首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thrombin stimulation of prostacyclin (PGI2) synthesis by cultured human umbilical vein endothelial cells (HUVEC) requires the active site of thrombin and involves rapid and transient rises in cytoplasmic free calcium [Ca2+]i. In this study, we investigated whether or not the anion-binding exosite for fibrinogen recognition of thrombin (which confers certain substrate specificities) is also necessary for the induction of rises in [Ca2+]i and PGI2 production. Thrombin variants which lack either the catalytic site (DIP-alpha-thrombin) or anion-binding exosite (gamma-thrombin) either alone or in combination failed to induce rises in [Ca2+]i or PGI2 production in HUVEC. To further study the role of the anion-binding exosite of thrombin in the activation of HUVEC, COOH-terminal fragments of hirudin were used. This portion of hirudin interacts with the anion-binding exosite of thrombin and inhibits thrombin-induced fibrinogen coagulation while leaving the catalytic activity of thrombin intact. A 21-amino acid COOH-terminal peptide of hirudin (N alpha-acetyldesulfato-hirudin45-65 or Hir45-65) inhibited thrombin-induced (0.5 U/ml) rises in [Ca2+]i and PGI2 production with IC50 of 0.13 and 0.71 microM, respectively. Similar results were obtained using shorter hirudin-derived peptides. Thus, the fibrinogen anion-binding exosite of thrombin is required for alpha-thrombin-induced rises in [Ca2+]i and PGI2 production in HUVEC.  相似文献   

2.
Cleavage by thrombin of the platelet thrombin receptor exposes a new N-terminal segment SFLLRNPNDKYEPF (SFLL) which acts as a tethered ligand. The free peptide activates platelets and induces platelet aggregation. We now show that SFLL can also activate human umbilical vein endothelial cells (HUVEC) and induce rises in both cytosolic free calcium ([Ca2+]i) and prostacyclin (PGI2) production. These responses were time- and concentration-dependent and were similar to those for native thrombin except that they were not blocked by hirudin. Initial activation of HUVEC with thrombin desensitized the subsequent response to SFLL for both rises in [Ca2+]i and PGI2 production. Thus, SFLL alone can activate HUVEC and elevate [Ca2+]i and induce PGI2 production suggesting that the thrombin receptors on platelet and endothelial cells are functionally and structurally similar.  相似文献   

3.
Stimulation of human endothelial cells (EC) by thrombin elicits a rapid increase of intracellular free Ca2+ [(Ca2+]i), platelet-activating factor (PAF) production and 1-O-alkyl-2-lyso-sn-glycero-3- phosphocholine (lyso-PAF): acetyl-CoA acetyltransferase (EC 2.3.1.67) activity. The treatment of EC with thrombin leads to a 90% decrease in the cytosolic protein kinase C (PKC) activity; this dramatic decline is accompanied by an increase of the enzymatic activity in the particulate fraction. The role of PKC in thrombin-mediated PAF synthesis has been assessed: (1) by the blockade of PKC activity with partially selective inhibitors (palmitoyl-carnitine, sphingosine and H-7); (2) by chronic exposure of EC to phorbol 12-myristate 13-acetate (PMA), which results in down-regulation of PKC. In both cases, a strong inhibition of thrombin-induced PAF production is observed, suggesting obligatory requirement of PKC activity for PAF synthesis. It is suggested that PKC regulates EC phospholipase A2 (PLA2) activity as thrombin-induced arachidonic acid (AA) release is 90% inhibited in PKC-depleted cells. Brief exposure of EC to PMA strongly inhibits thrombin-induced [Ca2+]i rise, acetyltransferase activation and PAF production, suggesting that, in addition to the positive forward action, PKC provides a negative feedback control over membrane signalling pathways involved in the thrombin effect on EC. Forskolin and iloprost, two agents that increase the level of cellular cAMP in EC, are very effective in inhibiting thrombin-evoked cytosolic Ca2+ rise, acetyltransferase activation and PAF production; this suggests that endogenously generated prostacyclin (PGI2) may modulate the synthesis of PAF in human endothelial cells.  相似文献   

