首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 280 毫秒
1.
Nicotiana tabacum was used as a pistillate parent and crossed with three self-compatible species, N. rustica, N. repanda and N. trigonophylla, which were previously reported to have pollen tubes unilaterally inhibited by N. tabacum pistil. Temporal and morphological observations revealed distinct differences of pollen tube behavior among these incongruous crosses. Pollen tubes of N. repanda were arrested in stigma and those of N. rustica in the middle of the style. On the other hand, pollen tubes of N. trigonophylla continued growing at a slow rate. Tubes of N. repanda and N. rustica showed morphological abnormalities such as swelling, thick wall, and irregular callose deposition. In addition, tubes of N. rustica often elongated in reverse direction and wound about in the middle of the style. Although the tubes of N. trigonophylla were apparently normal in morphology, they were distributed throughout the transmitting tissue, differing from the self-pollination of N. tabacum in which they were confined to the peripheral region of it. The diversity of pollen tube behavior indicates that physiological causes of incongruity are different among the three crosses. Bud pollination enabled pollen tubes to reach the ovary in all crosses, indicating that the N. tabacum pistil acquired its ability to inhibit foreign pollen tube elongation with its development. When interspecific hybrids between N. tabacum and the other three species were pollinated by parental species, tubes reached the ovary in all crosses, but the elongation rate of tubes slowed down and morphology was abnormal.  相似文献   

2.
Summary Intraspecific and reciprocal interspecific crosses involving Zinnia angustifolia clones and Z. elegans lines showed that in both species, sporophytic self-incompatibility (SI) systems were present. Intensity of SI varied among clones and lines, and high self seed set was associated with a concomitant decrease in callose fluorescence in papillae and pollen tubes. Incomplete stigmatic inhibition of pollen germination and tube growth was observed in reciprocal interspecific crosses and associated with callose synthesis, suggesting S-gene activity. Seed set and progeny obtained following Z. angustifolia×Z. elegans matings was comparable to intraspecific compatible matings of Z. angustifolia although the rate of pollen tube growth through the style was slower. In Z. elegans × Z. angustifolia matings, additional prezygotic barriers were present and acted between pollen tube penetration of the stigma and syngamy. SI X SI interspecific incompatibility was essentially unilateral, with no embryos or progeny obtained when Z. elegans was the pistillate parent. It was hypothesized that nonfunctioning of Z. elegans × Z. angustifolia crosses was due to S-gene expression at the stigmatic surface and to other isolating mechanisms in the stylar or ovarian transmitting tissue.Scientific Article No. A-4448, Contribution No. 7439 of the Maryland Agricultural Experiment Station, Department of HorticultureA portion of this paper was presented in the report: Boyle TH, Stimart DP (1986) Incompatibility relationships in intra- and interspecific crosses of Z. elegans Jacq. and Z. angustifolia HBK (Compositae). In: Mulcahy D (ed) Biotechnology and ecology of pollen. Springer, New York  相似文献   

3.
The growth of pollen tubes of a sampling of Lilium species in styles of L. longiflorum incubated at 24 C for 48 hr after pollination indicated two types of interspecific incompatibility. Pollen tubes of two self-compatible species of section Leucolirion, the section including L. longiflorum, stopped growth abruptly upon reaching the stylar canal, were of abnormal morphology, and were incapable of continued growth with longer incubation. Pollen tubes of self-compatible or self-incompatible species of sections Sinomartagon, Pseudolirium, Liriotypus, and Daurolirion approached but did not exceed the length of intraspecific incompatible pollen tubes in styles of L. longiflorum. Pollen tube morphology was normal and tubes were capable of continued growth with additional incubation. Unilateral interspecific incompatibility occurred in reciprocal crosses between self-incompatible L. longiflorum and self-compatible L. regale and L. formosanum, but exceptions occurred in Aurelian hybrids. Incubation of interspecifically pollinated L. longiflorum styles at 39 C, which removes the self-incompatibility reaction, had no effect on interspecific incompatibility.  相似文献   

4.
Summary Pollen size and pistil length data have been collected for 93 species of Rhododendron (Ericaceae) belonging to a number of different subgeneric taxa. For a sample of eight species in section Vireya, pollen tube growth in the style after selfor interspecific pollination has been quantified. Pollen volume and the time taken for pollen tubes to reach the ovary were both related to pistil length. Pollen-tube growth rates were generally greater for species with longer pistils and larger pollen. Increasing temperature increased the rate of pollen-tube growth. There was no detectable effect of pollen tube density on tube growth rate in the style. After interspecific pollinations tube growth rates in foreign styles could be faster or slower than in self styles. A semisterile individual with two viable pollen grains per tetrad and a plant grafted as scion to a longer-styled stock both showed more rapid pollen-tube growth than expected on the basis of pistil size. Data collected for 26 species in section Vireya showed that where extreme disparity of pollen/pistil size causes failure of interspecific crosses, one or more bridging species with intermediate pollen/pistil size can generally be selected.  相似文献   

