首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to evaluate morphometrically the influence of ovulation-inhibiting doses of indomethacin, an inhibitor of the cyclooxygenase pathway, and esculetin and caffeic acid, inhibitors of the lipoxygenase pathway, on the dilatation of the perifollicular capillary network in the theca interna. The development of the perifollicular capillary network as a function of follicular size and the changes in the vascular lumen were examined by light microscopy on a series of semithin cross sections of rat ovaries. The number of capillaries in the theca interna increased linearly with increasing follicle diameter. Thus, the relative number of capillaries in the theca interna supplying the avascular stratum granulosum remained constant. This indicates that follicular function is not regulated through changes in the number of capillaries in the theca interna. After hCG injection, an increase in the capillary area could be observed in follicles having a diameter of more than 600 microns. Indomethacin administration increased the capillary area of the ovulatory follicles as compared to the untreated side only at 6 h after treatment. By contrast, treatment with inhibitors of lipoxygenase resulted in a significant decrease in the capillary area of large follicles at all times examined (3, 6, and 9 h after hCG injection). Nevertheless, since both types of eicosanoid inhibitors suppressed follicle rupture, in spite of their opposing actions on the capillary area, it seems unlikely that their action on ovulation is primarily due to their effect on this parameter.  相似文献   

2.
Skeletal muscle blood flow is reduced and O(2) extraction is increased at rest in chronic heart failure (CHF). Knowledge of red blood cell (RBC) flow distribution within the capillary network is necessary for modeling O(2) delivery and exchange in this disease. Intravital microscopy techniques were used to study the in vivo spinotrapezius muscle microcirculation in rats with CHF 7 wk after myocardial infarction and in sham-operated controls (sham). A decrease in mean muscle fiber width from 51.3 +/- 1.9 microm in sham to 42.6 +/- 1.4 microm in CHF rats (P < 0.01) resulted in an increased lineal density of capillaries in CHF rats (P < 0.05). CHF reduced (P < 0.05) the percentage of capillaries supporting continuous RBC flow from 87 +/- 5 to 66 +/- 5%, such that the lineal density of capillaries supporting continuous RBC flow remained unchanged. The percentage of capillaries supporting intermittent RBC flow was increased in CHF rats (8 and 27% in sham and CHF, respectively, P < 0.01); however, these capillaries contributed only 2.3 and 3.3% of the total RBC flux in sham and CHF rats, respectively. In continuously RBC-perfused capillaries, RBC velocity (252 +/- 20 and 144 +/- 9 microm/s in sham and CHF, respectively, P < 0.001) and flux (21.4 +/- 2.4 and 9.4 +/- 1.1 cells/s in sham and CHF, respectively, P < 0.01) were markedly reduced in CHF compared with sham rats. Capillary "tube" hematocrit remained unchanged (0.22 +/- 0.02 and 0.19 +/- 0.02 in sham and CHF, respectively, P > 0.05). We conclude that CHF causes spinotrapezius fiber atrophy and reduces the number of capillaries supporting continuous RBC flow per fiber. Within these capillaries supporting continuous RBC flow, RBC velocity and flux are reduced 45-55%. This decreases the potential for O(2) delivery but enhances fractional O(2) extraction by elevating RBC capillary residence time. The unchanged capillary tube hematocrit suggests that any alterations in muscle O(2) diffusing properties in CHF are mediated distal to the RBC.  相似文献   

3.
By means of scanning electron microscopy of corrosive casts angioarchitectonics of mucous and muscular membranes of the white rat uterus has been studied at diestrus phase, normal and under influence of laser irradiation with exposition of 1 min and 1 h. The morphometric investigation performed has proved presence of local peculiarities in organization of the uterine capillary bed. After irradiation for 1 min a noticeable increase in transversal diameter and capillary density is observed, numerous protrusions appear on their walls. When irradiation lasts for 1 h a relative loose of the uterine capillary network is observed, which is especially manifested in endometrium: capillaries demonstrate an increased convolution and decreased diameter.  相似文献   

