首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Protein p5 is a Bacillus subtilis phage phi 29-encoded protein required for phi 29 DNA replication in vivo. Protein p5 has single-stranded DNA binding (SSB) capacity and stimulates in vitro DNA replication severalfold when phi 29 DNA polymerase is used to replicate either the natural phi 29 DNA template or primed M13 single-stranded DNA (ssDNA). Furthermore, other SSB proteins, including Escherichia coli SSB, T4 gp32, adenovirus DNA-binding protein, and human replication factor A, can functionally substitute for protein p5. The stimulatory effect of phi 29 protein p5 is not due to an increase of the DNA replication rate. When both phi 29 DNA template and M13 competitor ssDNA are added simultaneously to the replication reaction, phi 29 DNA replication is strongly inhibited. This inhibition is fully overcome by adding protein p5, suggesting that protein p5-coated M13 ssDNA is no longer able to compete for replication factors, probably phi 29 DNA polymerase, which has a strong affinity for ssDNA. Electron microscopy demonstrates that protein p5 binds to M13 ssDNA forming saturated complexes with a smoothly contoured appearance and producing a 2-fold reduction of the DNA length. Protein p5 also binds to ssDNA in the phi 29 replicative intermediates produced in vitro, which are similar in structure to those observed in vivo. Our results strongly suggest that phi 29 protein p5 is the phi 29 SSB protein active during phi 29 DNA replication.  相似文献   

3.
4.
5.
Protein p6 of Bacillus subtilis phage phi 29 binds specifically to the ends of the viral DNA that contain the replication origins, giving rise to a nucleoprotein structure. DNA regions recognized by protein p6 have been mapped by deletion analysis and DNase I footprinting. Main protein p6-recognition signals have been located between nucleotides 62 and 125 at the right phi 29 DNA end and between nucleotides 46 and 68 at the left end. In addition, recognition signals are also present at other sites within 200-300 bp at each phi 29 DNA end. Protein p6 does not seem to recognize a specific sequence in the DNA, but rather a structural feature, which could be bendability. The formation of the protein p6-DNA nucleoprotein complex is likely to be the structural basis for the protein p6 activity in the initiation of replication.  相似文献   

6.
Series of deletions corresponding to the carboxyl end of the phage phi 29 protein p6 have been constructed and their activity in the initiation of phi 29 DNA replication and their capacity to interact with the phi 29 DNA ends have been studied. Determination of the activity of the deletion mutants in phi 29 DNA replication indicated the dispensability of the 14 carboxy-terminal amino acids of the protein. The activity of protein p6 decreased with deletions from 23 to 39 amino acids and was undetectable when 44 amino acids were removed. A similar behaviour was obtained when the interaction of the mutant proteins with the phi 29 DNA ends was analyzed. These results indicate that the stimulation of phi 29 DNA replication by protein p6 requires a specific binding to the phi 29 DNA ends.  相似文献   

7.
Remarkably little is known about the in vivo organization of membrane-associated prokaryotic DNA replication or the proteins involved. We have studied this fundamental process using the Bacillus subtilis phage phi29 as a model system. Previously, we demonstrated that the phi29-encoded dimeric integral membrane protein p16.7 binds to ssDNA and is involved in the organization of membrane-associated phi29 DNA replication. Here we demonstrate that p16.7 forms multimers, both in vitro and in vivo, and interacts with the phi29 terminal protein. In addition, we show that in vitro multimerization is enhanced in the presence of ssDNA and that the C-terminal region of p16.7 is required for multimerization but not for ssDNA binding or interaction with the terminal protein. Moreover, we provide evidence that the ability of p16.7 to form multimers is crucial for its ssDNA-binding mode. These and previous results indicate that p16.7 encompasses four distinct modules. An integrated model of the structural and functional domains of p16.7 in relation to the organization of in vivo phi29 DNA replication is presented.  相似文献   