5.
The distribution of callose plugs and pollen tubes was investigated following inter- and intramorph crosses of Amsinckia grandiflora (Boraginaceae), a distylous species possessing cryptic self-incompatibility. Callose plug distribution provided a good indication of the distribution of pollen tubes. Compared to intramorph crosses, many more callose plugs and pollen tubes were found in basal stylar regions following intermorph crosses, indicating that differential pollen tube growth is a likely cause of cryptic self-incompatibility. The incompatibility response differed for the floral morphs: in the pin (long-styled) morph pollen tubes were most likely to cease growth in the midstylar region, while inhibition was more likely to occur in the upper stylar region of the thrum (short-styled) morph. There was no evidence of stigmatic inhibition of pollen tubes for either morph, although the incompatibility response in the Boraginaceae is normally located in the stigmatic region.  相似文献   

6.
 Style squashes and stylar grafts were used to examine the growth of Nicotiana alata pollen tubes in self-compatible and self-incompatible styles. Compatible tubes typically showed a uniform layer of callose deposition in the walls and in small plugs spaced at regular intervals within the tube. Incompatible tubes were characterised by the variability of callose deposition in the walls and by larger, closer and more irregularly spaced plugs. There was no difference in the growth rate of compatible and incompatible tubes during growth through the stigma, but within the style most compatible tubes grew 20–25 mm day-1 (maximum 30 mm day–1), whereas incompatible tubes grew 1.0–1.5 mm day-1 (maximum 5 mm day–1). Many incompatible tubes continued to grow until flowers senesced, and only a small proportion died as a consequence of tip bursting. Grafting compatibly pollinated styles onto incompatible styles showed that the incompatible reaction could occur in pollen tubes between 2 and 50 mm long, and that inhibition of pollen tube growth occurred in both the upper and lower parts of the transmitting tract. Grafting incompatibly pollinated styles onto compatible styles showed that the incompatible reaction was fully reversible in at least a proportion of the pollen tubes. The findings are not consistent with the cytotoxic model of inhibition of self-pollen tubes in solanaceous plants, which assumes that the incompatible response results from the degradation of a finite amount of rRNA present in the pollen tube. However, if pollen tubes do in fact synthesise rRNA, the findings become consistent with this model. Received: 23 May 1996 / Revision accepted: 22 August 1996  相似文献   

7.
Nicotiana tabacum shows unilateral pollen-pistil incongruity with N. rustica. If N. tabacum is pollinated with N. rustica, growth of the pollen tube is arrested in the middle of the style, and abundant callose deposition, tube swelling and tube winding are observed. An attempt was made to clarify the genomic factors responsible for this pollen-pistil incongruity. N. tabacum was pollinated with N. paniculata or N. undulata, progenitors of amphidiploid N. rustica. When pollinated with N. undulata, growth of the pollen tube was arrested in the middle of the style and showed abnormal morphology similar to that with N. rustica, but when pollinated with N. paniculata the pollen tube reached near the base of the style and was almost normal in appearance. These observations suggest that the factors responsible for the pollen tube abnormality of N. rustica are derived from the N. undulata genome.We also used N. sylvestris, N. glutinosa and N. otophora as pistilar parents and N. rustica or its progenitors as pollen parents to examine the genomic factors of the pistilate parents. The pollen tube features of these three species in the pistils of N. sylvestris were similar to those in the pistil of N. tabacum. Received: 25 October 1999 / Revision accepted: 2 February 2000  相似文献   

8.
Summary The mentor effect has been investigated in poplars. Attempts to overcome interspecific incompatibility are analysed by pollen germination and pollen tube behaviour in situ, both for compatible and incompatible crosses. We have demonstrated that following the mixed pollination, the two pollen sets interact at different levels of the progamic phase. A hypothetical model is proposed which describes mentor effect as the result of interactions of antagonist and cynergic forces applying on compatible pollen and tubes. These forces promote pollen tube growth both on the female partner surface and within the tissues.  相似文献   