4.
The effects of aging on muscle microvascular structure and function may play a key role in performance deficits and impairment of O2 exchange within skeletal muscle of senescent individuals. To determine the effects of aging on capillary geometry, red blood cell (RBC) hemodynamics, and hematocrit in a muscle of mixed fiber type, spinotrapezius muscles from Fischer 344 x Brown Norway hybrid rats aged 6-8 mo [young (Y); body mass 421 +/- 10 g, n = 6] and 26-28 mo [old (O); 561 +/- 12 g, n = 6] were observed by high-resolution transmission light microscopy under resting conditions. The percentage of RBC-perfused capillaries (Y: 78 +/- 3%; O: 75 +/- 2%) and degree of tortuosity and branching (Y: 13 +/- 2%; O: 13 +/- 2%, additional capillary length) were not different in O vs. Y muscles. Lineal density of RBC-perfused capillaries in O was significantly reduced (Y: 30.7 +/- 1.8, O: 22.8 +/- 3.1 capillaries/mm; P < 0.05). However, RBC-perfused capillaries from O rats (n = 78) exhibited increased RBC velocity (VRBC) (Y: 219 +/- 12, O: 310 +/- 14 microm/s; P < 0.05) and RBC flux (FRBC) (Y: 27 +/- 2, O: 41 +/- 2 RBC/s; P < 0.05) vs. Y rats (n = 66). Thus O2 delivery per unit of muscle was not different between groups (Y: 894 +/- 111, O: 887 +/- 118 RBC. s-1. mm muscle-1). Capillary hematocrit was not different in Y vs. O rats (Y: 26 +/- 1%, O: 28 +/- 1%: P > 0.05). These data indicate that in resting spinotrapezius muscle, aging decreases the lineal density of RBC-perfused capillaries while increasing mean VRBC and FRBC within those capillaries. Whereas muscle conductive O2 delivery and capillary hematocrit were unchanged, elevated VRBC reduces capillary RBC transit time and may impair the diffusive transport of O2 from blood to myocyte particularly under exercise conditions.  相似文献   

5.
The effects of moderate and severe hypoxia on quantitative regional morphometric indexes of the total and perfused arteriolar and capillary network were studied in the rat brain to determine whether diffusion distances were reduced in hypoxia. Fluorescein isothiocyanate (FITC)-labeled dextran was injected into the femoral vein of conscious control and hypoxic rats. After 20 s, the animal was decapitated and the head was frozen in liquid N2. Sections from eight brain regions were photographed to detect the perfused microvessels and then stained for alkaline phosphatase to visualize the total vascular network. There were significant increases in percent perfused arteriolar and capillary morphology between the two groups of hypoxic animals and control animals. In control rats, the percent of capillaries perfused averaged 45.6 +/- 0.6% (mean +/- SE). In moderate hypoxia 63.4 +/- 1.8% of the vessels were perfused and in severe hypoxia 89.4 +/- 0.1% were perfused. The percentage of arterioles perfused changed similarly. There were no significant differences in any index of total or percent perfused arteriolar or capillary morphometry among the regions within any group. During severe hypoxia, a greater percentage of the capillary reserves was utilized. These results demonstrate a uniform response to hypoxia in the capillary and arteriolar network of the conscious rat brain.  相似文献   