4.
Secondary signals mediated by GPIIb/IIIa in thrombin-activated platelets   总被引:3,自引:0,他引:3  
We have previously found that stimulation of aequorin-loaded platelets by thrombin produced a two-peaked increase in intracellular free calcium concentration ([Ca2+]i), and the development of the second peak of [Ca2+]i was closely related with the aggregation. In this report, we studied the interrelationship between the GPIIb/IIIa complex, aggregation, cytoskeletons and [Ca2+]i of platelets. The pretreatment of the platelets with dihydrocytochalasin B (4 microM), an actin polymerization inhibitor, did not inhibit aggregation and TXB2 production, but did inhibit both actin polymerization and the second peak of [Ca2+]i increase induced by thrombin, suggesting that actin polymerization and the second peak of [Ca2+]i are interrelated. GRGDSP (100 microM), a synthetic anti-adhesive peptide, has already been reported to inhibit platelet aggregation and the second peak of [Ca2+]i induced by thrombin. It also inhibited actin polymerization and TXB2 production, suggesting that aggregation was important for not only the generation of the second peak of [Ca2+]i but also for actin polymerization and TXB2 production. PGI2 (5 nM) did not abolish but only delayed aggregation, TXB2 production, actin polymerization and the second peak of [Ca2+]i increase. These findings suggest that the secondary signals are caused by aggregation (fibrinogen-binding to the GPIIb/IIIa) in thrombin-aggregated platelets, which results in the TXA2 production and the secondary peak of [Ca2+]i increase, and the latter was dependent on actin polymerization.  相似文献   

5.
The effects of extracellular K+ on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) were examined in mouse aorta, mouse aorta endothelial cells (MAEC), and human umbilical vein endothelial cells (HUVEC). In mouse aortic rings precontracted with prostaglandin F2alpha or norepinephrine, an increase in extracellular K+ concentration ([K+]o) from 6 to 12 mM inhibited EDR concentration dependently. In endothelial cells, an increase in [K+]o inhibited the agonist-induced [Ca2+]i increase concentration dependently. Similar to K+, Cs+ also inhibited EDR and the increase in [Ca2+]i concentration dependently. In current-clamped HUVEC, increasing [K+]o from 6 to 12 mM depolarized membrane potential from -32.8 +/- 2.7 to -8.6 +/- 4.9 mV (n = 8). In voltage-clamped HUVEC, depolarizing the holding potential from -50 to -25 mV decreased [Ca2+]i significantly from 0.95 +/- 0.03 to 0.88 +/- 0.03 microM (n = 11, P < 0.01) and further decreased [Ca2+]i to 0.47 +/- 0.04 microM by depolarizing the holding potential from -25 to 0 mV (n = 11, P < 0.001). Tetraethylammonium (1 mM) inhibited EDR and the ATP-induced [Ca2+]i increase in voltage-clamped MAEC. The intermediate-conductance Ca2+-activated K+ channel openers 1-ethyl-2-benzimidazolinone, chlorozoxazone, and zoxazolamine reversed the K+-induced inhibition of EDR and increase in [Ca2+]i. The K+-induced inhibition of EDR and increase in [Ca2+]i was abolished by the Na+-K+ pump inhibitor ouabain (10 microM). These results indicate that an increase of [K+]o in the physiological range (6-12 mM) inhibits [Ca2+]i increase in endothelial cells and diminishes EDR by depolarizing the membrane potential, decreasing K+ efflux, and activating the Na+-K+ pump, thereby modulating the release of endothelium-derived vasoactive factors from endothelial cells and vasomotor tone.  相似文献   