9.
Summary In order to better understand the cellular events controlling interspecific incompatibility in the genus Populus, the incompatible cross betweenP. deltoides andP. alba has been investigated both at the light and electron microscopic levels. Stained in decolourized aniline blue and observed by epifluorescence microscopy, most incompatible pollen grains are seen to germinate at the stigma surface. Numerous incompatible pollen tubes reach the base of the style where they are arrested 19 h after pollination. Ultrastructural observations on in vivo growing incompatible pollen tubes confirm these data. Very few cytoplasmic modifications are seen within living pollen tubes reaching the lower end of the style or within arrested ones, except the presence of polymorphic plastids. In this predominantly tricellular system, the male germ unit (MGU) is apparently initiated at pollen maturity as an association between the vegetative nucleus and sperm cells. It is maintained during pollen tube growth within the style and persists within arrested incompatible pollen tubes. The unique observation of an association between a dividing generative cell at metaphase and the vegetative nucleus is also reported. Arrested pollen tubes are characterized by apical deformations and accumulation of callose within their thickened cell walls. These cytological data provide additional information on the cellular events associated with interspecific incompatibility in Populus.Abbreviations DAPI 4,6-diamino-2-phenylindole - FCR fluorochromatic reaction - MGU male germ unit  相似文献   

10.
11.
Common buckwheat (Fagopyrum esculentum Moench) is an agriculturally and pharmaceutically valuable crop due to its wellbalanced essential amino acids and rutin content. However, global mass production of buckwheat is limited because its genetic self-incompatibility results in low seed sets and poor grain yield. Therefore, this study was conducted to classify the modes of pistil-pollen interaction between species belonging to the genusFagopyrum and to determine the optimal combination of outcrosses for the most successful pollinations. Based on the interaction between pistils and pollen, we classified the modes of pollen tube growth during interspecific crosses ofFagopyrum species into five categories: (i) Highly compatible: normal pollen tube elongation and style penetration within 6~24 hours of pollination, (ii) Slightly compatible: delayed (for 1~6 hours) pollen tube elongation and normal style penetration, (iii) Incompatible type I: pollen tube inhibition at the stigma, (iv) Incompatible type II: pollen tube inhibition at the style, and (v) Incompatible type III: pollen tube inhibition at the stylodium. Based on the observed pollen tube elongation and the following embryo development, highly compatible pollinations were found to be crosses betweenF. esculentum x F. cymosum and betweenF. esculentum (thrum)x F. homotropicum.  相似文献   

12.
Ten different tetraploid wheat (Triticum turgidum) genotypes were pollinated with maize (Zea mays). Fertilization was achieved in all ten genotypes and no significant difference in fertilization frequency between the tetraploid wheat genotypes was detected. A mean of 41.1% of pollinated ovaries contained an embryo. All these crosses were characterized by the elimination of the maize chromosomes, and the resulting embryos were haploids. Six of the tetraploid wheat genotypes were also pollinated with Hordeum bulbosum. Fertilization frequencies with H. bulbosum were much lower (mean=13.4%), and significant differences between the tetraploid wheat genotypes were detected. Observation of pollen tube growth revealed that part of the incompatibility reaction between tetraploid wheats and H. bulbosum was due to an effect similar to that of the Kr genes, namely pollen tube growth inhibition. These results indicate that pollinations with maize may have potential as a broad spectrum haploid production system for tetraploid wheats. Present address: Agriculture Canada, Research Branch, Central Experimental Farm, Bldg 50, Ohawa, Ontario, Canada K1A OC6  相似文献   

13.
Efforts to introduce Dutch Elm Disease resistance into the American elm (Ulmus americana L.) through breeding with Asian elms has been hampered by sexual incompatibility. Controlled pollinations of Ulmus americana and the Siberian elm (Ulmus pumila L.) were studied in detail to gain insight into the nature of this incompatibility. Microscopic observations revealed that germination and early pollen tube growth were inhibited on the stigmatic surface following both intra- and interspecific incompatible pollinations. Both qualitative and quantitative differences in pollen inhibition on the stigmatic surface indicated that the inhibition may involve the action of an inhibitory substance. Detailed observations on callose deposition indicated that this β-1,3 glucose polymer may implement the inhibition.  相似文献   