6.
The objective of the study was to examine the relationship(s) between the size and the geometry of the capillary network in the flight muscle of pigeon (Columbia livia). To this end, we used morphometry to analyze the degree of anisotropy (i.e., orientation) of capillaries with respect to the axis of the muscle fibers in perfusion-fixed samples of pigeon pectoralis muscles with large difference in capillary density. Capillary number per fiber cross-sectional area (range, 1,491-5,680 mm-2) depended on fiber size (aerobic fibers, 304-782 microns 2; glycolytic, 1,785-2,444 microns 2), as well as sarcomere length (1.69-2.20 microns), and the relative sectional area of aerobic and glycolytic fibers (aerobic, 42-84% of total fiber area). The degree of tortuosity of capillaries, i.e., their bending or sinuosity relative to the muscle fiber axis, was primarily a function of sarcomere length. In spite of large differences in capillary density, capillary orientation at a given sarcomere length was remarkably similar among samples. In addition to capillaries running parallel to the muscle fiber axis, a unique arrangement of branches running perpendicular to the muscle fiber axis was found in all samples. This arrangement yielded a large circumferential distribution of capillary surface around the muscle fibers. Compared to mammalian limb muscles examined over a 10-fold range of capillary density (range, 450-4,670 mm-2), the degree of anisotropy of capillaries was greater in all samples of pigeon M. pectoralis. In the pigeon, there was no increase in the amount of capillary surface area available for exchange per microvessel as a result of a greater degree of capillary tortuosity in samples with larger capillary density (capillary number per fiber cross-sectional area greater than 4,000 mm-2), as compared to samples with a capillary density less than 4,000 mm-2.  相似文献   

7.
Using high-resolution intravital charge-coupled device video microscopy, we visualized the epicardial capillary network of the beating canine heart in vivo to elucidate its functional role under control conditions, during reactive hyperemia (RH), and during intracoronary adenosine administration. The pencil-lens video-microscope probe was placed over capillaries fed by the left anterior descending artery in atrioventricular-blocked hearts of open-chest, anesthetized dogs paced at 60-90 beats/min (n = 17). In individual capillaries under control conditions, red blood cell flow was predominant during systole or diastole, indicating that the watershed between diastolic arterial and systolic venous flows is located within the capillaries. Capillary flow increased during RH and reached a peak flow velocity (2.1 +/- 0.6 mm/s), twice as high as control (1.2 +/- 0.5 mm/s), with enhancement of intercapillary cross-connection flow and enlargement of diameter (by 17%). With adenosine, capillary flow velocity significantly increased (1.8 +/- 0.7 mm/s). However, the increase in volumetric capillary flow with adenosine estimated from red blood cell velocity and diameter was less than the increase in arterial flow, whereas that during RH was nearly equivalent to the increase in arterial flow. There was a time lag of approximately 1.5 s for refilling of capillaries during RH, indicating their function as capacitance vessels. In conclusion, the coronary capillary network functions as 1) the major watershed between diastolic-dominant arterial and systolic-dominant venous flows, 2) a capacitor, and 3) a significant local flow amplifier and homogenizer of blood supply during RH, but with adenosine the increase in capillary flow velocity was less than the increase in arterial flow.  相似文献   

8.
Cold exposure has been shown to increase blood flow in interscapular brown adipose tissue (IBAT). The aim of the present study was to evaluate the role of the L-arginine-nitric oxide (*NO) pathway on IBAT capillary network remodeling and its possible correlation with superoxide anion radical (O2(*-)). In the rats that received L-arginine (2.25%) or NG-nitro-L-arginine methyl ester (L-NAME, 0.01%) as a drinking liquid and maintained at room (22+/-1 degrees C) or low (4+/-1 degrees C) temperature for 45 days, IBAT capillaries were analyzed by stereology and observed by light and electron microscopy. Additionally, endothelial *NO synthase (eNOS) expression, nitrotyrosine immunoreactivity and both copper zinc superoxide dismutase (CuZnSOD) enzyme activity and immunohistochemical localization were examined. Stereological analyses of IBAT show that the capillary volume density, as well as capillary-to-brown adipocytes ratio, are increased in cold. L-arginine treatment increases, while L-NAME decreases both parameters, compared to respective controls. Those changes were accompanied by capillary dilatation observed by light and electron microscopy. The activity of CuZnSOD is lower in control cold-acclimated rats, as well as in both L-arginine-treated groups, when compared to control animals acclimated to room temperature. L-NAME treatment attenuates the effects both of cold and L-arginine on CuZnSOD and increases immunopositivity for CuZnSOD in room temperature-acclimated rats. Our results show that *NO induces remodeling of the IBAT capillary network by angiogenesis, and presumably that interaction with O2(*-) has a role in that modulation. The increased eNOS expression accompanied by an increased nitrotyrosine immunoreaction observed in both L-arginine-treated groups compared to corresponding controls strengthens this hypothesis.  相似文献   