6.
Selenium is an essential component of glutathione peroxidase, an enzyme which protects cells against peroxidation and controls concentrations of intracellular peroxides. Since selenium deficiency is clinically associated with an increased degree of atherosclerosis, the effects of selenium deficiency on prostacyclin (PGI2) and platelet activating factor (PAF) production by cultured human umbilical vein endothelial cells (HUVEC) were investigated. In selenium-deficient HUVEC, histamine-induced PGI2 synthesis was significantly decreased when compared to selenium-supplemented HUVEC; in contrast, histamine-induced PAF production was increased by selenium deficiency. Histamine-induced inositol trisphosphate and [Ca2+]i responses and the conversion of PGG2 and PGH2 to PGI2 were not altered by selenium deficiency. However, selenium deficiency decreased the conversion of exogenous arachidonate to PGI2 and markedly suppressed glutathione peroxidase activity. These results suggest that selenium deficiency, by decreasing glutathione peroxidase activity, makes HUVEC susceptible to peroxide-induced inhibition of the cyclooxygenase activity of PGH2 synthase, resulting in decreased PGI2 production. These changes may alter platelet function in vivo and thus play a role in the increased incidence of atherosclerosis reported in selenium-deficient individuals.  相似文献   

7.
The more interesting features of the effects or PMA on [Ca2+]i and ATP release were the following: 1. preincubation with PMA inhibited thrombin-evoked calcium transients; 2. PMA stimulated slightly the release of calcium and ATP whereas inhibited calcium and ATP pools sensitive to thrombin; 3. A23187 reversed the inhibitory effect of PMA; 4. subsaturating thrombin concentrations gave results similar to PMA on thrombin-induced calcium and ATP release but not on [Ca2+]i.  相似文献   

8.
Intracellular free Ca2+ [( Ca2+]i) and pH (pHi) were measured simultaneously by dual wavelength excitation in thrombin-stimulated human platelets double-labeled with the fluorescent probes fura2 and 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein to determine the relationship between changes in [Ca2+]i and pHi, respectively. At 37 degrees C, thrombin (0.5 or 0.1 units/ml) increased [Ca2+]i with no detectable lag period to maximum levels within 13 s followed by a slow return to resting levels. There was a transient decrease in pHi within 9 s that was immediately followed by an alkalinization response, attributable to activation of Na+/H+ exchange, that raised pHi above resting levels within 22 s. At 10-15 degrees C, thrombin-induced changes in [Ca2+]i and pHi were delayed and therefore better resolved, although no differences in the magnitude of changes in [Ca2+]i and pHi were observed. However, the increase in [Ca2+]i had peaked or was declining before the alkalinization response was detected, suggesting that Ca2+ mobilization occurs before activation of Na+/H+ exchange. In platelets preincubated with 5-(N-ethyl-N-isopropyl)amiloride or gel-filtered in Na+-free buffer (Na+ replaced with N-methyl-D-glutamine) to inhibit Na+/H+ exchange, thrombin stimulation caused a rapid, sustained decrease in pHi. Under these conditions there was complete inhibition of the alkalinization response, whereas Ca2+ mobilization was only partially inhibited. Nigericin (a K+/H+ ionophore) caused a rapid acidification of more than 0.3 pH unit that was sustained in the presence of 5-(N-ethyl-N-isopropyl)amiloride. Subsequent stimulation with thrombin resulted in slight inhibition of Ca2+ mobilization. These data show that, in human platelets stimulated with high or low concentrations of thrombin, Ca2+ mobilization can occur without a functional Na+/H+ exchanger and in an acidified cytoplasm. We conclude that Ca2+ mobilization does not require activation of Na+/H+ exchange or preliminary cytoplasmic alkalinization.  相似文献   