14.
The path of the pollen tube has been examined in pistachio (Pistacia vera), a chalazogamous species where the pollen tube penetrate the ovule via the chalaza. Special attention was paid to the way the pollen tube gains access to the ovule. A single anatropous ovule with a big funiculus occupies the entire ovary cavity. At anthesis, a physical gap exists between the ovule and the base of the style. However, upon pollen tube arrival a protuberance, the ponticulus, develops in the uppermost area of the funiculus between the style and ovule. This structure appears to facilitate access to the ovule by the pollen tube. The pollen tube penetrates the ovule via this ponticulus. Upon penetration, callose develops in the ponticulus cells surrounding the pollen tube. After pollen tube passage, the upper layer of the ponticulus lignifies and isolates the ovule from the style. This separation is further enlarged 2 weeks later when the ovary starts to develop without expansion of the ovule and a large gap develops separating the ovule from the style. Except for the induction of callose formation by the pollen tube in the funiculus, this process is independent of pollination and appears to be developmentally regulated since it occurs in the same way and at the same time in pollinated and unpollinated flowers. The ponticulus, although by a different mechanism, appears to be playing the role of an obturator regulating access of the pollen tube to the ovule. Furthermore, this access is restricted to a particular time during the development of the ovule.  相似文献   

15.
 Pollen tube growth in the pistil and pollen tube penetration of ovules have both been studied in crosses between cultivars from Tulipa gesneriana L. and 12 tulip species from all eight sections of the genus Tulipa to identify pre-fertilization barriers. Depending on the cross, pollen tubes grew as far as the stigma or the style or continued growing down into the ovary. Pollen tubes penetrated none or only a few percent of the ovules of some crosses, despite the presence of many pollen tubes in the ovary. In other crosses, from which no or only a few hybrids have been obtained after seed maturation on the plant, pollen tube penetration was found in up to 79% of the ovules. Apparently, various kinds of barriers preventing fertilization or normal embryogenesis occur in interspecific tulip crosses. Received: 26 July 1996 / Revision accepted: 31 January 1997  相似文献   

16.
Pandey , K.K. (Crop Res. Div., D.S. & I.R., Lincoln, Christchurch, New Zealand.) Interspecific incompatibility in Solanum species. Amer. Jour. Bot. 49(8): 874–882. Illus. 1962.—A diallel cross involving 11 self-incompatible and 3 self-compatible species of Solanum was made to study the genetic basis of interspecific incompatibility. Interspecific incompatibility was not limited to crosses in which a self-compatible species was used as the male parent onto a self-incompatible species (unilateral incompatibility). A number of crosses between self-incompatible species were incompatible. In one cross, Q vernei X verrucosum, a self-compatible species was successful as a pollen parent with a self-incompatible species. Unlike other hybrids between self-compatible and self-incompatible species, which are self-incompatible, these F1 hybrids were self-fertile, and cross-fertile among themselves and with both parents. The self-fertile S. polyadenium was cross-incompatible as a female as well as a male parent with all other species. It is suggested that the unilateral incompatibility is a property of the allele SC which originated as a consequence of one kind of breakdown of the SI gene; the SC allele produces “bare” pollen growth substances which are inactivated in an incompatible style. It is proposed that the failure of the principle of unilateral interspecific incompatibility in solanaceous species may be due to the action of alleles at the second incompatibility locus revealed in certain Mexican species. It is assumed that the South American species are selected intraspecifically only for the action of S alleles but that in certain interspecific crosses and rarely in intraspecific crosses the alleles at the second locus may be expressed, thus interfering with the usual action of S alleles. The F1 hybrids Q verrucosum (self-fertile) X simplicifolium (self-sterile) were self-incompatible at the tetraploid as well as the diploid level, and their cross-compatibility behavior was consistent with the expected activity of the SC and SI alleles of the 2 parents respectively.  相似文献   

17.
The class III pistil-specific extensin-like proteins (PELPIII) of Nicotiana tabacum accumulate in the intercellular matrix (IM) of the style transmitting tissue (TT). After pollination, the 110–140 kDa PELPIII is translocated from the IM into the pollen tube walls. PELPIII-like sequences have been found in several solanaceous species. These sequences are expressed in mature non-pollinated styles at both RNA and protein level. Of the genus Nicotiana, the species N. alata, N. x sanderae and N. sylvestris (section Alatae), and N. tomentosiformis and N. otophora (section Tomentosae) showed an expression level of PELPIII homologues similar to that in mature styles of N. tabacum. PELPIII genes were absent in the most ancient species studied, namely N. trigonophylla (section Trigonophyllae). To study the species dependence of the translocation of PELPIII into the pollen tube wall in tobacco, interspecific pollinations on N. tabacum pistils were carried out with pollen from the incongruous species N. rustica, N. trigonophylla and Petunia hybrida, where PELPIII homologues are absent in the style. Immunocytological tests showed that the N. tabacum PELPIII is translocated into the pollen tube walls of all three species. Thus, the pollen tube walls of these species do not form a barrier for IM compounds such as the 110–140 kDa PELPIII and the absence of any possible effect of PELPIII on pollen tube growth cannot be due to failure of PELPIII transport through the wall. The importance of these findings is discussed with respect to the evolutionary origin of PELPIII, the pollen pistil interaction, the function of style TT-specific proteins and the physical properties of pollen tube walls.  相似文献   