9.
The purpose of the present investigation was to determine the effects of thyroxine (T4), which induces myocardial hypertrophy, on the number per square millimetre and volume per cubic millimetre of both the total and perfused portions of the arteriolar and capillary beds of the heart. Studies were conducted in the subendocardial and subepicardial regions of the left ventricle of anesthetized open-chest rabbits. Fluorescein isothiocyanate-dextran (i.v.) or radioactive microspheres (intra-atrial) were injected to label the perfused microvessels or to determine coronary flow in three groups of rabbits: controls, and rabbits given 0.5 mg/kg T4 for 3 days and for 16 days. Fluorescent photography was used to identify the perfused microvessels. An alkaline phosphatase stain was employed to locate the total microvascular bed. There were 2369 +/- 638 (SD) capillaries/mm2 and 4 +/- 3 arterioles/mm2 in control hearts. These decreased significantly to 1380 +/- 199/mm2 and 1 +/- 1/mm2, respectively, after 16 days of T4. In controls, 60 +/- 5% of the capillaries and 59 +/- 21% of the arterioles were perfused. This increased significantly to 90 +/- 5 and 86 +/- 18%, respectively, by 16 days of T4 treatment. Similar changes, although smaller, were observed after 3 days of T4. Coronary blood flow increased to 1.7 times control after 3 days and 2.9 times after 16 days of T4. No significant subepicardial versus subendocardial differences were observed in any condition or measurement. Thus, the physiological response to the increased work and increase in anatomic minimum diffusion distance is to increase flow and the proportion of the capillary bed perfused to at least maintain physiological diffusion distances.  相似文献   

10.
Patulin is a mycotoxin that is produced by species of Penicillum, Aspergillus, and Byssochylamys molds that may grow on a variety of foods including fruit, grains and cheese. Patulin, at a dose of 0.1 mg kg(-1) bw day(-1) was administered orally to growing male rats aged 5-6 weeks for a period of 60 or 90 days. The dose of patulin used in the present study was based on estimated human exposure levels. At the end of these periods, the thymus glands of patulin-treated and control Wistar rats were removed and ultrastructural changes in capillary cells of the thymus of patulin-treated Wistar rats were determined by electron microscopy. The walls of thymus capillaries of the 60-day patulin-treated rat groups (P-60) exhibited degeneration observable in electron microscopic sections. For example, loss of cytoplasm and mitochondrial cristae of cells, swollen endothelial cells, increased thickness of the basement membrane, closed lumen of capillaries, accumulation of fibrous material at the periphery of the capillaries and nuclear anomalies were seen in these sections. Such degeneration and changes were also observed in sections of capillaries of the 90-day patulin-treated rat groups (P-90). The levels of degeneration of endothelial cell nucleus of P-90 were greater than those of P-60. This study demonstrated the ultrastructural degeneration of thymus capillary cells of patulin-treated rats. The results obtained from this study may provide a guide to research dealing with the toxic effects of patulin on tissue and organ ultrastructure.  相似文献   

11.
Mathematical simulations of oxygen delivery to tissue from capillaries that take into account the particulate nature of blood flow predict the existence of oxygen tension (Po(2)) gradients between erythrocytes (RBCs). As RBCs and plasma alternately pass an observation point, these gradients are manifested as rapid fluctuations in Po(2), also known as erythrocyte-associated transients (EATs). The impact of hemodilution on EATs and oxygen delivery at the capillary level of the microcirculation has yet to be elucidated. Therefore, in the present study, phosphorescence quenching microscopy was used to measure EATs and Po(2) in capillaries of the rat spinotrapezius muscle at the following systemic hematocrits (Hct(sys)): normal (39%) and after moderate (HES1; 27%) or severe (HES2; 15%) isovolemic hemodilution using a 6% hetastarch solution. A 532-nm laser, generating 10-micros pulses concentrated onto a 0.9-microm spot, was used to obtain plasma Po(2) values 100 times/s at points along surface capillaries of the muscle. Mean capillary Po(2) (Pc(O(2)); means +/- SE) significantly decreased between conditions (normal: 56 +/- 2 mmHg, n = 45; HES1: 47 +/- 2 mmHg, n = 62; HES2: 27 +/- 2 mmHg, n = 52, where n = capillary number). In addition, the magnitude of Po(2) transients (DeltaPo(2)) significantly decreased with hemodilution (normal: 19 +/- 1 mmHg, n = 45; HES1: 11 +/- 1 mmHg, n = 62; HES2: 6 +/- 1 mmHg, n = 52). Results suggest that the decrease in Pc(O(2)) and DeltaPo(2) with hemodilution is primarily dependent on Hct(sys) and subsequent microvascular compensations.  相似文献   

