaceflight and showed that the media gastrocnemius was recruited preferentially over the soleus. This observation persisted throughout the flight and for the 2 week period of postflight testing. These data indicate a significant change in the relative recruitment of slow and fast extensor muscles under microgravity conditions. The appearance of clonic-like activity in one muscle of each Rhesus during flight further suggests a reorganization in the neuromotor system in a microgravity environment.  相似文献   

20.
When the prestretch intensity and concentric work are increased in stretch-shortening cycle (SSC) exercises, the utilization of the elastic energy can increase during the concentric phase. In order to further understand this process during SSC exercises, the interaction between fascicle-tendinous tissues (TT) of the vastus lateralis (VL) muscle was examined under different prestretch and rebound intensity drop jumps. Ten male subjects participated in the study. Direct VL fascicle lengths (N = 10) and in vivo patellar tendon force (N = 1) were measured together with the electromyographic (EMG) activity of VL during the trials. With increasing drop height but the same rebound height condition, the TT stretch increased during the early braking phase with a subsequent increase in its recoil during the early push-off phase. This occurred concomitantly with decreased fascicle shortening and EMG activation. However, with the increased rebound height but the same drop height condition, the fascicles were stretched less during the late braking phase with higher EMG activation. In this situation, TT could be stretched more by the tension provided by fascicles. Consequently, the TT recoil increased during the late push-off phase. These observations confirm that there can be an intensity specific fascicle-TT interaction during SSC exercises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号