8.
The mechanisms underlying compartmentalization of prokaryotic DNA replication are largely unknown. In the case of the Bacillus subtilis phage 29, the viral protein p1 enhances the rate of in vivo viral DNA replication. Previous work showed that p1 generates highly ordered structures in vitro. We now show that protein p1, like integral membrane proteins, has an amphiphilic nature. Furthermore, immunoelectron microscopy studies reveal that p1 has a peripheral subcellular location. By combining in vivo chemical cross-linking and cell fractionation techniques, we also demonstrate that p1 assembles in infected cells into multimeric structures that are associated with the bacterial membrane. These structures exist both during viral DNA replication and when 29 DNA synthesis is blocked due to the lack of viral replisome components. In addition, protein p1 encoded by plasmid generates membrane-associated multimers and supports DNA replication of a p1-lacking mutant phage, suggesting that the pre-assembled structures are functional. We propose that a phage structure assembled on the cell membrane provides a specific site for 29 DNA replication.  相似文献   

9.
Protein p6 of the Bacillus subtilis phage ø29 is essential for in vivo viral DNA replication. This protein activates the initiation of ø29 DNA replication in vitro by forming a multimeric nucleoprotein complex at the replication origins. The N-terminal region of protein p6 is involved in DNA binding, as shown by in vitro studies with p6 proteins altered by deletions or missense mutations. We report on the development of an in vivo functional assay for protein p6. This assay is based on the ability of protein p6-producing B. subtilis non-suppressor (su ?) cells to support growth of a ø29 sus6 mutant phage. We have used this trans-complementation assay to investigate the effect on in vivo viral DNA synthesis of missense mutations introduced into the protein p6 N-terminal region. The alteration of lysine to alanine at position 2 resulted in a partially functional protein, whereas the replacement of arginine by alanine at position 6 gave rise to an inactive protein. These results indicate that arginine at position 6 is critical for the in vivo activity of protein p6. Our complementation system provides a useful genetic approach for the identification of functionally important amino acids in protein p6.  相似文献   

10.
Cell-free extracts prepared from phi 29 and M2-infected Bacillus subtilis cells catalyse the formation of complexes between terminal protein and [alpha-32P]-dAMP in the presence of [alpha-32P]-dATP, MgCl2, ATP, and phage DNA with terminal protein covalently linked at both the 5'ends. The complex formation does not take place when proteinase K-treated DNA is added or when uninfected extract is used. The phi 29 complex thus formed is smaller than the M2 complex, primarily due to the different molecular weights of the respective terminal proteins. Extracts prepared from cells infected with suppressor-sensitive mutants of genes 2 or 3 of phi 29 or genes G or E of M2 do not support complex formation. When the pair of extracts of phi 29 or M2-infected cells are mixed, however, formation of the complex takes place as a result of in vitro complementation. These results indicate that the complex formation observed in vitro reflects in vivo initiation of phage DNA replication. The product of gene 2 of phi 29 may be the enzyme that catalyses formation of the complex.  相似文献   

11.
The phage phi 29 protein p5, required in vivo in the elongation step of phi 29 DNA replication, was highly purified from Escherichia coli cells harbouring a gene 5-containing plasmid and from phi 29-infected Bacillus subtilis. The protein was characterized as the gene 5 product by amino acid analysis and NH2-terminal sequence determination. The purified protein p5 was shown to bind to single-stranded DNA and to protect it against nuclease degradation. No effect of protein p5 was observed either on the formation of the p3-dAMP initiation complex or on the rate of elongation. However, protein p5 greatly stimulated phi 29 DNA-protein p3 replication at incubation times where the replication in the absence of p5 leveled off.  相似文献   

12.
Protein p6 of the Bacillus subtilis phage ø29 is essential for in vivo viral DNA replication. This protein activates the initiation of ø29 DNA replication in vitro by forming a multimeric nucleoprotein complex at the replication origins. The N-terminal region of protein p6 is involved in DNA binding, as shown by in vitro studies with p6 proteins altered by deletions or missense mutations. We report on the development of an in vivo functional assay for protein p6. This assay is based on the ability of protein p6-producing B. subtilis non-suppressor (su ) cells to support growth of a ø29 sus6 mutant phage. We have used this trans-complementation assay to investigate the effect on in vivo viral DNA synthesis of missense mutations introduced into the protein p6 N-terminal region. The alteration of lysine to alanine at position 2 resulted in a partially functional protein, whereas the replacement of arginine by alanine at position 6 gave rise to an inactive protein. These results indicate that arginine at position 6 is critical for the in vivo activity of protein p6. Our complementation system provides a useful genetic approach for the identification of functionally important amino acids in protein p6.  相似文献   