12.
Circulating leukocyte sequestration in pulmonary capillaries is arguably the initiating event of lung injury in acute respiratory distress syndrome. We present a microfluidic investigation of the roles of actin organization and myosin II activity during the different stages of leukocyte trafficking through narrow capillaries (entry, transit and shape relaxation) using specific drugs (latrunculin A, jasplakinolide, and blebbistatin). The deformation rate during entry reveals that cell stiffness depends strongly on F-actin organization and hardly on myosin II activity, supporting a microfilament role in leukocyte sequestration. In the transit stage, cell friction is influenced by stiffness, demonstrating that the actin network is not completely broken after a forced entry into a capillary. Conversely, membrane unfolding was independent of leukocyte stiffness. The surface area of sequestered leukocytes increased by up to 160% in the absence of myosin II activity, showing the major role of molecular motors in microvilli wrinkling and zipping. Finally, cell shape relaxation was largely independent of both actin organization and myosin II activity, whereas a deformed state was required for normal trafficking through capillary segments.  相似文献   

13.
Vascular changes in the hydronephrotic glomeruli of rats were examined using corrosion casts, India ink injection and histological methods. In severe cases, the diameter of the glomerular capillary conglomerations decreased to 40-90 microns as a result of glomerular atrophy. The capillaries of these glomeruli also had reduced diameters, and were strangulated and torn off to varying degrees. The intact capillary network of the renal medulla was destroyed and the normal alignment of capillaries parallel to the tubules was lost. These morphological characteristics may account in part for the difficulty in glomerular capillary blood circulation.  相似文献   

14.
A single bout of eccentric exercise results in muscle damage, but it is not known whether this is correlated with microcirculatory dysfunction. We tested the following hypotheses in the spinotrapezius muscle of rats either 1 (DH-1; n = 6) or 3 (DH-3; n = 6) days after a downhill run to exhaustion (90-120 min; -14 degrees grade): 1) in resting muscle, capillary hemodynamics would be impaired, and 2) at the onset of subsequent acute concentric contractions, the decrease of microvascular O(2) pressure (Pmv(o(2))), which reflects the dynamic balance between O(2) delivery and O(2) utilization, would be accelerated compared with control (Con, n = 6) rats. In contrast to Con muscles, intravital microscopy observations revealed the presence of sarcomere disruptions in DH-1 and DH-3 and increased capillary diameter in DH-3 (Con: 5.2 +/- 0.1; DH-1: 5.1 +/- 0.1; DH-3: 5.6 +/- 0.1 mum; both P < 0.05 vs. DH-3). At rest, there was a significant reduction in the percentage of capillaries that sustained continuous red blood cell (RBC) flux in both DH running groups (Con: 90.0 +/- 2.1; DH-1: 66.4 +/- 5.2; DH-3: 72.9 +/- 4.1%, both P < 0.05 vs. Con). Capillary tube hematocrit was elevated in DH-1 but reduced in DH-3 (Con: 22 +/- 2; DH-1: 28 +/- 1; DH-3: 16 +/- 1%; all P < 0.05). Although capillary RBC flux did not differ between groups (P > 0.05), RBC velocity was lower in DH-1 compared with Con (Con: 324 +/- 43; DH-1: 212 +/- 30; DH-3: 266 +/- 45 mum/s; P < 0.05 DH-1 vs. Con). Baseline Pmv(O(2)) before contractions was not different between groups (P > 0.05), but the time constant of the exponential fall to contracting Pmv(O(2)) values was accelerated in the DH running groups (Con: 14.7 +/- 1.4; DH-1: 8.9 +/- 1.4; DH-3: 8.7 +/- 1.4 s, both P < 0.05 vs. Con). These findings are consistent with the presence of substantial microvascular dysfunction after downhill eccentric running, which slows the exercise hyperemic response at the onset of contractions and reduces the Pmv(O(2)) available to drive blood-muscle O(2) delivery.  相似文献   