9.
Thrombin induced an increase in [Ca2+]i in mouse mastocytoma P-815 cells. This increase was markedly reduced by prior exposure to pertussis toxin (PT) but not by removal of extracellular Ca2+, suggesting that thrombin stimulates phospholipase C via a PT-sensitive GTP-binding protein. ATP also induced an increase in [Ca2+]i. This increase was insensitive to PT but completely suppressed on removal of extracellular Ca2+, suggesting that ATP stimulates Ca2+ influx in a PT-insensitive manner. Iloprost, a stable prostacyclin analogue, increased the cellular cAMP level and dose-dependently inhibited the thrombin-induced increase in [Ca2+]i, whereas the ATP-induced increase in [Ca2+]i was markedly enhanced by iloprost. Cyclic AMP analogues, dibutyryl cAMP and 8-bromo cAMP, also inhibited the increase in [Ca2+]i induced by thrombin and promoted that by ATP, indicating that the inhibitory and stimulatory effects of iloprost are mediated by cAMP. These results suggest that the prostacyclin receptor differentially regulates two distinct Ca2+ mobilizing systems via cAMP in mastocytoma cells.  相似文献   

10.
Previous studies have demonstrated an inhibition of agonist-induced inositol phospholipid breakdown and intracellular Ca2+ ([Ca2+]i) mobilization by phorbol esters in platelets. In this study, we have examined the effect of phorbol 12-myristate 13-acetate (PMA) on agonist-induced granule secretion and correlated it with agonist-induced [Ca2+]i mobilization, arachidonate and thromboxane (Tx) release in human platelets. With increasing times of incubation with PMA (10 s-5 min), the rise in [Ca2+]i induced by thrombin and the TxA2 mimetic, U46619, was increasingly inhibited (90-100% with 5 min incubation) and, correlating with this, thrombin-induced [3H]arachidonate, TxB2 and beta-thromboglobulin (beta TG) release were also inhibited. In addition, the conversion of exogenously added arachidonate to TxB2 was inhibited (50-80%) by a 10 s-5 min pretreatment with PMA. However, secretion of 5-hydroxy[14C]tryptamine (5HT) induced by thrombin or U46619 was not inhibited by 10 s-2 min incubations with PMA and, on the contrary, with low agonist concentrations, was potentiated by PMA in the absence of a significant rise in [Ca2+]i or endogenous Tx formation, to levels significantly greater than or equal to the sum of that obtained when agonist and PMA were added separately. With longer times of incubation with PMA (5 min), these synergistic effects became less pronounced as inhibitory effects of PMA on agonist-induced [14C]5HT secretion became apparent. The results indicate that, while PMA may cause an inhibition of agonist-induced [Ca2+]i mobilization resulting in an inhibition of agonist-induced arachidonate, TxB2 and beta TG release, its effects on agonist-induced 5HT secretion may be complicated by [Ca2+]i-independent synergistic effects of agonist and PMA.  相似文献   

11.
The effect of 1-oleoyl-2-acetylglycerol (OAG) on the thrombin-induced rise in intracellular Ca2+ levels ([Ca2+]i) and 5-hydroxy[14C]tryptamine ([14C]5HT) secretion was studied. In washed human platelets prelabelled with [14C]5HT and quin 2, OAG (10-50 micrograms/ml) induced no significant aggregation, [14C]5HT secretion or rise in [Ca2+]i in the presence or absence of fibrinogen. However, addition of OAG (10-50 micrograms/ml) 10 s to 5 min before or 10-60 s after addition of threshold concentrations of thrombin (less than 0.03 U/ml) resulted in a significant potentiation of aggregation and [14C]5HT secretion without any effect on the thrombin-induced rise in [Ca2+]i. Both EGTA, which abolished the latter and creatine phosphate/creatine phosphokinase, the ADP scavenger, totally inhibited the aggregation but only partially reduced [14C]5HT secretion in response to thrombin plus OAG. At higher concentrations of thrombin, neither the rise in [Ca2+]i nor the extent of [14C]5HT secretion was significantly altered by OAG addition. The results demonstrate that, unlike phorbol esters, OAG has no inhibitory effect on thrombin-induced [Ca2+]i mobilisation but can synergize with low concentrations of thrombin in potentiating [14C]5HT secretion even at basal [Ca2+]i.  相似文献   