18.
Intraspecific barriers promote outcrossing while interspecific mechanisms may contribute to the isolation of species; both control the exchange of genes between plants. In this paper we establish that post-pollination mechanisms promote outcross and act at different temporal and spatial levels to control seed set and quality in Quercus species. Controlled pollinations were performed to investigate intraspecific crossing barriers in Q. suber and pollen-pistil interactions following interspecific pollinations with some simpatric Quercus species. Cytological data of intraspecific crosses in Q. suber and Q. ilex have shown different kinetics on pollen tube growth after self and outcross pollination, but pollen tubes were able to reach the base of the styles in both species and seed set was successful. Although some pre-zygotic interaction is occurring at the style, the most important interaction takes place at ovary. The cross between Q. ilex and Q. suber is possible only in one direction, revealing a case of unilateral incongruity. We show that the lack of seed set observed in the cross Q. suber×Q. ilex is due to the inability of pollen tubes to penetrate the transmitting tissue after germination. With Q. suber mainly as female parent, pollinations with other simpatric Quercus species have shown different levels of constraint on pollen tube progression at stigma and style levels. Eventual hybridisation between Quercus species will depend on the compatibility of pollen-pistil interactions, on the competitive ability of pollen genotypes, and, most important, on the overlapping of geographical, phenological and ecological factors. Differences in seed set and seed allocation was evident in all crosses, and was particularly outstanding in interspecific and in self intraspecific crosses, determining the ultimate level of seed production and quality in Quercus species. Received: 4 April 2001 / Accepted: 8 May 2001  相似文献   

19.
The reproductive system was studied inCrocus genus (Iridaceae) following intra- and interspecific pollination, by using light and scanning electron microscopy. The results suggest that the stigma-style tract of theCrocus pistil is a mere promoter of pollen tube growth, while intra- and interspecific discrimination of compatible and incompatible pollen occurs in the ovarian tract. Here, the transmitting tissue consists of special epidermal cells, whose granular or floccular secretions provide the selective medium for the growth of pollen tubes. The ovarian self-incompatibility (SI) is widespread within the genus, resulting in a partial or complete suppression of self-fertilization. Moreover, postzygotic SI mechanisms, as well as postzygotic mechanisms of unknown nature, seem to be recurrent and both are responsible for seed abortion. The interspecific ovarian incompatibility concerns only unrelated crosses; crosses between related fertile species succeed both in fertilization and seed-set.  相似文献   

20.
Both interspecific and intraspecific mechanisms restrict the exchange of genes between plants. Much research has focused on self incompatibility (SI), an intraspecific barrier, but research on interspecific barriers lags behind. We are using crosses betweenLycopersicon esculentum andL. pennellii as a model with which to study interspecific crossing barriers. The crossL. esculentum×L. pennellii is successful, but the reciprocal cross fails. Since the cross can be successfully made in one direction but not the other, gross genomic imbalance or chromosomal abnormality are precluded as causes. We showed that the lack of seed set observed in the crossL. pennellii×L. esculentum is due to the inability of pollen tubes to grow more than 2–3 mm into the style, whereas S1 crosses show continued slow pollen tube growth but, also, fail to set seed. These results indicate that the unilateral response is a barrier distinct from SI, differing from SI in the timing and location of expression in the style. We therefore suggest that this unilateral response in theL. pennellii×L. esculentum cross is more accurately referred to as unilateral incongruity (UI) rather than interspecific incompatibility. Periclinal chimeras were used to determine the tissues involved in UI. The results of crosses with the available chimeras indicate that the female parent must beL. pennellii at either LI (layer 1) or both LI and LII (layer 2) and the male parent must beL. esculentum at either LII or both LI and LII to observe UI similar to that seen in theL. pennellii×L. esculentum cross. Pollinations with a mixture of pollen fromL. pennellii and from transgenicL. esculentum plants harboring a pollen-specific GUS reporter gene marker were used to ascertain whether the growth of the pollen tubes of either species was modified as a possible means of overcoming UI. We found no evidence of communication between the two types of pollen tubes to either enhance or restrict all pollen tube growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号