15.
Muscle fiber type composition and capillary supply in rat diaphragm were investigated after 14 weeks of endurance training: body weight and muscle fiber area were significantly decreased, the muscle fiber type composition, capillary to fiber ratio and number of capillaries around each fiber type were unchanged, and the capillary density and number of capillaries around each fiber relative to fiber type areas were significantly increased. These small fiber areas and increased capillary supplies in the trained rats would facilitate oxygen transport to all parts of the muscle fiber during exercise. It is concluded that the changes observed in the trained rat diaphragm appear to enhance the capacity for oxidative metabolism.  相似文献   

16.
The revascularization of freely grafted muscles in the rat was studied by histochemical reactions that on frozen sections stain the arterial part of the capillary bed blue (alkaline phosphatase [AP] reaction) and the venous part of the capillary bed red (dipeptidyl peptidase IV [DPP IV] reaction). In 112 rats the extensor digitorum longus or soleus muscles were freely grafted and removed at various times up to 93 days following the surgery. In cross section, the capillaries of a normal muscle show a mosaic pattern of staining for the activity of the two enzymes. After grafting, DPP IV activity of capillaries is lost throughout the entire graft within a day or two; but within ischemic muscle, weak and diffuse AP staining persists in capillary remnants for up to 6 days. In the very periphery of the graft AP staining is also preserved in partially damaged capillaries. By 4 days, new AP-positive capillaries can be identified at the periphery of the graft, and in succeeding days AP-positive capillaries are found progressively nearer the center of the graft. At 7 days, the capillary/muscle-fiber ratios are 66% of normal in the periphery of the graft and 44% in the intermediate zone. DPP IV-stained capillaries are not seen until 7 days after grafting. By 60 days, when the grafts have become stabilized, the mosaic pattern of capillary staining has become reestablished. In mature grafts, the number of capillaries per unit area was slightly higher than that in control muscles, but the capillary/muscle-fiber ratio was slightly lower, owing to the smaller than normal cross-sectional areas of the regenerated muscle fibers.  相似文献   

17.
Septic patients have low plasma ascorbate concentrations and compromised microvascular perfusion. The purpose of the present experiments was to determine whether ascorbate improves capillary function in volume-resuscitated sepsis. Cecal ligation and perforation (CLP) was performed on male Sprague-Dawley rats. The concentration of ascorbate in plasma and urine, mean arterial blood pressure, and density of continuously perfused capillaries in the extensor digitorum longus muscle were measured 24 h after surgery. CLP caused a 50% decrease (from 56 +/- 4 to 29 +/- 2 microM) in plasma ascorbate concentration, 1,000% increase (from 46 +/- 13 to 450 +/- 93 microM) in urine ascorbate concentration, 20% decrease (from 115 +/- 2 to 91 +/- 2 mmHg) in mean arterial pressure, and 30% decrease (from 24 +/- 1 to 17 +/- 1 capillaries/mm) in the density of perfused capillaries, compared with time-matched controls. A bolus of intravenous ascorbate (7.6 mg/100 g body wt) administered immediately after the CLP procedure increased plasma ascorbate concentration and restored both blood pressure and density of perfused capillaries to control levels. In vitro experiments showed that ascorbate (100 microM) inhibited replication of bacteria and prevented hydrogen peroxide injury to cultured microvascular endothelial cells. These results indicate that ascorbate is lost in the urine during sepsis and that a bolus of ascorbate can prevent microvascular dysfunction in the skeletal muscle of septic animals. Our study supports the view that ascorbate may be beneficial for patients with septic syndrome.  相似文献   