12.
Thrombin is a serine protease activated during injury and inflammation. Thrombin and other proteases generated by periodontal pathogens affect the behavior of periodontal cells via activation of protease-activated receptors (PARs). We noted that thrombin and PAR-1 agonist peptide stimulated intracellular calcium levels ([Ca2+]i) of gingival fibroblasts (GF). This increase of [Ca2+]i was inhibited by EGTA and verapamil. U73122 and neomycin inhibited thrombin- and PAR-1-induced [Ca2+]i. Furthermore, 2-APB (75-100 microM, inositol triphosphate [IP3] receptor antagonist), thapsigargin (1 microM), SKF-96365 (200 microM) and W7 (50 and 100 microM) also suppressed the PAR-1- and thrombin-induced [Ca2+]i. However, H7 (100, 200 microM) and ryanodine showed little effects. Blocking Ca2+ efflux from mitochondria by CGP37157 (50, 100 microM) inhibited both thrombin- and PAR-1-induced [Ca2+]i. Thrombin induced the IP3 production of GF within 30-seconds of exposure, which was inhibited by U73122. These results indicate that mitochondrial calcium efflux and calcium-calmodulin pathways are related to thrombin and PAR-1 induced [Ca2+]i in GF. Thrombin-induced [Ca2+]i of GF is mainly due to PAR-1 activation, extracellular calcium influx via L-type calcium channel, PLC activation, then IP3 binding to IP3 receptor in sarcoplasmic reticulum, which leads to intracellular calcium release and subsequently alters cell membrane capacitative calcium entry.  相似文献   

13.
Vascular smooth muscle contractile state is regulated by intracellular calcium levels. Nitric oxide causes vascular relaxation by stimulating production of cyclic GMP, which activates type I cGMP-dependent protein kinase (PKGI) in vascular smooth muscle cells (VSMC), inhibiting agonist-induced intracellular Ca2+ mobilization ([Ca2+]i). The relative roles of the two PKGI isozymes, PKGIalpha and PKGIbeta, in cyclic GMP-mediated inhibition of [Ca2+]i in VSMCs are unclear. Here we have investigated the ability of PKGI isoforms to inhibit [Ca2+]i in response to VSMC activation. Stable Chinese hamster ovary cell lines expressing PKGIalpha or PKGIbeta were created, and the ability of PKGI isoforms to inhibit [Ca2+]i in response to thrombin receptor stimulation was examined. In Chinese hamster ovary cells stably expressing PKGIalpha or PKGIbeta, 8-Br-cGMP activation suppressed [Ca2+]i by thrombin receptor activation peptide (TRAP) by 98 +/- 1 versus 42 +/- 5%, respectively (p <0.002). Immunoblotting studies of cultured human VSMC cells from multiple sites using PKGIalpha- and PKGIbeta-specific antibodies showed PKGIalpha is the predominant VSMC PKGI isoform. [Ca2+]i following thrombin receptor stimulation was examined in the absence or presence of cyclic GMP in human coronary VSMC cells (Co403). 8-Br-cGMP significantly inhibited TRAP-induced [Ca2+]i in Co403, causing a 4-fold increase in the EC50 for [Ca2+]i. In the absence of 8-Br-cGMP, suppression of PKGIalpha levels by RNA interference (RNAi) led to a significantly greater TRAP-stimulated rise in [Ca2+]i as compared with control RNAi-treated Co403 cells. In the presence of 8-Br-cGMP, the suppression of PKGIalpha expression by RNAi led to the complete loss of cGMP-mediated inhibition of [Ca2+]i. Adenoviral overexpression of PKGIbeta in Co403 cells was unable to alter TRAP-stimulated Ca2+ mobilization either before or after suppression of PKGIalpha expression by RNAi. These results support that PKGIalpha is the principal cGMP-dependent protein kinase isoform mediating inhibition of VSMC activation by the nitric oxide/cyclic GMP pathway.  相似文献   