13.
Fifty-four suppressible mutants of bacteriophage phi29 have been isolated with a variety of mutagens and assigned to eight complementation groups. Viral-specific protein synthesis in UV light-irradiated, nonsuppressing Bacillus subtilis 60084 was analyzed with exponential acrylamide gels. Four additional phi29 proteins which were undetected on ordinary acrylamide gels are reported in this paper. Five phage phi29 proteins have been unambiguously assigned to specific cistrons. Two cistrons had pleiotropic effects on viral protein synthesis. Mutants in cistrons I or II were unable to synthesize DNA in nonsuppressing bacteria. Mutants in cistron I were unable to attach viral chromosomes to the host cell membrane, and the protein responsible for this function has been identified. The other viral protein playing a role in phage phi29 DNA synthesis is also identified and assigned to cistron II. Mutants in cistron II can attach viral chromosomes to membrane, but cannot synthesize DNA in nonsuppressing bacteria.  相似文献   

14.
A Bernad  L Blanco  M Salas 《Gene》1990,94(1):45-51
The Bacillus subtilis phage phi 29 DNA polymerase, involved in protein-primed viral DNA replication, contains amino acid consensus sequences common to other alpha-like DNA polymerases. Using site-directed mutagenesis we have studied the functional significance of the most conserved C-terminal segment mainly represented by the YCDTDS motif. A series of single point mutants has been constructed and the corresponding proteins have been overproduced and characterized. Measurements, on crude fractions, of the activity of the mutant proteins in the formation of the protein p3-dAMP initiation complex and in an in situ DNA polymerase assay, indicate that the YCDTDS domain is involved both in initiation and in elongation reactions.  相似文献   

15.
Phage phi29 deoxyribonucleic acid (DNA) replicated under conditions where semiconservative DNA production in Bacillus subtilis host cells was blocked with 6-(p-hydroxyphenylazo)-uracil (HPUra). The time of initiation of phi29 DNA replication was not affected by HPUra, and normal quantities of viable phage were produced in the presence of the inhibitor. Studies with conditional lethal mutants of phage phi29 demonstrated the usefulness of HPUra for detection of viral-specific DNA production.  相似文献   

16.
17.
I Prieto  E Méndez  M Salas 《Gene》1989,77(2):195-204
Unit-length phi 29 DNA was not synthesized after restrictive infection of Bacillus subtilis with the phi 29 mutant sus1(629) indicating that the phage phi 29 protein p1 is needed for the viral DNA replication. Sequencing of the ORF-6 of mutant sus1(629) showed that a C in the wild-type (wt) phage had been changed to a T at nt position 19 of the ORF-6, giving rise to a TAA ochre codon, indicating that this ORF corresponds to gene 1. ORF-6 was cloned in plasmid pPLc28 under the control of the pL promoter of phage lambda and, after induction, a protein of about 10 kDa was overproduced, which was absent in the corresponding cells harbouring a recombinant plasmid with the sus1(629) mutation, indicating that the 10-kDa protein is the product of gene 1. In addition, a protein of lower Mr was synthesized after induction of the cells harbouring recombinant plasmids with the wt or the sus1(629) DNA. Both proteins were purified and characterized by N-terminal sequence determination and amino acid analysis. The low-Mr protein, named delta 1, has a size of 6 kDa and corresponds to an internal in-phase initiation event in ORF-6.  相似文献   

18.
19.
To study the requirements for the in vitro formation of the protein p3-dAMP complex, the first step in phi29 DNA replication, extracts from B. subtilis infected with phi29 mutants in genes 2, 3, 5, 6 and 17, involved in DNA synthesis, have been used. The formation of the initiation complex is completely dependent on the presence of a functional gene 2 product, in addition to protein p3 and phi29 DNA-protein p3 as template. ATP is also required, although it can be replaced by other nucleotides. The products of genes 5, 6 and 17 do not seem to be needed in the formation of the initiation complex. Inhibitors of the host DNA polymerase III, DNA gyrase or RNA polymerase had no effect on the formation of the protein p3-dAMP complex, suggesting that these proteins are not involved in the initiation of phi29 DNA replication. ddATP or aphidicolin, inhibitors of DNA chain elongation, had also no effect on the formation of the initiation complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号