18.
Two groups of human subjects were submitted to a 20-week endurance training program (1 h a day, 4 days a week, 70-80% max VO2). The first group (G20) consisted of eight 22 +/- 3 years male students, the second group (G60) was composed of seven still very physically active elderly male subjects (62 +/- 4 years). Training significantly increased max VO2 by 15% in G20 and 7% in G60. Muscle samples taken from the vastus lateralis muscle before and after training were histochemically stained for fibre-typing (myofibrillar ATPase), capillary supply and fibre area measurements (amylase PAS and NADH-TR). Fibre-type distribution was unchanged with training. Capillary density (cap X mm-2) increased significantly in both groups from 316 +/- 42 to 396 +/- 73 in G20 and from 308 +/- 48 to 409 +/- 55 in G60. This enhancement of capillary supply was linked to the proliferation of capillaries in G20 where the number of capillaries in contact with ST and FTa fibres (CC) significantly increased from 4.6 to 5.9 and from 4.8 to 6.1 respectively. No significant changes in fibre areas were found in G20. On the contrary, G60 did not show any significant sign of capillary growth (CC unchanged) whereas fibre areas significantly decreased in ST (6,410 to 5,520 micron 2) and FTa fibres (5,830 to 5,090 micron 2). A methodological evaluation of fibre-area measurement was described, with confirmation of the data. It was concluded that this study may illustrate the trainability of skeletal muscle of elderly men in a possibly different way to that seen in a younger age group.  相似文献   

19.
The capillary vessels of rats uterus were examined. The animals who received 0.2% solution were examined 1, 3, 5, 10, 20, 30, 60 days after the last injection. As a marker for capillary vessels the histochemical method for finding the Mg++ adenosine triphosphatase was used. The studies have found prominent qualitative and quantitative changes (activity of enzyme, length and diameter of capillaries) not less than for two months after the last injection of the solution. Particularly prominent changes were found in endometrium between 10-20 days of the restorative period.  相似文献   

20.
Lymphangiogenesis is considered a promising approach for increasing fluid drainage during secondary lymphedema. However, organization of lymphatics into functional capillaries may be dependent upon interstitial flow (IF). The present study was undertaken to determine the importance of lymphangiogenesis for lymphedema resolution. We created a lymphatic obstruction that produces lymphedema in mouse tail skin. The relatively scar-free skin regeneration that occurred across the obstruction allowed the progression of lymphangiogenesis to be observed and compared with the evolution of lymphedema. The role of vascular endothelial growth factor-C (VEGF-C)/VEGF receptor (VEGFR)-3 signaling in lymphedema resolution was investigated by exogenous administration of VEGF-C or neutralizing antibodies against VEGFR-3. VEGF-C protein improved lymphedema at 15 days [reducing dermal thickness from 742 +/- 105 to 559 +/- 141 microm with 95% confidence intervals (CIs), P < 0.05] without increasing lymphatic capillary coverage (11.6 +/- 6.4% following VEGF-C treatment relative to 9.6 +/- 6.2% with 95% CIs, P > 0.50). Blocking VEGFR-3 signaling did not inhibit lymphedema resolution at 25 days (dermal thickness of 462 +/- 127 microm following VEGFR-3 inhibition relative to 502 +/- 87 microm with 95% CIs) or inhibit IF, although VEGFR-3 blocking prevented lymphangiogenesis (reducing lymphatic coverage to 0.2 +/- 0.7% relative to 8.7 +/- 7.3% with 95% CIs, P < 0.005). A second mouse tail lymphedema model was employed to investigate the ability of VEGF-C to increase fluid drainage across a scar. We found that neither neutralization of VEGFR-3 nor administration of VEGF-C affected the course of skin swelling over 25 days. These findings suggest that resolution of lymphedema in the mouse tail skin may be more dependent upon IF and regeneration of the extracellular matrix across the obstruction than lymphatic capillary regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号