14.
S O Sage  T J Rink 《FEBS letters》1985,188(1):135-140
The adenylate cyclase stimulator forskolin was used to study the inhibitory effects of elevated cAMP on the activation of washed human platelets loaded with the fluorescent Ca2+ indicator quin2. In the presence of 10 microM isobutylmethylxanthine forskolin inhibited rises in [Ca2+]i evoked by thrombin and platelet-activating factor (PAF) due to both Ca2+ influx and release from internal stores with similar potency. Aggregation evoked by thrombin and PAF was suppressed whilst partial shape-change persisted, even in the absence of a measurable rise in [Ca2+]i. Forskolin did not affect the rise in [Ca2+]i evoked by Ca2+ ionophore; aggregation was suppressed but shape-change persisted.  相似文献   

15.
《The Journal of cell biology》1993,120(6):1491-1499
Thrombin, a potent activator of cellular responses, proteolytically cleaves, and thereby activates its receptor. In the present study, we compared the effects of the thrombin receptor 14-amino acid peptide (TRP-14; SFLLRNPNDKYEPF), which comprises the NH2 terminus after cleavage of the thrombin receptor, and of the native alpha-thrombin on endothelial monolayer permeability. Addition of TRP-14 (1-200 microM) to bovine pulmonary artery endothelial cells increased [Ca2+]i in a dose-dependent manner. The peak increase in [Ca2+]i in response to 100 microM TRP-14 or 0.1 microM alpha-thrombin was similar (i.e., 931 +/- 74 nM and 1032 +/- 80 nM, respectively), which was followed by a slow decrease with t1/2 values of 0.73 and 0.61 min, respectively. Extracellular Ca2+ chelation with 5 mM EGTA abolished the sustained increases in [Ca2+]i induced by either TRP-14 or alpha-thrombin. alpha- thrombin (0.1 microM) increased transendothelial [125I]albumin permeability, whereas TRP-14 (1-100 microM) had no effect. Coincubation of 100 microM TRP-14 with 1 microM DIP-alpha-thrombin also did not increase permeability over control values. Stimulation of BPAEC with 0.1 microM alpha-thrombin induced translocation of protein kinase C (PKC) from the cytosol to the plasma membrane indicative of PKC activation, whereas TRP-14 had no effect at any concentration. TRP-14 at 100 microM desensitized BPAEC to thrombin-induced increases in [Ca2+]i and transendothelial permeability. The Ca2+ desensitization was reversed after approximately 60 min, and this recovery paralleled the recovery of the permeability response. These findings indicate that the TRP-14-induced Ca2+ mobilization in the absence of PKC activation is insufficient to increase endothelial permeability. In contrast, the increase in endothelial permeability after alpha-thrombin occurred in conjunction with Ca2+ mobilization as well as PKC activation. TRP-14 pretreatment prevented the alpha-thrombin-induced increase in endothelial permeability secondary to desensitization of the Ca2+ signal. The results suggest that combined cytosolic Ca2+ mobilization mediated by TRP-14 and PKC activation mediated by a TRP-14-independent pathway are dual signals responsible for the thrombin-induced increase in vascular endothelial permeability.  相似文献   

16.
The hydrogen ion is an important factor in the alteration of vascular tone in pulmonary circulation. Endothelial cells modulate vascular tone by producing vasoactive substances such as prostacyclin (PGI2) through a process depending on intracellular Ca2+ concentration ([Ca2+]i). We studied the influence of CO2-related pH changes on [Ca2+]i and PGI2 production in human pulmonary artery endothelial cells (HPAECs). Hypercapnic acidosis appreciably increased [Ca2+]i from 112 +/- 24 to 157 +/- 38 nmol/l. Intracellular acidification at a normal extracellular pH increased [Ca2+]i comparable to that observed during hypercapnic acidosis. The hypercapnia-induced increase in [Ca2+]i was unchanged by the removal of Ca2+ from the extracellular medium or by the depletion of thapsigargin-sensitive intracellular Ca2+ stores. Hypercapnic acidosis may thus release Ca2+ from pH-sensitive but thapsigargin-insensitive intracellular Ca2+ stores. Hypocapnic alkalosis caused a fivefold increase in [Ca2+]i compared with hypercapnic acidosis. Intracellular alkalinization at a normal extracellular pH did not affect [Ca2+]i. The hypocapnia-evoked increase in [Ca2+]i was decreased from 242 +/- 56 to 50 +/- 32 nmol/l by the removal of extracellular Ca2+. The main mechanism affecting the hypocapnia-dependent [Ca2+]i increase was thought to be the augmented influx of extracellular Ca2+ mediated by extracellular alkalosis. Hypercapnic acidosis caused little change in PGI2 production, but hypocapnic alkalosis increased it markedly. In conclusion, both hypercapnic acidosis and hypocapnic alkalosis increase [Ca2+]i in HPAECs, but the mechanisms and pathophysiological significance of these increases may differ qualitatively.  相似文献   

17.
Activation of platelets by thrombin rapidly increases cytoplasmic free calcium, [Ca2+]i, measured by Quin -2, and induces secretion. Stimulators of adenylate cyclase (i.e. PGI2, PGD2, forskolin) suppressed or reversed the increase of [Ca2+]i. Inhibitors of adenylate cyclase (i.e. epinephrine, ADP), added before or after thrombin, counteracted PGI2, PGD2 and forskolin and thereby increased [Ca2+]i and restored secretion. Responses to epinephrine (via alpha-2 adrenoreceptors) and ADP were independent of extracellular Ca2+, but required maintained occupancy of thrombin receptors and intact cAMP-phosphodiesterase activity. These results indicate that cAMP serves as an inhibitory second-messenger that antagonizes the mobilization of Ca2+, an activator second-messenger.  相似文献   

18.
Dissociated brain cells were isolated from newborn rat pups and loaded with fura-2. These cells were sensitive to low N-methyl-D-aspartate (NMDA) concentrations with EC50 values for NMDA-induced intracellular Ca2+ concentration ([Ca2+]i) increases of approximately 7-16 microM measured in the absence of Mg2+. NMDA-stimulated [Ca2+]i increases could be observed in buffer with Mg2+ when the cells were predepolarized with 15 mM KCl prior to NMDA addition. Under these predepolarized conditions, 100 mM ethanol inhibited 25 microM NMDA responses by approximately 50%, which was similar to the ethanol inhibition observed in buffer without added Mg2+. Ethanol did not alter [Ca2+]i prior to NMDA addition. In the absence of Mg2+, 50 and 100 mM ethanol did not significantly alter the EC50 value for NMDA, but did inhibit NMDA-induced increases in [Ca2+]i in a concentration-dependent manner at 4, 16, 64, and 256 microM NMDA. Whereas NMDA-induced increases in [Ca2+]i were dependent on extracellular Ca2+ and were inhibited by Mg2+, the ability of 100 mM ethanol to inhibit 25 microM NMDA responses was independent of the external Ca2+ or Mg2+ concentrations. Glycine (1, 10, and 100 microM) enhanced 25 microM NMDA-induced increases in [Ca2+]i by approximately 50%. Glycine (1-100 microM) prevented the 100 mM ethanol inhibition of NMDA-stimulated [Ca2+]i observed in the absence of exogenous glycine. MK-801 (25-400 nM) inhibited 25 microM NMDA-stimulated rises in [Ca2+]i in a concentration-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Cultured human umbilical vein endothelial cells (HUVEC) stimulated with thrombin are known to synthesize prostacyclin at least in part from arachidonate released by phospholipase A2, an enzyme directly activated by calcium. In this study, thrombin stimulation of Quin 2-loaded HUVEC caused rapid and dose-dependent rises in inositol trisphosphate (IP3) and cytosolic free calcium (Ca2+i) levels which preceded a similarly dose-dependent rise in prostacyclin production measured as 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) by radioimmunoassay (ED50 = 0.6-0.7 units/ml for all three effects). Thrombin induced these effects in the absence of extracellular calcium (EGTA) or in the presence of either 8-bromo-cAMP or the calmodulin inhibitor W7. Thrombin inactivated with either diisopropyl fluorophosphate or D-Phe-Pro-Arg-chloromethyl ketone was inactive. In contrast, Quin 2-loaded cultured bovine aortic endothelial cells failed to respond to thrombin, although stimulation with trypsin elevated IP3 and Ca2+i levels and increased 6-keto-PGF1 alpha production. Restimulation of HUVEC with thrombin or histamine 5 min after an initial stimulation with thrombin (2 units/ml for 5 min) failed to induce a second rise in either IP3 or Ca2+i levels or further production of 6-keto-PGF1 alpha, whereas restimulation with ionomycin in the presence or absence of extracellular calcium elevated Ca2+i levels and induced further 6-keto-PGF1 alpha production. However, if the initial stimulation with thrombin was terminated by addition of D-Phe-Pro-Arg-chloromethyl ketone within 10-60 s, restimulation with a second dose of thrombin induced second rises in both IP3 and Ca2+i levels and additional 6-keto-PGF1 alpha production that were greatest when the initial thrombin stimulus was briefest. These results are consistent with the conclusion that IP3 acts as a second messenger by which thrombin elevates Ca2+i levels and initiates prostacyclin synthesis in HUVEC and that in vivo endothelial cells may be stimulated multiple times to synthesize prostacyclin if each period of stimulation is brief.  相似文献   

20.
Extracellular ATP and UTP caused increases in the concentration of cytoplasmic free calcium ([Ca2+]i) and the intracellular level of inositol 1,4,5-trisphosphate (IP3), a second messenger for calcium mobilization, prior to the release of prostacyclin (PGI2) from cultured bovine pulmonary artery endothelial (BPAE) cells. The agonist specificity and dose-dependence were similar for nucleotide-mediated increases in IP3 levels, [Ca2+]i and PGI2 release. An increase in [Ca2+]; and PGI2 release was observed after addition of ionomycin, a calcium ionophore, to BPAE cells incubated in a calcium-free medium. The addition of ATP to the ionomycin-treated cells caused no further increase in [Ca2+]i or PGI2 release. The inability of ATP to cause an increase in [Ca2+]i or PGI2 release in ionomycin-treated cells was apparently due to the ionomycin-dependent depletion of intracellular calcium stores since the subsequent addition of extracellular calcium caused a significant increase in both [Ca2+]i and PGI2 release. Introduction of BAPTA, a calcium buffer, into BPAE cells inhibited ATP-mediated increases in [Ca2+]i and PGI2 release, further evidence that PGI2 release is dependent upon an increase in [Ca2+]i. The increase in [Ca2+]i elicited by ATP apparently caused the activation of a calmodulin-dependent phospholipase A2 since trifluoperazine, an inhibitor of calmodulin, and quinacrine, an inhibitor of phospholipase A2, prevented the stimulation of PGI2 release by ATP. Furthermore, ATP caused the specific hydrolysis of [14C]arachidonyl-labeled phosphatidylcholine and the generation of free arachidonic acid, the rate-limiting substrate for PGI2 synthesis, prior to the release of PGI2 from BPAE cells. These findings suggest that the increase in PGI2 release elicited by ATP and UTP is at least partially dependent upon a phospholipase C-mediated increase in [Ca2+]i and the subsequent activation of a phosphatidylcholine-specific phospholipase A2. ATP analogs modified in the adenine base or phosphate moiety caused PGI2 release with a rank order of agonist potency of adenosine 5'-O-(2-thiodiphosphate) (ADP beta S) greater than 2-methylthioATP (2-MeSATP) greater than ATP, whereas alpha, beta methyleneATP and beta, gamma methyleneATP had no effect on PGI2 release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号